1
|
Câmara JS, Perestrelo R, Berenguer CV, Andrade CFP, Gomes TM, Olayanju B, Kabir A, M. R. Rocha C, Teixeira JA, Pereira JAM. Green Extraction Techniques as Advanced Sample Preparation Approaches in Biological, Food, and Environmental Matrices: A Review. Molecules 2022; 27:2953. [PMID: 35566315 PMCID: PMC9101692 DOI: 10.3390/molecules27092953] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Green extraction techniques (GreETs) emerged in the last decade as greener and sustainable alternatives to classical sample preparation procedures aiming to improve the selectivity and sensitivity of analytical methods, simultaneously reducing the deleterious side effects of classical extraction techniques (CETs) for both the operator and the environment. The implementation of improved processes that overcome the main constraints of classical methods in terms of efficiency and ability to minimize or eliminate the use and generation of harmful substances will promote more efficient use of energy and resources in close association with the principles supporting the concept of green chemistry. The current review aims to update the state of the art of some cutting-edge GreETs developed and implemented in recent years focusing on the improvement of the main analytical features, practical aspects, and relevant applications in the biological, food, and environmental fields. Approaches to improve and accelerate the extraction efficiency and to lower solvent consumption, including sorbent-based techniques, such as solid-phase microextraction (SPME) and fabric-phase sorbent extraction (FPSE), and solvent-based techniques (μQuEChERS; micro quick, easy, cheap, effective, rugged, and safe), ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE), in addition to supercritical fluid extraction (SFE) and pressurized solvent extraction (PSE), are highlighted.
Collapse
Affiliation(s)
- José S. Câmara
- CQM—Centro de Química da Madeira, Natural Products Research Group, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (C.V.B.); (C.F.P.A.); (T.M.G.)
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, Natural Products Research Group, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (C.V.B.); (C.F.P.A.); (T.M.G.)
| | - Cristina V. Berenguer
- CQM—Centro de Química da Madeira, Natural Products Research Group, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (C.V.B.); (C.F.P.A.); (T.M.G.)
| | - Carolina F. P. Andrade
- CQM—Centro de Química da Madeira, Natural Products Research Group, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (C.V.B.); (C.F.P.A.); (T.M.G.)
| | - Telma M. Gomes
- CQM—Centro de Química da Madeira, Natural Products Research Group, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (C.V.B.); (C.F.P.A.); (T.M.G.)
| | - Basit Olayanju
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (B.O.); (A.K.)
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (B.O.); (A.K.)
- Department of Pharmacy, Faculty of Allied Health Science, Daffodil International University, Dhaka 1207, Bangladesh
| | - Cristina M. R. Rocha
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.M.R.R.); (J.A.T.)
- LABBELS–Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - José António Teixeira
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.M.R.R.); (J.A.T.)
- LABBELS–Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, Natural Products Research Group, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (C.V.B.); (C.F.P.A.); (T.M.G.)
| |
Collapse
|
2
|
Sahu RS, Shih YH, Chen WL. New insights of metal free 2D graphitic carbon nitride for photocatalytic degradation of bisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123509. [PMID: 32717544 DOI: 10.1016/j.jhazmat.2020.123509] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Polymeric oxygen rich exfoliated graphitic carbon nitride (exfoliated GCN, EGCN) was synthesized by the acid treatment of bulk GCN. The photocatalyst was characterized using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and point of zero charge. EGCN shows high valance band hole transfer under short-time visible light (λ > 420 nm) exposure for photocatalytic mineralization of bisphenol A (BPA). Enhanced BPA removal was achieved by EGCN (99 %) due to formation of OH● radicals (H2O/hVB+ →OH●/H+). Major factors affecting BPA degradation including catalyst dose, wide pH range, and pollutant concentration were optimized. Repeated cycles of BPA degradation were performed with negligible rate decreased from 0.045 to 0.029 min-1. The degradation profile and plausible reaction mechanism of BPA was established and well justified by the byproducts identified by mass analysis HR-ESI-MS. Therefore, the as-synthesized metal free EGCN, active under visible light, offers a new platform for complete mineralization of byproducts of halogenated organic contaminants.
Collapse
Affiliation(s)
- Rama Shanker Sahu
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan, ROC.
| | - Yang-Hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan, ROC.
| | - Wen-Ling Chen
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, 17 Xuzhou Rd., Taipei, 100, Taiwan, ROC; Department of Public Health, College of Public Health, National Taiwan University, 17 Xuzhou Rd., Taipei, 100, Taiwan, ROC
| |
Collapse
|
3
|
Beceiro-González E, González-Castro MJ, Muniategui-Lorenzo S. A Simple Method for the Determination of Triazines from Seawater in Accordance with the Directive 2013/39/EU. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:332-336. [PMID: 32556692 DOI: 10.1007/s00128-020-02897-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Since the Directive 2013/39/EU included terbutryn to the list of priority substances of all water bodies, a previous method based on dispersive liquid-liquid micro-extraction (DLLME) for the determination of triazines in seawater has been modified. The main change consisted on the use of tandem mass spectrometry instead of diode array as detection technique. Due to the higher sensitivity of mass detector, sample volume was reduced and extraction solvent volume was optimized. The optimum extraction conditions were 5 mL of sample, 50 µL of 1-octanol and an agitation step instead of disperser solvent. The obtained analytical recoveries (73%-101% with relative standard deviations below 4%) meeting the requirements. The limits of quantification (between 0.016 and 0.021 µg L-1) were more than 10 times lower than the limit set by the European Directive 2013/39/EU for terbutryn (0.34 µg L-1). The proposed method was applied to the determination of the target compounds in seawater samples from A Coruña (Galicia, NW of Spain).
Collapse
Affiliation(s)
- Elisa Beceiro-González
- Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071, A Coruña, Spain.
| | - María José González-Castro
- Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071, A Coruña, Spain
| | - Soledad Muniategui-Lorenzo
- Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071, A Coruña, Spain
| |
Collapse
|
4
|
A rapid and simultaneous method for the determination of naphthol isomers in urine by molecular complex-based dispersive liquid–liquid microextraction combined with high-performance liquid chromatography. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01914-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Qu J, Tang H, Cao D. Determination of Residues of Quizalofop-p-ethyl and Its Metabolite in Adzuki Bean and Soil. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2020. [DOI: 10.3136/fstr.26.633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Jiangling Qu
- College of Food Sciences, Heilongjiang Bayi Agricultural University
| | - Huacheng Tang
- College of Food Sciences, Heilongjiang Bayi Agricultural University
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidah, Heilongjiang
- Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety
| | - Dongmei Cao
- College of Food Sciences, Heilongjiang Bayi Agricultural University
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province
- National Coarse Cereals Engineering Research Center
| |
Collapse
|