1
|
Nakashima Y, Tanabe K, Mifune T, Nakadoi T, Hayashi H, Nakagami H, Sato Y, Wada J. Preventive effects of vasohibin-2-targeting peptide vaccine for diabetic nephropathy. Am J Physiol Renal Physiol 2024; 326:F1054-F1065. [PMID: 38695075 DOI: 10.1152/ajprenal.00341.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
Diabetic nephropathy remains the leading cause of end-stage kidney disease in many countries, and additional therapeutic targets are needed to prevent its development and progression. Some angiogenic factors are involved in the pathogenesis of diabetic nephropathy. Vasohibin-2 (VASH2) is a novel proangiogenic factor, and our previous study showed that glomerular damage is inhibited in diabetic Vash2 homozygous knockout mice. Therefore, we established a VASH2-targeting peptide vaccine as a tool for anti-VASH2 therapy in diabetic nephropathy. In this study, the preventive effects of the VASH2-targeting peptide vaccine against glomerular injury were examined in a streptozotocin (STZ)-induced diabetic mouse model. The mice were subcutaneously injected with the vaccine at two doses 2 wk apart and then intraperitoneally injected with 50 mg/kg STZ for 5 consecutive days. Glomerular injury was evaluated 20 wk after the first vaccination. Treatment with the VASH2-targeting peptide vaccine successfully induced circulating anti-VASH2 antibody without inflammation in major organs. Although the vaccination did not affect blood glucose levels, it significantly prevented hyperglycemia-induced increases in urinary albumin excretion and glomerular volume. The vaccination did not affect increased VASH2 expression but significantly inhibited renal angiopoietin-2 (Angpt2) expression in the diabetic mice. Furthermore, it significantly prevented glomerular macrophage infiltration. The preventive effects of vaccination on glomerular injury were also confirmed in db/db mice. Taken together, the results of this study suggest that the VASH2-targeting peptide vaccine may prevent diabetic glomerular injury in mice by inhibiting Angpt2-mediated microinflammation.NEW & NOTEWORTHY This study demonstrated preventive effects of VASH2-targeting peptide vaccine therapy on albuminuria and glomerular microinflammation in STZ-induced diabetic mouse model by inhibiting renal Angpt2 expression. The vaccination was also effective in db/db mice. The results highlight the importance of VASH2 in the pathogenesis of early-stage diabetic nephropathy and the practicability of anti-VASH2 strategy as a vaccine therapy.
Collapse
Affiliation(s)
- Yuri Nakashima
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuyuki Tanabe
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Tomoyo Mifune
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takato Nakadoi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroki Hayashi
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hironori Nakagami
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasufumi Sato
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
2
|
Li Y, Meng L, Lou G. Revealing the inhibitory effect of VASH1 on ovarian cancer from multiple perspectives. Cancer Biol Ther 2023; 24:2285817. [PMID: 38010374 PMCID: PMC10783835 DOI: 10.1080/15384047.2023.2285817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023] Open
Abstract
The function of Vasohibin-1 (VASH1) in human cancer has not been thoroughly or comprehensively examined. Here, we identified the tumor suppressor part of VASH1 across cancers, including epithelial ovarian tumors. Our study carefully contrasted the expression of VASH1 in pancancer and nontumorous tissues in a public database to explore its regulatory role in clinical prognosis, diagnosis, tumor purity, and immune cell infiltration. Next, we explored the antitumor mechanism of VASH1 through drug sensitivity, functional enrichment, and phenotypic experiments in ovarian cancer. Research suggests that the expression of VASH1 in neoplastic tissues is lower than that in normal tissues. VASH1 affects the OS and RFS of several tumor types. In addition, VASH1 expression resulted in a high OS and RFS in the diagnosis of tumor and nontumor tissues and negatively regulated tumor purity. Moreover, VASH1 controls the tumor microenvironment by regulating immunocyte infiltration. In ovarian cancer, VASH1 can serve as a biomarker to estimate the efficacy of chemotherapy. Functional enrichment analysis suggests that VASH1 plays a tumor suppressor role by regulating the extracellular matrix receptor pathway. VASH1 inhibition of the malignant phenotype of ovarian cancer cells was further confirmed by in vivo experiments. These results indicate that VASH1 acts as a cancer-inhibiting factor and potential therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Yan Li
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Liang Meng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ge Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Horie S, Suzuki Y, Yamamoto T, Obika S, Mohri K, Kiyota C, Ren Q, Warashina S, Wada Y, Watanabe Y, Mukai H, Sato Y. Novel strategy of liver cancer treatment with modified antisense oligonucleotides targeting human vasohibin-2. Cancer Sci 2023; 114:3740-3749. [PMID: 37430466 PMCID: PMC10475766 DOI: 10.1111/cas.15897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/16/2023] [Accepted: 06/14/2023] [Indexed: 07/12/2023] Open
Abstract
Vasohihibin-2 (VASH2) is a homolog of vasohibin-1 (VASH1) and is overexpressed in various cancers. Vasohihibin-2 acts on both cancer cells and cancer microenvironmental cells. Previous analyses have shown that VASH2 promotes cancer progression and abrogation of VASH2 results in significant anticancer effects. We therefore propose VASH2 to be a practical molecular target for cancer treatment. Modifications of antisense oligonucleotide (ASO) such as bridged nucleic acids (BNA)-based modification increases the specificity and stability of ASO, and are now applied to the development of a number of oligonucleotide-based drugs. Here we designed human VASH2-ASOs, selected an optimal one, and developed 2',4'-BNA-based VASH2-ASO. When systemically administered, naked 2',4'-BNA-based VASH2-ASO accumulated in the liver and showed its gene-silencing activity. We then examined the effect of 2',4'-BNA-based VASH2-ASO in liver cancers. Intraperitoneal injection of naked 2',4'-BNA-based VASH2-ASO exerted a potent antitumor effect on orthotopically inoculated human hepatocellular carcinoma cells. The same manipulation also showed potent antitumor activity on the splenic inoculation of human colon cancer cells for liver metastasis. These results provide a novel strategy for the treatment of primary as well as metastatic liver cancers by using modified ASOs targeting VASH2.
Collapse
Affiliation(s)
- Sachiko Horie
- Department of Vascular BiologyInstitute of Development, Aging and Cancer, Tohoku UniversitySendaiJapan
| | - Yasuhiro Suzuki
- Department of Vascular BiologyInstitute of Development, Aging and Cancer, Tohoku UniversitySendaiJapan
- New Industry Creation Hatchery CenterTohoku UniversitySendaiJapan
| | - Tsuyoshi Yamamoto
- Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
- Present address:
Department of Chemistry of Biofunctional Molecules, School of Pharmaceutical SciencesNagasaki UniversityNagasakiJapan
| | - Satoshi Obika
- Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
| | - Kohta Mohri
- Laboratory for Molecular Delivery and Imaging TechnologyRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Chizuru Kiyota
- Laboratory for Molecular Delivery and Imaging TechnologyRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Qin Ren
- Laboratory for Molecular Delivery and Imaging TechnologyRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Shota Warashina
- Laboratory for Molecular Delivery and Imaging TechnologyRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Yasuhiro Wada
- Laboratory for Pathophysiological and Health ScienceRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health ScienceRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Hidefumi Mukai
- Laboratory for Molecular Delivery and Imaging TechnologyRIKEN Center for Biosystems Dynamics ResearchKobeJapan
- Department of Pharmaceutical Informatics, Graduate School of Biomedical SciencesNagasaki UniversityNagasakiJapan
| | - Yasufumi Sato
- Department of Vascular BiologyInstitute of Development, Aging and Cancer, Tohoku UniversitySendaiJapan
- New Industry Creation Hatchery CenterTohoku UniversitySendaiJapan
| |
Collapse
|
4
|
Identification of VASH1 as a Potential Prognostic Biomarker of Lower-Grade Glioma by Quantitative Proteomics and Experimental Verification. JOURNAL OF ONCOLOGY 2022; 2022:2621969. [PMID: 36504559 PMCID: PMC9729035 DOI: 10.1155/2022/2621969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 12/05/2022]
Abstract
Background VASH1 is a novel angiogenic regulatory factor, that participates in the process of carcinogenesis and the development of diverse tumors. Our study aimed to investigate the expression and prognostic value of the VASH1 in Lower-Grade Glioma (LGG), to explore its functional network in LGG and its effects on biological behaviors. Methods LGG transcriptome data, somatic mutation profiles and clinical features analyzed in the present study were obtained from the TCGA, GTEx, CCLE, CGGA, UALCAN, and GEPIA2 databases, as well as clinical data and tissue sections of 83 LGG patients in our hospital. The expression characteristics of VASH1 in LGG were investigated by univariate, multivariate, immunohistochemistry, qRT-PCR, and western-blot. Subsequently, we analyzed the prognostic significance of VASH1 in LGG patients by survival analysis, subject operation characteristic curve, correlation analysis, external validation, independent prognostic significance analysis, and clinical stratification, and confirmed its biological effect on glioma cell lines in vitro. Finally, we performed GO, KEGG, and GSEA to clarify biological functions and related pathways. CIBERSORT and ESTIMATE algorithms were used to calculate the proportion of immune cells and immune microenvironment fraction in LGG. Result We found that VASH1 is highly expressed in LGG tissues and is associated with poor prognosis, WHO grade, IDH1 wild-type, and progressive disease (P < 0.05). Multivariate and the Nomogram model showed that high VASH1 expression was an independent risk factor for glioma prognosis and had better prognostic prediction efficacy in different LGG Patient cohorts (HR = 4.753 and P=0.002). In vitro experiments showed that knockdown of VASH1 expression in glioma cell lines caused increased glioma cell proliferation, invasion, and migration capacity. The mechanism may be related to VASH1 promoting microtubule formation and remodeling of immune microenvironment. Conclusion Our study firstly found that high VASH1 expression was associated with poor prognosis. In addition, We identified the possible mechanism by which VASH1 functioned in LGG. VASH1 inhibits the invasion and migration of tumor cells by affecting microtubule formation and immune infiltration in the tumor microenvironment. May be an important endogenous anti-tumor factor for LGG and provide a potential biomarker for individualized treatment of LGG.
Collapse
|
5
|
Sha Y, Hong H, Cai W, Sun T. Single-Cell Transcriptomics of Endothelial Cells in Upper and Lower Human Esophageal Squamous Cell Carcinoma. Curr Oncol 2022; 29:7680-7694. [PMID: 36290884 PMCID: PMC9600084 DOI: 10.3390/curroncol29100607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/22/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a type of progressive and distant metastatic tumor. Targeting anti-angiogenic genes could effectively hinder ESCC development and metastasis, whereas ESCC locating on the upper or the lower esophagus showed different response to the same clinical treatment, suggesting ESCC location should be taken into account when exploring new therapeutic targets. In the current study, to find novel anti-angiogenic therapeutic targets, we identified endothelial cell subsets in upper and lower human ESCC using single-cell RNA sequencing (scRNA-seq), screened differentially expressed genes (DEGs), and performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The results showed that common DEGs shared in the upper and the lower endothelial cells mainly are involved in vessel development, angiogenesis, and cell motility of endothelial cells by regulating PI3K-AKT, Rap1, Ras, TGF-beta, and Apelin signaling pathways. The critical regulatory genes were identified as ITGB1, Col4A1, Col4A2, ITGA6, LAMA4, LAMB1, LAMC1, VWF, ITGA5, THBS1, PDGFB, PGF, RHOC, and CTNNB1. Cell metabolism-relevant genes, e.g., MGST3, PNP, UPP1, and HYAL2 might be the prospective therapeutic targets. Furthermore, we found that DEGs only in the upper endothelial cells, such as MAPK3, STAT3, RHOA, MAPK11, HIF1A, FGFR1, GNG5, GNB1, and ARHGEF12, mainly regulated cell adhesion, structure morphogenesis, and motility through Phospholipase D, Apelin, and VEGF signaling pathways. Moreover, DEGs only in the lower endothelial cells, for instance PLCG2, EFNA1, CALM1, and RALA, mainly regulated cell apoptosis and survival by targeting calcium ion transport through Rap1, Ras, cAMP, Phospholipase D, and Phosphatidylinositol signaling pathways. In addition, the upper endothelial cells showed significant functional diversity such as cytokine-responsive, migratory, and proliferative capacity, presenting a better angiogenic capacity and making it more sensitive to anti-angiogenic therapy compared with the lower endothelial cells. Our study has identified the potential targeted genes for anti-angiogenic therapy for both upper and lower ESCC, and further indicated that anti-angiogenic therapy might be more effective for upper ESCC, which still need to be further examined in the future.
Collapse
Affiliation(s)
- Yongqiang Sha
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China
| | - Huhai Hong
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China
| | - Wenjie Cai
- Departments of Radiation Oncology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
6
|
Wang J, Yu C, Jiang X, Wu X, Jia Y, Zhang H, Li Z. [Vasohibin-2 promotes proliferation and metastasis of cervical cancer cells by regulating epithelial-mesenchymal transition]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:966-975. [PMID: 35869758 DOI: 10.12122/j.issn.1673-4254.2022.07.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the role of vasohibin-2 (VASH2) in regulation of proliferation and metastasis of cervical cancer cells. METHODS We analyzed the differentially expressed genes between cervical cancer cells with flotillin-1 overexpression and knockdown by RNA-seq combined with analysis of public databases. The expression levels of VASH2 were examined in normal cervical epithelial cells (HcerEpic), cervical cancer cell lines (HeLa, C-33A, Ca ski, SiHa and MS751) and fresh cervical cancer tissues with different lymph node metastasis status. We further tested the effects of lentivirus-mediated overexpression and interference of VASH2 on proliferation, migration, invasion and lymphatic vessel formation of the cervical cancer cells and detected the expression levels of key epithelial-mesenchymal transition (EMT) markers and TGF-β mRNA. RESULTS RNA-seq and analysis of public databases showed that VASH2 expression was significantly upregulated in cervical cancer cells exogenously overexpressing flotillin-1 (P < 0.05) and downregulated in cells with flotillin-1 knockdown (P < 0.05), and was significantly higher in cervical cancer tissues with lymph node metastasis than in those without lymph node metastasis (P < 0.01). In cervical cancer cell lines Ca Ski, SiHa, and MS751 and cervical cancer tissue specimens with lymph node metastasis, VASH2 expression was also significantly upregulated as compared with HcerEpic cells and cervical cancer tissues without lymph node metastasis (P < 0.05). Exogenous overexpression of VASH2 significantly promoted proliferation, migration, invasion and lymphatic vessel formation of cervical cancer cells, whereas these abilities were significantly inhibited in cells with VASH2 knockdown (P < 0.05). The cervical cancer cells overexpressing VASH2 showed significant down- regulation of e-cadherin and up- regulation of N-cadherin, Vimentin and VEGF-C, while the reverse changes were detected in cells with VASH2 knockdown (P < 0.05). TGF-β mRNA expression was significantly up-regulated in cervical cancer cells overexpressing VASH2 and down-regulated in cells with VASH2 knockdown (P < 0.001). CONCLUSION Flotillin-1 may participate in TGF-β signaling pathway-mediated EMT through its down-stream target gene VASH2 to promote the proliferation, migration, invasion and lymphatic vessel formation of cervical cancer cells in vitro.
Collapse
Affiliation(s)
- J Wang
- Department of Gynecology, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming 650118, China
| | - C Yu
- Department of Gynecology, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming 650118, China
| | - X Jiang
- Department of Gynecology, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming 650118, China
| | - X Wu
- Department of Gynecology, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming 650118, China
| | - Y Jia
- Department of Gynecology, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming 650118, China
| | - H Zhang
- Department of Gynecology, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming 650118, China
| | - Z Li
- Department of Gynecology, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming 650118, China
| |
Collapse
|
7
|
Yamamoto M, Ozawa S, Koyanagi K, Ninomiya Y, Hara H, Kazuno A, Yatabe K, Higuchi T, Nakamura K, Nabeshima K, Sato Y. Clinicopathological Role of Vasohibin in Gastroenterological Cancers: A Meta-Analysis. TOHOKU J EXP MED 2022; 256:291-301. [PMID: 35296570 DOI: 10.1620/tjem.2022.j005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vasohibin-1 (VASH1) is an angiogenesis inhibitor, while vasohibin-2 (VASH2) is a proangiogenic factor. The roles of VASH1 and VASH2 expression in gastroenterological cancers remain unclear. We searched for relevant literature, specifically studies on gastroenterological cancer, and evaluated the relationship between VASH expression and clinical outcomes. Nine studies on VASH1 involving 1,574 patients were included. VASH1 expression was associated with the TNM stage [OR (odds ratio) 2.05, 95% CI (confidence interval) 1.24-3.40], lymph node metastasis (OR 1.79, 95% CI 1.24-2.58), lymphatic invasion (OR 1.95, 95% CI 1.41-2.68), and venous invasion (OR 2.49, 95% CI 1.60-3.88); poor clinical outcomes were associated with high VASH1 expression. High VASH1 expression was associated with a significantly shorter overall survival (OS) [HR (hazard ratio) 1.69, 95% CI 1.25-2.29] and disease-free survival (DFS) (HR 2.01, 95% CI 1.28-3.15). Three studies on VASH2 involving 469 patients were analyzed. VASH2 expression was associated with the TNM stage (OR 4.21, 95% CI 1.89-9.51) and venous invasion (OR 2.10, 95% CI 1.15-3.84); poor clinical outcomes were associated with high VASH2 expression. High VASH2 expression was associated with a significantly lower OS (HR 1.61, 95% CI 1.09-2.37). In conclusion, high VASH1 and VASH2 expression levels were associated with poor clinical outcomes and prognosis in patients with gastroenterological cancers.
Collapse
Affiliation(s)
- Miho Yamamoto
- Department of Gastroenterological Surgery, Tokai University School of Medicine
| | - Soji Ozawa
- Department of Gastroenterological Surgery, Tokai University School of Medicine
| | - Kazuo Koyanagi
- Department of Gastroenterological Surgery, Tokai University School of Medicine
| | - Yamato Ninomiya
- Department of Gastroenterological Surgery, Tokai University School of Medicine
| | - Hitoshi Hara
- Department of Gastroenterological Surgery, Tokai University School of Medicine
| | - Akihito Kazuno
- Department of Gastroenterological Surgery, Tokai University School of Medicine
| | - Kentaro Yatabe
- Department of Gastroenterological Surgery, Tokai University School of Medicine
| | - Tadashi Higuchi
- Department of Gastroenterological Surgery, Tokai University School of Medicine
| | - Kenji Nakamura
- Department of Gastroenterological Surgery, Tokai University School of Medicine
| | - Kazuhito Nabeshima
- Department of Gastroenterological Surgery, Tokai University School of Medicine
| | - Yasufumi Sato
- New Industry Creation Hatchery Center, Tohoku University
| |
Collapse
|
8
|
Li N, Yi K, Li X, Wang Y, Jing J, Hu J, Wang Z. MiR-143-3p facilitates motility and invasiveness of endometriotic stromal cells by targeting VASH1/TGF-β signaling. Reprod Biol 2022; 22:100592. [PMID: 34995817 DOI: 10.1016/j.repbio.2021.100592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/11/2021] [Accepted: 11/27/2021] [Indexed: 12/22/2022]
Abstract
Endometriosis is a benign gynecological disease. Accumulating evidence has revealed the participation of dysregulated miRNAs in the progression of endometriosis. Here, the function and molecular mechanism of miR-143-3p in endometriosis were investigated. The levels of vasohibin 1 (VASH1) and miR-143-3p in endometrial tissues and endometriotic stromal cells (ESCs) were detected by RT-qPCR. Migrative and invasive phenotypes of ESCs were tested by Transwell assays. The protein expression of VASH1, TGF-β signaling markers, and epithelial to mesenchymal transition (EMT) markers was examined by western blotting. The targeted relationship between miR-143-3p and VASH1 was confirmed by bioinformatics analysis and luciferase reporter assay. We found that miR-143-3p expression was significantly upregulated in ectopic endometrial tissues compared to that in eutopic and normal endometrial tissues. MiR-143-3p knockdown restrained EMT process, invasive and migrative behaviors of ESCs. Mechanically, miR-143-3p targeted VASH1 and negatively regulated VASH1. VASH1 downregulation reserved the effects of miR-143-3p knockdown in ESCs. MiR-143-3p activated TGF-β signaling via targeting VASH1. Furthermore, activation of TGF-β signaling counteracted the miR-143-3p knockdown-caused suppression of migration, invasion and EMT process in ESCs. Overall, miR-143-3p activates TGF-β signaling by targeting VASH1 to facilitate migration and invasion of ESCs.
Collapse
Affiliation(s)
- Na Li
- Department of Gynecology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, 450003, Henan, China
| | - Keyun Yi
- Department of Gynecology, Zhou kou Central Hospital, Zhoukou 466000, Henan, China
| | - Xia Li
- Department of Gynecology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, 450003, Henan, China
| | - Yue Wang
- Department of Gynecology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, 450003, Henan, China
| | - Jiayu Jing
- Department of Gynecology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, 450003, Henan, China
| | - Jiaxuan Hu
- Department of Obstetrics and Gynecology, Zhoukou Maternal and Child Health Care, Zhoukou, 466000, Henan, China
| | - Zhenhua Wang
- Department of Gynecology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
9
|
Feng Y, Wang D, Liu Y, Pang X, Zhang H. Serum levels of vasohibin-1 in type 2 diabetes mellitus patients with diabetic retinopathy. Eur J Ophthalmol 2022; 32:2864-2869. [PMID: 35001686 DOI: 10.1177/11206721211073403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CLINICAL RELEVANCE To determine whether Vasohibin-1 which is a potential clinical biomarker is an independent risk factor in patients with diabetic retinopathy. BACKGROUND Diabetic retinopathy (DR) is a common chronic microangiopathy in type 2 diabetes mellitus (T2DM). Vasohibin-1 (VASH-1) is an angiogenesis regulator that is closely related to pathological vascularization in DM. This study aimed to determine whether the serum levels of VASH-1 were related to the occurrence of DR in T2DM patients. METHODS T2DM patients were divided into three groups: the nondiabetic retinopathy (NDR) group (n = 41), the nonproliferative diabetic retinopathy (NPRD) group (n = 40), and the proliferative diabetic retinopathy (PDR) group (n = 41). A control (CON) group consisting of 40 healthy subjects was also recruited. The serum levels of VASH-1 were measured by enzyme-linked immunosorbent assay kits. RESULTS The concentration of VASH-1 in the CON groups was less significantly than that of the NDR, NPDR and PDR groups. (P < 0.05). Body mass index, fasting plasma glucose (FPG), hemoglobina1c (HbA1C), blood urea nitrogen (BUN) and diabetic durations were positively correlated with the serum concentration of VASH-1 (all P < 0.05). In univariate logistic regression analyses, the HbA1C, diabetic durations, HDL-c, eGFR and VASH1 were associated with the presence of diabetic retinopathy. Multivariate logistic regression analysis showed that duration of diabetes were significantly associated with diabetic retinopathy. CONCLUSION We have shown that VASH-1 is associated with an increased risk of developing diabetic retinopathy. But the serum levels of VASH-1 are not independent risk factors for DR in T2DM.
Collapse
Affiliation(s)
- Ying Feng
- Department of Endocrinology, Hospital of Harbin Medical University, 118221Heze Medical College, No. 1950, Daxue Road, Mudan District, Heze City, Shandong Province 274400, China
| | - Da Wang
- Department of Endocrinology, Hospital of Harbin Medical University, 529858Linyi People's Hospital of Shandong Province
| | - Yan Liu
- 118221Heze Medical College, No. 1950, Daxue Road, Heze City, Shandong Province
| | - Xiangzhong Pang
- 426111Liaocheng People's Hospital of Liaocheng City, Shandong Province
| | - Huijuan Zhang
- Department of Endocrinology, Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, China
| |
Collapse
|
10
|
Trisciuoglio D, Degrassi F. The Tubulin Code and Tubulin-Modifying Enzymes in Autophagy and Cancer. Cancers (Basel) 2021; 14:cancers14010006. [PMID: 35008169 PMCID: PMC8750717 DOI: 10.3390/cancers14010006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Microtubules are tubulin polymers that constitute the structure of eukaryotic cells. They control different cell functions that are often deregulated in cancer, such as cell shape, cell motility and the intracellular movement of organelles. Here, we focus on the crucial role of tubulin modifications in determining different cancer characteristics, including metastatic cell migration and therapy resistance. We also discuss the influence of microtubule modifications on the autophagic process—the cellular degradation pathway that influences cancer growth. We discuss findings showing that inducing microtubule modifications can be used as a means to kill cancer cells by inhibiting autophagy. Abstract Microtubules are key components of the cytoskeleton of eukaryotic cells. Microtubule dynamic instability together with the “tubulin code” generated by the choice of different α- and β- tubulin isoforms and tubulin post-translational modifications have essential roles in the control of a variety of cellular processes, such as cell shape, cell motility, and intracellular trafficking, that are deregulated in cancer. In this review, we will discuss available evidence that highlights the crucial role of the tubulin code in determining different cancer phenotypes, including metastatic cell migration, drug resistance, and tumor vascularization, and the influence of modulating tubulin-modifying enzymes on cancer cell survival and aggressiveness. We will also discuss the role of post-translationally modified microtubules in autophagy—the lysosomal-mediated cellular degradation pathway—that exerts a dual role in many cancer types, either promoting or suppressing cancer growth. We will give particular emphasis to the role of tubulin post-translational modifications and their regulating enzymes in controlling the different stages of the autophagic process in cancer cells, and consider how the experimental modulation of tubulin-modifying enzymes influences the autophagic process in cancer cells and impacts on cancer cell survival and thereby represents a new and fruitful avenue in cancer therapy.
Collapse
|
11
|
Kobayashi H, Kosaka T, Mikami S, Kimura T, Hongo H, Kosugi M, Sato Y, Oya M. Vasohibin-1 expression as a biomarker of aggressive nature in ductal adenocarcinoma of the prostate: a retrospective cohort study at two centres in Japan. BMJ Open 2021; 11:e056439. [PMID: 34819292 PMCID: PMC8614138 DOI: 10.1136/bmjopen-2021-056439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Vasohibin-1 (VASH1) is an endogenous angiogenesis regulator expressed in activated vascular endothelial cells. We previously reported that high VASH1 expression is a predictor of progression in acinar adenocarcinoma of the prostate. In this study, we evaluated the characteristics of ductal adenocarcinoma of the prostate by comparing the level of VASH1 expression between ductal and acinar adenocarcinoma specimens. DESIGN AND SETTING A retrospective cohort study at two centres in Japan. PARTICIPANTS Among the 1495 patients who underwent radical prostatectomy or transurethral resection for the past 15 years, a total of 14 patients diagnosed with ductal adenocarcinoma and 20 patients diagnosed with acinar adenocarcinoma with a Gleason score of 4+4 were included. INTERVENTIONS We immunohistochemically examined the CD34 expression as the microvessel density (MVD) and activated endothelial cells as the VASH1 density (vessels per mm2). PRIMARY AND SECONDARY OUTCOME MEASURES The primary outcome was the association of MVD and VASH1 density between ductal and acinar adenocarcinoma, and the secondary outcome was their oncological outcomes. RESULTS Nine patients (64.3%) with ductal adenocarcinoma were diagnosed at an advanced clinical stage, and five patients (35.7%) died from cancer during a median follow-up of 56.0 months. The VASH1 densities (mean±SD) in ductal and acinar adenocarcinoma were 45.1±18.5 vs 16.1±21.0 (p<0.001), respectively, while the MVD (mean±SD) in ductal and acinar adenocarcinoma were 65.3±21.9 vs 80.8±60.7 (p=0.666), respectively. The 5-year cancer-specific survival rates for high and low VASH1 expression were 70.0% and 100.0% (p=0.006), respectively. High VASH1 expression and a diagnosis of ductal adenocarcinoma were significant predictors of cancer-specific survival. CONCLUSIONS Ductal adenocarcinoma was more aggressive and had higher VASH1 expression than acinar adenocarcinoma, although MVD was equivalent. These results indicate that VASH1 expression may serve as a novel biomarker for the aggressive nature of ductal adenocarcinoma.
Collapse
Affiliation(s)
- Hiroaki Kobayashi
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
- Department of Urology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Shuji Mikami
- Division of Diagnostic Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Tokuhiro Kimura
- Division of Diagnostic Pathology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Hiroshi Hongo
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Michio Kosugi
- Department of Urology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Guo X, Meng X, Liu R. Prognostic value of microvessel density in esophageal squamous cell carcinoma-a systematic review and meta-analysis. Pathol Res Pract 2021; 227:153644. [PMID: 34634564 DOI: 10.1016/j.prp.2021.153644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Angiogenesis produced by tumor microenvironment is play an important role in development of esophageal squamous cell carcinoma (ESCC). As a quantitative index of angiogenesis, literature has emerged contradictory results about the prognostic role of microvessel density (MVD) in ESCC. The aim of the study was to explore the impact of the correlation between MVD and the prognosis of ESCC based the published evidence. METHODS Pubmed and Web of science database were screened for the relationship of MVD with prognostic feature in ESCC up to March, 2021. 11 relevant articles were used for meta-analysis. The following data were extracted from the literature: author, year, country, the patients number of high/low MVD, tumor-node-metastasis (TNM) classification, clinical stage, lymphoid infiltrates, vessel invasion, invasive depth, differential degree and survival rate. The hazard ratio (HR) and odds ratios (OR) with 95% CI were used to assess the associations between MVD and overall survival (OS). Chi-squared test and I2 statistics were completed to evaluate the heterogeneity in our study. A random-effects model was used when significant heterogeneity existed (I2>50% and p < 0.05). Egger test was used to calculate the publication bias. Subgroup analysis was stratified by antibody, region, sample capacity to explore the source of heterogeneity. RESULTS 11 studies with 1055 patients were analyzed. Our results suggested that high MVD is an important factor to advanced TNM classification and clinical stage, and the high MVD is positive correlation with the lymph node invasion and vascular invasion(p < 0.05) in ESCC, but irrelevant to poor differential and invasive depth(p > 0.05). The result also indicated that low MVD is a benefit factor to prolong the survival rate (p < 0.05). And the source of the heterogeneity maybe is that the antibody used to detect the MVD was not consistent, patient number was not large enough and the count method on MVD. CONCLUSION Across multiple studies, high MVD is correlated with clinicopathological criteria of poor prognosis and survival in ESCC. MVD could be the quantitative index to reactive angiogenesis and may play a pivotal role in ESCC development and progression. MVD may represent a valuable addition to current pathologic analysis and help to guide prognosis and treatment.
Collapse
Affiliation(s)
- Xinxin Guo
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xingchen Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
13
|
Liu H, Li S, Xu Y, Wang X, Ren R, Zhu H, Zhang S. Engeletin protects against cerebral ischemia/reperfusion injury by modulating the VEGF/vasohibin and Ang-1/Tie-2 pathways. ACTA ACUST UNITED AC 2021; 54:e11028. [PMID: 34287581 PMCID: PMC8289342 DOI: 10.1590/1414-431x2020e11028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/20/2021] [Indexed: 12/20/2022]
Abstract
Engeletin is a natural derivative of Smilax glabra rhizomilax that exhibits anti-inflammatory activity and suppresses lipid peroxidation. In the present study, we sought to elucidate the mechanistic basis for the neuroprotective and pro-angiogenic activity of engeltin in a human umbilical vein endothelial cells (HUVECs) oxygen-glucose deprivation and reoxygenation (OGD/R) model system and a middle cerebral artery occlusion (MCAO) rat model of cerebral ischemia and reperfusion injury. These analyses revealed that engeletin (10, 20, or 40 mg/kg) was able to reduce the infarct volume, increase cerebral blood flow, improve neurological function, and bolster the expression of vascular endothelial growth factor (VEGF), vasohibin-2 (Vash-2), angiopoietin-1 (Ang-1), phosphorylated human angiopoietin receptor tyrosine kinase 2 (p-Tie2), and platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) in MCAO rats. Similarly, engeletin (100, 200, or 400 nM) markedly enhanced the migration, tube formation, and VEGF expression of HUVECs in an OGD/R model system, while the VEGF receptor (R) inhibitor axitinib reversed the observed changes in HUVEC tube formation activity and Vash-2, VEGF, and CD31 expression. These data suggested that engeletin exhibited significant neuroprotective effects against cerebral ischemia and reperfusion injury in rats, and improved cerebrovascular angiogenesis by modulating the VEGF/vasohibin and Ang-1/Tie-2 pathways.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pharmacology, Binzhou Medical University, Yantai, Shandong, China
| | - Shucui Li
- Department of Pharmacology, Binzhou Medical University, Yantai, Shandong, China
| | - Yangyang Xu
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xin Wang
- Department of Pharmacology, Binzhou Medical University, Yantai, Shandong, China
| | - Rui Ren
- Department of Pharmacology, Binzhou Medical University, Yantai, Shandong, China
| | - Haibo Zhu
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Shuping Zhang
- Department of Pharmacology, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
14
|
Ren L, Liu A, Wang Q, Wang H, Dong D, Liu L. Transcriptome analysis of embryonic muscle development in Chengkou Mountain Chicken. BMC Genomics 2021; 22:431. [PMID: 34107874 PMCID: PMC8191012 DOI: 10.1186/s12864-021-07740-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Muscle is the predominant portion of any meat product, and growth performance and product quality are the core of modern breeding. The embryonic period is highly critical for muscle development, the number, shape and structure of muscle fibers are determined at the embryonic stage. Herein, we performed transcriptome analysis to reveal the law of muscle development in the embryonic stage of Chengkou Mountain Chicken at embryonic days (E) 12, 16, 19, 21. RESULTS Diameter and area of muscle fibers exhibited significant difference at different embryonic times(P < 0.01). A total of 16,330 mRNAs transcripts were detected, including 109 novel mRNAs transcripts. By comparing different embryonic muscle development time points, 2,262 in E12vsE16, 5,058 in E12vsE19, 6139 in E12vsE21, 1,282 in E16vsE19, 2,920 in E16vsE21, and 646 in E19vsE21differentially expressed mRNAs were identified. It is worth noting that 7,572 mRNAs were differentially expressed. The time-series expression profile of differentially expressed genes (DEGs) showed that the rising and falling expression trends were significantly enriched. The significant enrichment trends included 3,150 DEGs. GO enrichment analysis provided three significantly enriched categories of significantly enriched differential genes, including 65 cellular components, 88 molecular functions, and 453 biological processes. Through KEGG analysis, we explored the biological metabolic pathways involved in differentially expressed genes. A total of 177 KEGG pathways were enriched, including 19 significant pathways, such as extracellular matrix-receptor interactions. Similarly, numerous pathways related to muscle development were found, including the Wnt signaling pathway (P < 0.05), MAPK signalingpathway, TGF-beta signaling pathway, PI3K-Akt signaling pathway and mTOR signaling pathway. Among the differentially expressed genes, we selected those involved in developing 4-time points; notably, up-regulated genes included MYH1F, SLC25A12, and HADHB, whereas the down-regulated genes included STMN1, VASH2, and TUBAL3. CONCLUSIONS Our study explored the embryonic muscle development of the Chengkou Mountain Chicken. A large number of DEGs related to muscle development have been identified ,and validation of key genes for embryonic development and preliminary explanation of their role in muscle development. Overall, this study broadened our current understanding of the phenotypic mechanism for myofiber formation and provides valuable information for improving chicken quality.
Collapse
Affiliation(s)
- Lingtong Ren
- College of Animal Science and Technology, Southwest University, Beibei, 400715, Chongqing, P. R. China
| | - Anfang Liu
- College of Animal Science and Technology, Southwest University, Beibei, 400715, Chongqing, P. R. China
| | - Qigui Wang
- ChongQing Academy of Animal Sciences, Rongchang, 402460, Chongqing, P. R. China
| | - Honggan Wang
- College of Animal Science and Technology, Southwest University, Beibei, 400715, Chongqing, P. R. China
| | - Deqiang Dong
- College of Animal Science and Technology, Southwest University, Beibei, 400715, Chongqing, P. R. China
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Beibei, 400715, Chongqing, P. R. China.
| |
Collapse
|