1
|
Li H, Harvey DH, Dai J, Swingle SP, Compton AM, Sugali CK, Dhamodaran K, Yao J, Lin TY, Sulchek T, Kim T, Ethier CR, Mao W. Characterization, Enrichment, and Computational Modeling of Cross-Linked Actin Networks in Transformed Trabecular Meshwork Cells. Invest Ophthalmol Vis Sci 2025; 66:65. [PMID: 40009371 PMCID: PMC11878246 DOI: 10.1167/iovs.66.2.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Purpose Cross-linked actin networks (CLANs) are prevalent in the glaucomatous trabecular meshwork (TM). We previously developed the GTM3L cell line, which spontaneously forms fluorescently labeled CLANs, by transducing GTM3, a transformed glaucomatous TM cell line, with a lentivirus expressing the LifeAct-GFP fusion protein. Here, we determined if LifeAct-GFP viral copy numbers are associated with CLANs, developed approaches to increase CLAN incidence, and computationally studied the biomechanical properties of CLAN-containing GTM3L cells. Methods GTM3L cells were fluorescently sorted for viral copy number analysis to determine whether increased CLAN incidence was associated with copy number. CLAN incidence was increased by combining (1) differential adhesion sorting, (2) cell deswelling, and (3) cell stiffness selection. GTM3L cells were cultured on glass or soft hydrogels for stiffness measurement by atomic force microscopy. Computational models studied the biomechanical properties of CLANs. Results GTM3L cells had one LifeAct-GFP viral copy/cell on average, and viral copy number or LifeAct-GFP expression level did not associate with CLAN incidence rate. However, CLAN rate was increased from -0.28% to -50% by combining the three enrichment methods noted above. Further, GTM3L cells formed more CLANs on a stiff versus a soft substrate. Computational modeling predicted that CLANs contribute to higher cell stiffness, including increased resistance of the nucleus to tensile stress when CLANs are physically linked to the nucleus. Conclusions It is possible to greatly enhance CLAN incidence in GTM3L cells. CLANs are mechanosensitive structures that affect cell biomechanical properties. Further research is needed to determine the biomechanics, mechanobiology, and etiology of CLANs in the TM.
Collapse
Affiliation(s)
- Haiyan Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia, United States
| | - Devon H. Harvey
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana, United States
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana, United States
| | - Jiannong Dai
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana, United States
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana, United States
| | - Steven P. Swingle
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Anthony M. Compton
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia, United States
| | - Chenna Kesavulu Sugali
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana, United States
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana, United States
| | - Kamesh Dhamodaran
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana, United States
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana, United States
| | - Jing Yao
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana, United States
| | - Tsai-Yu Lin
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana, United States
| | - Todd Sulchek
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia, United States
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States
| | - C. Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia, United States
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Weiming Mao
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana, United States
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana, United States
- Department of Biochemistry & Molecular Biology, Indiana University, Indianapolis, Indiana, United States
| |
Collapse
|
2
|
Li H, Harvey DH, Dai J, Swingle SP, Compton AM, Sugali CK, Dhamodaran K, Yao J, Lin TY, Sulchek T, Kim T, Ethier CR, Mao W. Characterization, enrichment, and computational modeling of cross-linked actin networks in trabecular meshwork cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608970. [PMID: 39229235 PMCID: PMC11370370 DOI: 10.1101/2024.08.21.608970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Purpose Cross-linked actin networks (CLANs) are prevalent in the glaucomatous trabecular meshwork (TM), yet their role in ocular hypertension remains unclear. We used a human TM cell line that spontaneously forms fluorescently-labeled CLANs (GTM3L) to explore the origin of CLANs, developed techniques to increase CLAN incidence in GMT3L cells, and computationally studied the biomechanical properties of CLAN-containing cells. Methods GTM3L cells were fluorescently sorted for viral copy number analysis. CLAN incidence was increased by (i) differential sorting of cells by adhesion, (ii) cell deswelling, and (iii) cell selection based on cell stiffness. GTM3L cells were also cultured on glass or soft hydrogel to determine substrate stiffness effects on CLAN incidence. Computational models were constructed to mimic and study the biomechanical properties of CLANs. Results All GTM3L cells had an average of 1 viral copy per cell. LifeAct-GFP expression level did not affect CLAN incidence rate, but CLAN rate was increased from ~0.28% to ~50% by a combination of adhesion selection, cell deswelling, and cell stiffness-based sorting. Further, GTM3L cells formed more CLANs on a stiff vs. a soft substrate. Computational modeling predicted that CLANs contribute to higher cell stiffness, including increased resistance of the nucleus to tensile stress when CLANs are physically linked to the nucleus. Conclusions It is possible to greatly enhance CLAN incidence in GTM3L cells. CLANs are mechanosensitive structures that affect cell biomechanical properties. Further research is needed to determine the effect of CLANs on TM biomechanics and mechanobiology as well as the etiology of CLAN formation in the TM.
Collapse
Affiliation(s)
- Haiyan Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA
| | - Devon H Harvey
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana
| | - Jiannong Dai
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana
| | - Steven P Swingle
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Anthony M Compton
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA
| | - Chenna Kesavulu Sugali
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana
| | - Kamesh Dhamodaran
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana
| | - Jing Yao
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana
| | - Tsai-Yu Lin
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana
| | - Todd Sulchek
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - C Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Weiming Mao
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana
- Department of Biochemistry & Molecular Biology, Indiana University, Indianapolis, Indiana
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, Indiana
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana
| |
Collapse
|
3
|
Young KM, Shankles PG, Chen T, Ahkee K, Bules S, Sulchek T. Scaling microfluidic throughput with flow-balanced manifolds to simply control devices with multiple inlets and outlets. BIOMICROFLUIDICS 2022; 16:034104. [PMID: 35600502 PMCID: PMC9118023 DOI: 10.1063/5.0080510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/02/2022] [Indexed: 05/18/2023]
Abstract
Microfluidics can bring unique functionalities to cell processing, but the small channel dimensions often limit the throughput for cell processing that prevents scaling necessary for key applications. While processing throughput can be improved by increasing cell concentration or flow rate, an excessive number or velocity of cells can result in device failure. Designing parallel channels can linearly increase the throughput by channel number, but for microfluidic devices with multiple inlets and outlets, the design of the channel architecture with parallel channels can result in intractable numbers of inlets and outlets. We demonstrate an approach to use multiple parallel channels for complex microfluidic designs that uses a second manifold layer to connect three inlets and five outlets per channel in a manner that balances flow properties through each channel. The flow balancing in the individual microfluidic channels was accomplished through a combination of analytical and finite element analysis modeling. Volumetric flow and cell flow velocity were measured in each multiplexed channel to validate these models. We demonstrate eight-channel operation of a label-free mechanical separation device that retains the accuracy of a single channel separation. Using the parallelized device and a model biomechanical cell system for sorting of cells based on their viability, we processed over 16 × 106 cells total over three replicates at a rate of 5.3 × 106 cells per hour. Thus, parallelization of complex microfluidics with a flow-balanced manifold system can enable higher throughput processing with the same number of inlet and outlet channels to control.
Collapse
Affiliation(s)
- Katherine M. Young
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, Georgia 30332-0535, USA
| | - Peter G. Shankles
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30332-0405, USA
| | - Theresa Chen
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30332-0405, USA
| | - Kelly Ahkee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, Georgia 30332-0535, USA
| | - Sydney Bules
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, Georgia 30332-0535, USA
| | - Todd Sulchek
- Author to whom correspondence should be addressed:. Phone: (404) 385-1887
| |
Collapse
|
4
|
Stone NE, Voigt AP, Cooke JA, Giacalone JC, Hanasoge S, Mullins RF, Tucker BA, Sulchek T. Label-free microfluidic enrichment of photoreceptor cells. Exp Eye Res 2020; 199:108166. [PMID: 32771499 DOI: 10.1016/j.exer.2020.108166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/20/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022]
Abstract
Inherited retinal degenerative disorders such as retinitis pigmentosa and Usher syndrome are characterized by progressive death of photoreceptor cells. To restore vision to patients blinded by these diseases, a stem cell-based photoreceptor cell replacement strategy will likely be required. Although retinal stem cell differentiation protocols suitable for generating photoreceptor cells exist, they often yield a rather heterogenous mixture of cell types. To enrich the donor cell population for one or a few cell types, scientists have traditionally relied upon the use of antibody-based selection approaches. However, these strategies are quite labor intensive and require animal derived reagents and equipment that are not well suited to current good manufacturing practices (cGMP). The purpose of this study was to develop and evaluate a microfluidic cell sorting device capable of exploiting the physical and mechanical differences between retinal cell types to enrich specific donor cell populations such as Retinal Pigment Epithelial (RPE) cells and photoreceptor cells. Using this device, we were able to separate a mixture of RPE and iPSC-derived photoreceptor precursor cell lines into two substantially enriched fractions. The enrichment factor of the RPE fraction was 2 and that of the photoreceptor precursor cell fraction was 2.7. Similarly, when human retina, obtained from 3 independent donors, was dissociated and passed through the sorting device, the heterogeneous mixture could be reliably sorted into RPE and photoreceptor cell rich fractions. In summary, microfluidic cell sorting is a promising approach for antibody free enrichment of retinal cell populations.
Collapse
Affiliation(s)
- Nicholas E Stone
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Andrew P Voigt
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Jessica A Cooke
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Joseph C Giacalone
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Srinivas Hanasoge
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Robert F Mullins
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Budd A Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Todd Sulchek
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
5
|
Labib M, Philpott DN, Wang Z, Nemr C, Chen JB, Sargent EH, Kelley SO. Magnetic Ranking Cytometry: Profiling Rare Cells at the Single-Cell Level. Acc Chem Res 2020; 53:1445-1457. [PMID: 32662263 DOI: 10.1021/acs.accounts.0c00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cellular heterogeneity in biological systems presents major challenges in the diagnosis and treatment of disease and also complicates the deconvolution of complex cellular phenomena. Single-cell analysis methods provide information that is not masked by the intrinsic heterogeneity of the bulk population and can therefore be applied to gain insights into heterogeneity among different cell subpopulations with fine resolution. Over the last 5 years, an explosion in the number of single-cell measurement methods has occurred. However, most of these methods are applicable to pure populations of cultured cells and are not able to handle high levels of phenotypic heterogeneity or a large background of nontarget cells. Microfluidics is an attractive tool for single cell manipulation as it enables individual encasing of single cells, allowing for high-throughput analysis with precise control of the local environment. Our laboratory has developed a new microfluidics-based analytical strategy to meet this unmet need referred to as magnetic ranking cytometry (MagRC). Cells expressing a biomarker of interest are labeled with receptor-coated magnetic nanoparticles and isolated from nontarget cells using a microfluidic device. The device ranks the cells according to the level of bound magnetic nanoparticles, which corresponds to the expression level of a target biomarker. Over the last several years, two generations of MagRC devices have been developed for different applications. The first-generation MagRC devices are powerful tools for the quantitation and analysis of rare cells present in heterogeneous samples, such as circulating tumor cells, stem cells, and pathogenic bacteria. The second-generation MagRC devices are compatible with the efficient recovery of cells sorted on the basis of protein expression and can be used to analyze large populations of cells and perform phenotypic CRISPR screens. To improve analytical precision, newer iterations of the first-generation and second-generation MagRC devices have been integrated with electrochemical sensors and Hall effect sensors, respectively. Both generations of MagRC devices permit the isolation of viable cells, which sets the stage for a wide range of applications, such as generating cell lines from rare cells and in vitro screening for effective therapeutic interventions in cancer patients to realize the promise of personalized medicine. This Account summarizes the development and application of the MagRC and describes a suite of advances that have enabled single-cell tumor cell analysis and monitoring tumor response to therapy, stem cell analysis, and detection of pathogens.
Collapse
Affiliation(s)
- Mahmoud Labib
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - David N. Philpott
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Zongjie Wang
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Carine Nemr
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Jenise B. Chen
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Edward H. Sargent
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shana O. Kelley
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
6
|
Islam M, Raj A, McFarland B, Brink HM, Ciciliano J, Fay M, Myers DR, Flowers C, Waller EK, Lam W, Alexeev A, Sulchek T. Stiffness based enrichment of leukemia cells using microfluidics. APL Bioeng 2020; 4:036101. [PMID: 32637856 PMCID: PMC7332299 DOI: 10.1063/1.5143436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/08/2020] [Indexed: 01/06/2023] Open
Abstract
To improve the survival rate of cancer patients, new diagnosis strategies are necessary to detect lower levels of cancer cells before and after treatment regimens. The scarcity of diseased cells, particularly in residual disease after treatment, demands highly sensitive detection approaches or the ability to enrich the diseased cells in relation to normal cells. We report a label-free microfluidic approach to enrich leukemia cells from healthy cells using inherent differences in cell biophysical properties. The microfluidic device consists of a channel with an array of diagonal ridges that recurrently compress and translate flowing cells in proportion to cell stiffness. Using devices optimized for acute T cell leukemia model Jurkat, the stiffer white blood cells were translated orthogonally to the channel length, while softer leukemia cells followed hydrodynamic flow. The device enriched Jurkat leukemia cells from white blood cells with an enrichment factor of over 760. The sensitivity, specificity, and accuracy of the device were found to be >0.8. The values of sensitivity and specificity could be adjusted by selecting one or multiple outlets for analysis. We demonstrate that low levels of Jurkat leukemia cells (1 in 104 white blood cells) could be more quickly detected using flow cytometry by using the stiffness sorting pre-enrichment. In a second mode of operation, the device was implemented to sort resistive leukemia cells from both drug-sensitive leukemia cells and normal white blood cells. Therefore, microfluidic biomechanical sorting can be a useful tool to enrich leukemia cells that may improve downstream analyses.
Collapse
Affiliation(s)
- Muhymin Islam
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30332-0405, USA
| | - Abhishek Raj
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30332-0405, USA
| | - Brynn McFarland
- The School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, Georgia 30332-0535, USA
| | - Hannah Maxine Brink
- The School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, Georgia 30332-0535, USA
| | - Jordan Ciciliano
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, Georgia 30332-0535, USA
| | - Meredith Fay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, Georgia 30332-0535, USA
| | - David Richard Myers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, Georgia 30332-0535, USA
| | - Christopher Flowers
- Winship Cancer Institute, Emory School of Medicine, 1365 Clifton NE Rd.: Atlanta, Georgia 30322, USA
| | - Edmund K Waller
- Winship Cancer Institute, Emory School of Medicine, 1365 Clifton NE Rd.: Atlanta, Georgia 30322, USA
| | - Wilbur Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, Georgia 30332-0535, USA
| | - Alexander Alexeev
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30332-0405, USA
| | | |
Collapse
|
7
|
Hymel SJ, Lan H, Fujioka H, Khismatullin DB. Cell trapping in Y-junction microchannels: A numerical study of the bifurcation angle effect in inertial microfluidics. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2019; 31:082003. [PMID: 31406457 PMCID: PMC6688893 DOI: 10.1063/1.5113516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/09/2019] [Indexed: 05/31/2023]
Abstract
The majority of microfluidic technologies for cell sorting and isolation involve bifurcating (e.g., Y- or T-shaped junction) microchannels to trap the cells of a specific type. However, the microfluidic trapping efficiency remains low, independently of whether the cells are separated by a passive or an active sorting method. Using a custom computational algorithm, we studied the migration of separated deformable cells in a Y-junction microchannel, with a bifurcation angle ranging from 30° to 180°. Single or two cells of initially spherical shape were considered under flow conditions corresponding to inertial microfluidics. Through the numerical simulation, we identified the effects of cell size, cytoplasmic viscoelasticity, cortical tension, flow rate, and bifurcation angle on the critical separation distance for cell trapping. The results of this study show that the trapping and isolation of blood cells, and circulating tumor cells in a Y-junction microchannel was most efficient and least dependent on the flow rate at the bifurcation angle of 120°. At this angle, the trapping efficiency for white blood cells and circulating tumor cells increased, respectively, by 46% and 43%, in comparison with the trapping efficiency at 60°. The efficiency to isolate invasive tumor cells from noninvasive ones increased by 32%. This numerical study provides important design criteria to optimize microfluidic technology for deformability-based cell sorting and isolation.
Collapse
Affiliation(s)
| | - Hongzhi Lan
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | - Hideki Fujioka
- Center for Computational Science, Tulane University, New Orleans, Louisiana 70118, USA
| | | |
Collapse
|
8
|
Mutafopulos K, Spink P, Lofstrom CD, Lu PJ, Lu H, Sharpe JC, Franke T, Weitz DA. Traveling surface acoustic wave (TSAW) microfluidic fluorescence activated cell sorter (μFACS). LAB ON A CHIP 2019; 19:2435-2443. [PMID: 31192328 DOI: 10.1039/c9lc00163h] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We report a microfluidic fluorescence activated cell-sorting (μFACS) device that employs traveling surface acoustic waves (TSAW) to sort cells at rates comparable to conventional jet-in-air FACS machines, with high purity and viability. The device combines inertial flow focusing and sheath flow to align and evenly space cells, improving the sorting accuracy and screening rate. We sort with an interdigital transducer (IDT) whose tapered geometry allows precise positioning of the TSAW for optimal cell sorting. We sort three different cell lines at several kHz, at cell velocities exceeding one meter per second, while maintaining both sorting purity and cell viability at around 90% simultaneously.
Collapse
Affiliation(s)
- K Mutafopulos
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Liu A, Islam M, Stone N, Varadarajan V, Jeong J, Bowie S, Qiu P, Waller EK, Alexeev A, Sulchek T. Microfluidic generation of transient cell volume exchange for convectively driven intracellular delivery of large macromolecules. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2018; 21:703-712. [PMID: 30288138 PMCID: PMC6166476 DOI: 10.1016/j.mattod.2018.03.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Efficient intracellular delivery of target macromolecules remains a major obstacle in cell engineering and other biomedical applications. We discovered a unique cell biophysical phenomenon of transient cell volume exchange by using microfluidics to rapidly and repeatedly compress cells. This behavior consists of brief, mechanically induced cell volume loss followed by rapid volume recovery. We harness this behavior for high-throughput, convective intracellular delivery of large polysaccharides (2000 kDa), particles (100 nm), and plasmids while maintaining high cell viability. Successful proof of concept experiments in transfection and intracellular labeling demonstrated potential to overcome the most prohibitive challenges in intracellular delivery for cell engineering.
Collapse
Affiliation(s)
- Anna Liu
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Muhymin Islam
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nicholas Stone
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Vikram Varadarajan
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jenny Jeong
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sam Bowie
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Peng Qiu
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Edmund K Waller
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Alexander Alexeev
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Todd Sulchek
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Bongiorno T, Gura J, Talwar P, Chambers D, Young KM, Arafat D, Wang G, Jackson-Holmes EL, Qiu P, McDevitt TC, Sulchek T. Biophysical subsets of embryonic stem cells display distinct phenotypic and morphological signatures. PLoS One 2018. [PMID: 29518080 PMCID: PMC5843178 DOI: 10.1371/journal.pone.0192631] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The highly proliferative and pluripotent characteristics of embryonic stem cells engender great promise for tissue engineering and regenerative medicine, but the rapid identification and isolation of target cell phenotypes remains challenging. Therefore, the objectives of this study were to characterize cell mechanics as a function of differentiation and to employ differences in cell stiffness to select population subsets with distinct mechanical, morphological, and biological properties. Biomechanical analysis with atomic force microscopy revealed that embryonic stem cells stiffened within one day of differentiation induced by leukemia inhibitory factor removal, with a lagging but pronounced change from spherical to spindle-shaped cell morphology. A microfluidic device was then employed to sort a differentially labeled mixture of pluripotent and differentiating cells based on stiffness, resulting in pluripotent cell enrichment in the soft device outlet. Furthermore, sorting an unlabeled population of partially differentiated cells produced a subset of “soft” cells that was enriched for the pluripotent phenotype, as assessed by post-sort characterization of cell mechanics, morphology, and gene expression. The results of this study indicate that intrinsic cell mechanical properties might serve as a basis for efficient, high-throughput, and label-free isolation of pluripotent stem cells, which will facilitate a greater biological understanding of pluripotency and advance the potential of pluripotent stem cell differentiated progeny as cell sources for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Tom Bongiorno
- The G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Jeremy Gura
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, United States of America
| | - Priyanka Talwar
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, United States of America
| | - Dwight Chambers
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, United States of America
| | - Katherine M. Young
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, United States of America
| | - Dalia Arafat
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Gonghao Wang
- The G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Emily L. Jackson-Holmes
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Peng Qiu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, United States of America
| | - Todd C. McDevitt
- Gladstone Institute for Cardiovascular Disease, San Francisco, CA, United States of America
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, United States of America
| | - Todd Sulchek
- The G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, United States of America
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
11
|
Microfluidic cell sorting by stiffness to examine heterogenic responses of cancer cells to chemotherapy. Cell Death Dis 2018; 9:239. [PMID: 29445159 PMCID: PMC5833447 DOI: 10.1038/s41419-018-0266-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022]
Abstract
Cancers consist of a heterogeneous populations of cells that may respond differently to treatment through drug-resistant sub-populations. The scarcity of these resistant sub-populations makes it challenging to understand how to counter their resistance. We report a label-free microfluidic approach to separate cancer cells treated with chemotherapy into sub-populations enriched in chemoresistant and chemosensitive cells based on the differences in cellular stiffness. The sorting approach enabled analysis of the molecular distinctions between resistant and sensitive cells. Consequently, the role of multiple mechanisms of drug resistance was identified, including decreased sensitivity to apoptosis, enhanced metabolism, and extrusion of drugs, and, for the first time, the role of estrogen receptor in drug resistance of leukemia cells. To validate these findings, several inhibitors for the identified resistance pathways were tested with chemotherapy to increase cytotoxicity sevenfold. Thus, microfluidic sorting can identify molecular mechanisms of drug resistance to examine heterogeneous responses of cancers to therapies.
Collapse
|
12
|
Ung WL, Mutafopulos K, Spink P, Rambach RW, Franke T, Weitz DA. Enhanced surface acoustic wave cell sorting by 3D microfluidic-chip design. LAB ON A CHIP 2017; 17:4059-4069. [PMID: 28994439 DOI: 10.1039/c7lc00715a] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We demonstrate an acoustic wave driven microfluidic cell sorter that combines advantages of multilayer device fabrication with planar surface acoustic wave excitation. We harness the strong vertical component of the refracted acoustic wave to enhance cell actuation by using an asymmetric flow field to increase cell deflection. Precise control of the 3-dimensional flow is realized by topographical structures implemented on the top of the microchannel. We experimentally quantify the effect of the structure dimensions and acoustic parameter. The design attains cell sorting rates and purities approaching those of state of the art fluorescence-activated cell sorters with all the advantages of microfluidic cell sorting.
Collapse
Affiliation(s)
- W L Ung
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | |
Collapse
|
13
|
Bongiorno T, Chojnowski JL, Lauderdale JD, Sulchek T. Cellular Stiffness as a Novel Stemness Marker in the Corneal Limbus. Biophys J 2017; 111:1761-1772. [PMID: 27760362 DOI: 10.1016/j.bpj.2016.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/24/2016] [Accepted: 09/02/2016] [Indexed: 10/20/2022] Open
Abstract
Healthy eyes contain a population of limbal stem cells (LSCs) that continuously renew the corneal epithelium. However, each year, 1 million Americans are afflicted with severely reduced visual acuity caused by corneal damage or disease, including LSC deficiency (LSCD). Recent advances in corneal transplant technology promise to repair the cornea by implanting healthy LSCs to encourage regeneration; however, success is limited to transplanted tissues that contain a sufficiently high percentage of LSCs. Attempts to screen limbal tissues for suitable implants using molecular stemness markers are confounded by the poorly understood signature of the LSC phenotype. For cells derived from the corneal limbus, we show that the performance of cell stiffness as a stemness indicator is on par with the performance of ΔNP63α, a common molecular marker. In combination with recent methods for sorting cells on a biophysical basis, the biomechanical stemness markers presented here may enable the rapid purification of LSCs from a heterogeneous population of corneal cells, thus potentially enabling clinicians and researchers to generate corneal transplants with sufficiently high fractions of LSCs, regardless of the LSC percentage in the donor tissue.
Collapse
Affiliation(s)
- Tom Bongiorno
- The G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Jena L Chojnowski
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| | | | - Todd Sulchek
- The G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia; The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
14
|
Microfluidic Sorting of Cells by Viability Based on Differences in Cell Stiffness. Sci Rep 2017; 7:1997. [PMID: 28515450 PMCID: PMC5435733 DOI: 10.1038/s41598-017-01807-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/03/2017] [Indexed: 12/11/2022] Open
Abstract
The enrichment of viable cells is an essential step to obtain effective products for cell therapy. While procedures exist to characterize the viability of cells, most methods to exclude nonviable cells require the use of density gradient centrifugation or antibody-based cell sorting with molecular labels of cell viability. We report a label-free microfluidic technique to separate live and dead cells that exploits differences in cellular stiffness. The device uses a channel with repeated ridges that are diagonal with respect to the direction of cell flow. Stiff nonviable cells directed through the channel are compressed and translated orthogonally to the channel length, while soft live cells follow hydrodynamic flow. As a proof of concept, Jurkat cells are enriched to high purity of viable cells by a factor of 185-fold. Cell stiffness was validated as a sorting parameter as nonviable cells were substantially stiffer than live cells. To highlight the utility for hematopoietic stem cell transplantation, frozen samples of cord blood were thawed and the purity of viable nucleated cells was increased from 65% to over 94% with a recovery of 73% of the viable cells. Thus, the microfluidic stiffness sorting can simply and efficiently obtain highly pure populations of viable cells.
Collapse
|
15
|
Dwarshuis NJ, Parratt K, Santiago-Miranda A, Roy K. Cells as advanced therapeutics: State-of-the-art, challenges, and opportunities in large scale biomanufacturing of high-quality cells for adoptive immunotherapies. Adv Drug Deliv Rev 2017. [PMID: 28625827 DOI: 10.1016/j.addr.2017.06.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Therapeutic cells hold tremendous promise in treating currently incurable, chronic diseases since they perform multiple, integrated, complex functions in vivo compared to traditional small-molecule drugs or biologics. However, they also pose significant challenges as therapeutic products because (a) their complex mechanisms of actions are difficult to understand and (b) low-cost bioprocesses for large-scale, reproducible manufacturing of cells have yet to be developed. Immunotherapies using T cells and dendritic cells (DCs) have already shown great promise in treating several types of cancers, and human mesenchymal stromal cells (hMSCs) are now extensively being evaluated in clinical trials as immune-modulatory cells. Despite these exciting developments, the full potential of cell-based therapeutics cannot be realized unless new engineering technologies enable cost-effective, consistent manufacturing of high-quality therapeutic cells at large-scale. Here we review cell-based immunotherapy concepts focused on the state-of-the-art in manufacturing processes including cell sourcing, isolation, expansion, modification, quality control (QC), and culture media requirements. We also offer insights into how current technologies could be significantly improved and augmented by new technologies, and how disciplines must converge to meet the long-term needs for large-scale production of cell-based immunotherapies.
Collapse
Affiliation(s)
- Nate J Dwarshuis
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, GA 30332-0313, United States; The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| | - Kirsten Parratt
- The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States; Department of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| | - Adriana Santiago-Miranda
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, GA 30332-0313, United States; The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| | - Krishnendu Roy
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, GA 30332-0313, United States; The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| |
Collapse
|
16
|
Yeh YT, Harouaka RA, Zheng SY. Evaluating a novel dimensional reduction approach for mechanical fractionation of cells using a tandem flexible micro spring array (tFMSA). LAB ON A CHIP 2017; 17:691-701. [PMID: 28144670 DOI: 10.1039/c6lc01527a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a novel methodology to establish experimental models for the rational design of cell fractionation based on physical properties of cells. Label-free microfluidic separation of cells based on size is a widely employed technique. However, close observation reveals that cell capture results cannot be explained by cell sizes alone. This is particularly apparent with viable cell fractionation, where cells retain their native deformability. We have developed a principal size cutoff (PSC) model based on the analysis of size distribution and size-based filtration efficiency for cell populations. The goal of this analysis is to use an unbiased approach to achieve dimensional reduction of deformability and other mechanical properties that affect cell capture. The PSC model provides a single calibrated principal size component that may be compared directly to device gap width, which is the critical dimension for cell filtration. The PSC model was evaluated experimentally using a tandem flexible micro spring array (tFMSA) device made of parylene filtration elements applied within micro-molded polydimethylsiloxane (PDMS) chambers. In the tFMSA device, a mixture of cells is sequentially passed through individual filters with decreasing gap widths to allow size-based selection. We applied this method to demonstrate viable separation of subgroups of cells with different mechanical properties from complex mixtures, including fractionation according to cancer cell type, cell cycle stage, cell viability status, and leukocyte nuclear phenotype. The PSC methodology and tFMSA device can advance a better understanding of complex factors affecting mechanical cell fractionation and provide a miniature platform for obtaining rationally designed cell fractions for biomedical applications.
Collapse
Affiliation(s)
- Yin-Ting Yeh
- Department of Biomedical Engineering, Materials Research Institute and Huck Life Science Institute, The Pennsylvania State University, N-238 Millennium Science Complex, University Park, PA 16802, USA.
| | - Ramdane A Harouaka
- Department of Biomedical Engineering, Materials Research Institute and Huck Life Science Institute, The Pennsylvania State University, N-238 Millennium Science Complex, University Park, PA 16802, USA.
| | - Si-Yang Zheng
- Department of Biomedical Engineering, Materials Research Institute and Huck Life Science Institute, The Pennsylvania State University, N-238 Millennium Science Complex, University Park, PA 16802, USA. and Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802, USA and Penn State Hershey Cancer Institute, Hershey, PA 17033, USA
| |
Collapse
|
17
|
Alvankarian J, Majlis BY. Tunable Microfluidic Devices for Hydrodynamic Fractionation of Cells and Beads: A Review. SENSORS (BASEL, SWITZERLAND) 2015; 15:29685-701. [PMID: 26610519 PMCID: PMC4701354 DOI: 10.3390/s151129685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/26/2015] [Accepted: 11/05/2015] [Indexed: 01/05/2023]
Abstract
The adjustable microfluidic devices that have been developed for hydrodynamic-based fractionation of beads and cells are important for fast performance tunability through interaction of mechanical properties of particles in fluid flow and mechanically flexible microstructures. In this review, the research works reported on fabrication and testing of the tunable elastomeric microfluidic devices for applications such as separation, filtration, isolation, and trapping of single or bulk of microbeads or cells are discussed. Such microfluidic systems for rapid performance alteration are classified in two groups of bulk deformation of microdevices using external mechanical forces, and local deformation of microstructures using flexible membrane by pneumatic pressure. The main advantage of membrane-based tunable systems has been addressed to be the high capability of integration with other microdevice components. The stretchable devices based on bulk deformation of microstructures have in common advantage of simplicity in design and fabrication process.
Collapse
Affiliation(s)
- Jafar Alvankarian
- Institute of Microengineering and Nanoelectronics, National University of Malaysia (UKM), 43600 Bangi, Selangor, Malaysia.
| | - Burhanuddin Yeop Majlis
- Institute of Microengineering and Nanoelectronics, National University of Malaysia (UKM), 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|