1
|
Han YZ, Song PF, Zhao HY, Han J, Zhang X. [ 18F]Radiolabeling fluorination of monofluoroalkyl triflates for the synthesis of [ 18F]difluoromethylated alkanes. Chem Commun (Camb) 2025; 61:7113-7116. [PMID: 40241684 DOI: 10.1039/d5cc00869g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
An efficient method for the synthesis of [18F]-difluoromethylated alkanes by the combination of [18F]radio-fluoride with monofluoroalkyl triflates has been developed. This method uses [18F]KF/K2.2.2 as the fluorine source. It features synthetic simplicity without tedious precursor preparation, high RCC and RCY, good functional group tolerance, and is silver salt-free, providing potential for developing new PET agents.
Collapse
Affiliation(s)
- Yuan-Zhan Han
- Green Catalysis Center, and College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Peng-Fei Song
- Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, China.
| | - Hai-Yang Zhao
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Junbin Han
- Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, China.
| | - Xingang Zhang
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| |
Collapse
|
2
|
Li W, Zhang X, Zhou J, Di X, Huang D, Ma J, Zhou K, Zhang J, Wang L, Fu H, Cui M. Structure-based discovery of a 4,5-Dihydropyrazole-cored PET ligand for imaging of receptor-interacting serine/threonine-protein kinase 1 (RIPK1) in the brain. Eur J Med Chem 2024; 279:116803. [PMID: 39255641 DOI: 10.1016/j.ejmech.2024.116803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/12/2024]
Abstract
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) regulates programmed cell death and inflammation, contributing to a wide range of human pathologies, including inflammatory disorders, neurodegenerative conditions, and cancer. Despite this, no RIPK1 positron emission tomography (PET) ligand with significant in vivo specificity has been reported to date. In this work, we designed and synthesized a new family of dihydropyrazole-cored ligands suitable for 18F-labeling at the late stage. Among these, WL8 showed a strong binding affinity to RIPK1 (EC50 = 19.9 nM, Kd = 25 nM) and was successfully labeled with 18F in the 6-position of pyridine ring, yielding a high radiochemistry yield of 27.9 % (decay-corrected) and a high molar activity of 18.8-31.2 GBq/μmol. In in vitro autoradiography, [18F]WL8 showed some specific binding in the brain sections of rats and lipopolysaccharide (LPS) model mice. Preliminary PET studies in rat brains revealed that [18F]WL8 could efficiently penetrate the blood-brain barrier and was rapidly washed out. As anticipated, [18F]WL8 exhibited a high initial uptake (brain2min = 4.80 % ID/g) in mouse brains, followed by a rapid washout (brain60min = 0.14 % ID/g), although no clear specific binding to RIPK1 was observed. Moderate in vivo stability was noted for [18F]WL8 in mouse brains with 35.2 % of the parent fraction remaining after 30 min post-administration. Altogether, our work broadens the landscape and offers a new chemotype for RIPK1 PET ligand development.
Collapse
Affiliation(s)
- Wanqing Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Xiaojun Zhang
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Jingyin Zhou
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Xuan Di
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Donglan Huang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Jie Ma
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, PR China
| | - Kaixiang Zhou
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Jinming Zhang
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing, 100853, PR China.
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, PR China.
| | - Hualong Fu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, PR China.
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, PR China; Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| |
Collapse
|
3
|
Seyyedi N, Ghafari A, Seyyedi N, Sheikhzadeh P. Deep learning-based techniques for estimating high-quality full-dose positron emission tomography images from low-dose scans: a systematic review. BMC Med Imaging 2024; 24:238. [PMID: 39261796 PMCID: PMC11391655 DOI: 10.1186/s12880-024-01417-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
This systematic review aimed to evaluate the potential of deep learning algorithms for converting low-dose Positron Emission Tomography (PET) images to full-dose PET images in different body regions. A total of 55 articles published between 2017 and 2023 by searching PubMed, Web of Science, Scopus and IEEE databases were included in this review, which utilized various deep learning models, such as generative adversarial networks and UNET, to synthesize high-quality PET images. The studies involved different datasets, image preprocessing techniques, input data types, and loss functions. The evaluation of the generated PET images was conducted using both quantitative and qualitative methods, including physician evaluations and various denoising techniques. The findings of this review suggest that deep learning algorithms have promising potential in generating high-quality PET images from low-dose PET images, which can be useful in clinical practice.
Collapse
Affiliation(s)
- Negisa Seyyedi
- Nursing and Midwifery Care Research Center, Health Management Research Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Ghafari
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A JBI Centre of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navisa Seyyedi
- Department of Health Information Management and Medical Informatics, School of Allied Medical Science, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyman Sheikhzadeh
- Medical Physics and Biomedical Engineering Department, Medical Faculty, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Nuclear Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Fu H, Rong J, Chen Z, Zhou J, Collier T, Liang SH. Positron Emission Tomography (PET) Imaging Tracers for Serotonin Receptors. J Med Chem 2022; 65:10755-10808. [PMID: 35939391 DOI: 10.1021/acs.jmedchem.2c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) and 5-HT receptors (5-HTRs) have crucial roles in various neuropsychiatric disorders and neurodegenerative diseases, making them attractive diagnostic and therapeutic targets. Positron emission tomography (PET) is a noninvasive nuclear molecular imaging technique and is an essential tool in clinical diagnosis and drug discovery. In this context, numerous PET ligands have been developed for "visualizing" 5-HTRs in the brain and translated into human use to study disease mechanisms and/or support drug development. Herein, we present a comprehensive repertoire of 5-HTR PET ligands by focusing on their chemotypes and performance in PET imaging studies. Furthermore, this Perspective summarizes recent 5-HTR-focused drug discovery, including biased agonists and allosteric modulators, which would stimulate the development of more potent and subtype-selective 5-HTR PET ligands and thus further our understanding of 5-HTR biology.
Collapse
Affiliation(s)
- Hualong Fu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jingyin Zhou
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Thomas Collier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Demine S, Schulte ML, Territo PR, Eizirik DL. Beta Cell Imaging-From Pre-Clinical Validation to First in Man Testing. Int J Mol Sci 2020; 21:E7274. [PMID: 33019671 PMCID: PMC7582644 DOI: 10.3390/ijms21197274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
There are presently no reliable ways to quantify human pancreatic beta cell mass (BCM) in vivo, which prevents an accurate understanding of the progressive beta cell loss in diabetes or following islet transplantation. Furthermore, the lack of beta cell imaging hampers the evaluation of the impact of new drugs aiming to prevent beta cell loss or to restore BCM in diabetes. We presently discuss the potential value of BCM determination as a cornerstone for individualized therapies in diabetes, describe the presently available probes for human BCM evaluation, and discuss our approach for the discovery of novel beta cell biomarkers, based on the determination of specific splice variants present in human beta cells. This has already led to the identification of DPP6 and FXYD2ga as two promising targets for human BCM imaging, and is followed by a discussion of potential safety issues, the role for radiochemistry in the improvement of BCM imaging, and concludes with an overview of the different steps from pre-clinical validation to a first-in-man trial for novel tracers.
Collapse
Affiliation(s)
- Stephane Demine
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA;
| | - Michael L. Schulte
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.L.S.); (P.R.T.)
| | - Paul R. Territo
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.L.S.); (P.R.T.)
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Decio L. Eizirik
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA;
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|
6
|
Heterogeneous surface architectured metal-organic frameworks for cancer therapy, imaging, and biosensing: A state-of-the-art review. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213212] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Lizal F, Jedelsky J, Morgan K, Bauer K, Llop J, Cossio U, Kassinos S, Verbanck S, Ruiz-Cabello J, Santos A, Koch E, Schnabel C. Experimental methods for flow and aerosol measurements in human airways and their replicas. Eur J Pharm Sci 2018; 113:95-131. [DOI: 10.1016/j.ejps.2017.08.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 12/29/2022]
|
8
|
Development and Validation of Stability-Indicating UPLC Method for 9-Desmethyl-α-dihydrotetrabenazine. Chromatographia 2017. [DOI: 10.1007/s10337-017-3388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Gatidis S, Schmidt H, Claussen CD, Schwenzer NF. [Multiparametric imaging with simultaneous MRI/PET: Methodological aspects and possible clinical applications]. Z Rheumatol 2015; 74:878-85. [PMID: 26589201 DOI: 10.1007/s00393-015-0011-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Combined MRI/PET enables the acquisition of a variety of imaging parameters during one examination, including anatomical and functional information such as perfusion, diffusion, and metabolism. OBJECTIVE The present article summarizes these methods and their applications in multiparametric imaging via MRI/PET. RESULTS Numerous studies have shown that the combination of these parameters can improve diagnostic accuracy for many applications, including the imaging of oncological, neurological, and inflammatory conditions. Because of the amount and the complexity of the acquired multiparametric data, there is a need for advanced analysis tools, such as methods of parameter selection and data classification. DISCUSSION Currently, the clinical application of this process still has limitations. On the one hand, software for the fast calculation and standardized evaluation of the imaging data acquired is still lacking. On the other hand, there are deficiencies when comparing the results because of a lack of standardization of the assessment and diagnostic procedure.
Collapse
Affiliation(s)
- S Gatidis
- Abteilung für Diagnostische und Interventionelle Radiologie, Radiologische Klinik, Universitätsklinikum Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland
| | - H Schmidt
- Abteilung für Diagnostische und Interventionelle Radiologie, Radiologische Klinik, Universitätsklinikum Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland
| | - C D Claussen
- Abteilung für Diagnostische und Interventionelle Radiologie, Radiologische Klinik, Universitätsklinikum Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland
| | - N F Schwenzer
- Abteilung für Diagnostische und Interventionelle Radiologie, Radiologische Klinik, Universitätsklinikum Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland.
| |
Collapse
|
10
|
Schaffer C, Sarad N, DeCrumpe A, Goswami D, Herrmann S, Morales J, Patel P, Osborne J. Biomarkers in the Diagnosis and Prognosis of Alzheimer’s Disease. ACTA ACUST UNITED AC 2015; 20:589-600. [DOI: 10.1177/2211068214559979] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Indexed: 02/06/2023]
|
11
|
SPECT- and PET-based approaches for noninvasive diagnosis of acute renal allograft rejection. BIOMED RESEARCH INTERNATIONAL 2014; 2014:874785. [PMID: 24804257 PMCID: PMC3988725 DOI: 10.1155/2014/874785] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/04/2014] [Indexed: 11/18/2022]
Abstract
Molecular imaging techniques such as single
photon emission computed tomography (SPECT) or positron emission tomography are promising tools for noninvasive diagnosis of acute allograft rejection (AR). Given the importance of renal transplantation and the limitation of available donors, detailed analysis of factors that affect transplant survival is important. Episodes of acute allograft rejection are a negative prognostic factor for long-term graft survival. Invasive core needle biopsies are still the “goldstandard” in rejection diagnostics. Nevertheless, they are cumbersome to the patient and carry the risk of significant graft injury. Notably, they cannot be performed on patients taking anticoagulant drugs. Therefore, a noninvasive tool assessing the whole organ for specific and fast detection of acute allograft rejection is desirable. We herein review SPECT- and PET-based approaches for noninvasive molecular imaging-based diagnostics of acute transplant rejection.
Collapse
|
12
|
Cai Z, Anderson CJ. Chelators for copper radionuclides in positron emission tomography radiopharmaceuticals. J Labelled Comp Radiopharm 2014; 57:224-30. [PMID: 24347474 PMCID: PMC4277819 DOI: 10.1002/jlcr.3165] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/29/2013] [Indexed: 12/27/2022]
Abstract
The development of chelating agents for copper radionuclides in positron emission tomography radiopharmaceuticals has been a highly active and important area of study in recent years. The rapid evolution of chelators has resulted in highly specific copper chelators that can be readily conjugated to biomolecules and efficiently radiolabeled to form stable complexes in vivo. Chelators are not only designed for conjugation to monovalent biomolecules but also for incorporation into multivalent targeting ligands such as theranostic nanoparticles. These advancements have strengthened the role of copper radionuclides in the fields of nuclear medicine and molecular imaging. This review emphasizes developments of new copper chelators that have most greatly advanced the field of copper-based radiopharmaceuticals over the past 5 years.
Collapse
Affiliation(s)
- Zhengxin Cai
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Carolyn J. Anderson
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
13
|
|
14
|
MR/PET or PET/MRI: does it matter? MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2013; 26:1-4. [PMID: 23385880 DOI: 10.1007/s10334-012-0365-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 01/01/2023]
Abstract
After the very successful clinical introduction of combined PET/CT imaging a decade ago, a hardware combination of PET and MR is following suit. Today, three different approaches towards integrated PET/MR have been proposed: (1) a triple-modality system with a 3T MRI and a time-of-flight PET/CT installed in adjacent rooms, (2) a tandem system with a 3T MRI and a time-of-flight PET/CT in a co-planar installation with a joint patient handling system, and (3) a fully-integrated system with a whole-body PET system mounted inside a 3T MRI system. This special issue of MAGMA brings together contributions from key experts in the field of PET/MR, PET/CT and CT. The various papers share the author's perspectives on the state-of-the-art PET/MR imaging with any of the three approaches mentioned above. In addition to several reviews discussing advantages and challenges of combining PET and MRI for clinical diagnostics, first clinical data are also presented. We expect this special issue to nurture future improvements in hardware, clinical protocols, and efficient post-processing strategies to further assess the diagnostic value of combined PET/MR imaging. It remains to be seen whether a so-called "killer application" for PET/MRI will surface. In that case PET/MR is likely to excel in pre-clinical and selected research applications for now. This special issue helps the readers to stay on track of this exciting development.
Collapse
|