1
|
Mutore KT, Koduri R, Alatrash N, Nomellini V. THE USE OF POLOXAMER 188 IN BURN INJURY TREATMENT: A SYSTEMATIC LITERATURE REVIEW. Shock 2024; 62:461-469. [PMID: 39178216 DOI: 10.1097/shk.0000000000002439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
ABSTRACT Although there have been numerous advancements in burn wound management, burn injuries are still a major cause of morbidity and mortality in the United States, and novel therapeutics are still needed to improve outcomes. Poloxamer 188 (P188) is a synthetic copolymer with Food and Drug Administration (FDA) approval that has many biological applications. This study aimed to review the literature on P188 in burn injuries and its effects based on burn mechanisms. We employed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to complete this systematic literature review. We searched the databases of Google Scholar, PubMed, and SCOPUS using the keywords burn, p188, poloxamer 188, and pluronic F68 in combination. Two reviewers independently screened the articles for inclusion. Articles that were not in English, were book chapters or conference proceedings, or did not evaluate P188 in the setting of burn injuries were excluded. We included a total of 33 full-text articles with both in vivo and in vitro preclinical studies. P188 was found to be beneficial in animal and cell studies evaluating electrical and thermal burn injuries. P188 was also found to be useful in burn wound management. Although its utility may be limited in radiation injuries, P188 may be helpful in delaying the initial damage caused by radiation burns. P188 therefore has the potential to be used as a therapy in both burn wound management and in the treatment of systemic injuries sustained through burns. Future studies should aim to assess the efficacy of P188 in clinical models of burn injury.
Collapse
Affiliation(s)
- Kevin T Mutore
- Division of Burn, Trauma, Acute, and Critical Care Surgery, Department of Surgery, UT Southwestern Medical Center, Dallas, Texas
| | | | | | | |
Collapse
|
2
|
Noverraz F, Robin B, Passemard S, Fauvel B, Presumey J, Rigal E, Cookson A, Chopineau J, Martineau P, Villalba M, Jorgensen C, Aubert-Pouëssel A, Morille M, Gerber-Lemaire S. Novel trehalose-based excipients for stabilizing nebulized anti-SARS-CoV-2 antibody. Int J Pharm 2023; 630:122463. [PMID: 36462738 PMCID: PMC9710110 DOI: 10.1016/j.ijpharm.2022.122463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
COVID-19 is caused by the infection of the lungs by SARS-CoV-2. Monoclonal antibodies, such as sotrovimab, showed great efficiency in neutralizing the virus before its internalization by lung epithelial cells. However, parenteral routes are still the preferred route of administration, even for local infections, which requires injection of high doses of antibody to reach efficacious concentrations in the lungs. Lung administration of antibodies would be more relevant requiring lower doses, thus reducing the costs and the side effects. But aerosolization of therapeutic proteins is very challenging, as the different processes available are harsh and trigger protein aggregation and conformational changes. This decreases the efficiency of the treatment, and can increase its immunogenicity. To address those issues, we developed a series of new excipients composed of a trehalose core, a succinyl side chain and a hydrophobic carbon chain (from 8 to 16 carbons). Succinylation increased the solubility of the excipients, allowing their use at relevant concentrations for protein stabilization. In particular, the excipient with 16 carbons (C16TreSuc) used at 5.6 mM was able to preserve colloidal stability and antigen-binding ability of sotrovimab during the nebulization process. It could also be used as a cryoprotectant, allowing storage of sotrovimab in a lyophilized form during weeks. Finally, we demonstrated that C16TreSuc could be used as an excipient to stabilize antibodies for the treatment against COVID-19, by in vitro and in vivo assays. The presence of C16TreSuc during nebulization preserved the neutralization capacity of sotrovimab against SARS-CoV-2 in vitro; an increase of its efficacy was even observed, compared to the non-nebulized control. The in vivo study also showed the wide distribution of sotrovimab in mice lungs, after nebulization with 5.6 mM of excipient. This work brings a solution to stabilize therapeutic proteins during storage and nebulization, making pulmonary immunotherapy possible in the treatment of COVID-19 and other lung diseases.
Collapse
Affiliation(s)
- François Noverraz
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG, Station 6, CH-1015 Lausanne, Switzerland
| | - Baptiste Robin
- MedXCell Science, Bâtiment Cyborg 1 (IRMB), Hôpital Saint-Eloi, 80 avenue Augustin Fliche, 34295 Montpellier, France
| | - Solène Passemard
- Montpellier Life Science Bâtiment Cyborg 1 (IRMB), Hôpital Saint-Eloi, 80 avenue Augustin Fliche, 34295 Montpellier, France
| | - Bénédicte Fauvel
- CYTEA BIO, Bâtiment Cyborg 1 (IRMB), Hôpital Saint-Eloi, 80 avenue Augustin Fliche, 34295 Montpellier, France
| | - Jessy Presumey
- CYTEA BIO, Bâtiment Cyborg 1 (IRMB), Hôpital Saint-Eloi, 80 avenue Augustin Fliche, 34295 Montpellier, France
| | - Emilie Rigal
- CYTEA BIO, Bâtiment Cyborg 1 (IRMB), Hôpital Saint-Eloi, 80 avenue Augustin Fliche, 34295 Montpellier, France
| | - Alan Cookson
- MedXCell SA, Av. des Planches 20C, 1820 Montreux, Suisse
| | - Joël Chopineau
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Martin Villalba
- IRMB, Univ Montpellier, INSERM, CNRS, CHU Montpellier, Montpellier, France
| | | | | | - Marie Morille
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG, Station 6, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
3
|
Improve Enzymatic Hydrolysis of Lignocellulosic Biomass by Modifying Lignin Structure via Sulfite Pretreatment and Using Lignin Blockers. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Even traditional pretreatments can partially remove or degrade lignin and hemicellulose from lignocellulosic biomass for enhancing its enzymatic digestibility, the remaining lignin in pretreated biomass still restricts its enzymatic hydrolysis by limiting cellulose accessibility and lignin-enzyme nonproductive interaction. Therefore, many pretreatments that can modify lignin structure in a unique way and approaches to block the lignin’s adverse impact have been proposed to directly improve the enzymatic digestibility of pretreated biomass. In this review, recent development in sulfite pretreatment that can transform the native lignin into lignosulfonate and subsequently enhance saccharification of pretreated biomass under certain conditions was summarized. In addition, we also reviewed the approaches of the addition of reactive agents to block the lignin’s reactive sites and limit the cellulase-enzyme adsorption during hydrolysis. It is our hope that this summary can provide a guideline for workers engaged in biorefining for the goal of reaching high enzymatic digestibility of lignocellulose.
Collapse
|
4
|
Foligno S, Loi B, Pezza L, Piastra M, Autilio C, De Luca D. Extrapulmonary Surfactant Therapy: Review of Available Data and Research/Development Issues. J Clin Pharmacol 2020; 60:1561-1572. [PMID: 32578234 DOI: 10.1002/jcph.1675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/21/2020] [Indexed: 11/07/2022]
Abstract
Since the discovery of surfactant, a large amount of knowledge has been accumulated about its biology and pharmacology. Surfactant is the cornerstone of neonatal respiratory critical care, but its proteins and phospholipids are produced in various tissues and organs, with possible roles only partially similar to that played in the alveoli. As surfactant research is focused mainly on its respiratory applications, knowledge about the possible role of surfactant in extrapulmonary disorders has never been summarized. Here we aim to comprehensively review the data about surfactant biology and pharmacology in organs other than the lung, especially focusing in the more promising surfactant extrapulmonary roles. We also review any preclinical or clinical data available about the therapeutic use of surfactant in these contexts. We offer a summary of knowledge and research/development milestones, as possible useful guidance for researchers of multidisciplinary background.
Collapse
Affiliation(s)
- Silvia Foligno
- Division of Pediatrics and Neonatal Critical Care, Medical Center, "A. Béclère," South Paris University Hospitals, Assistance Publique-Hopitaux de Paris (APHP), Paris, France
| | - Barbara Loi
- Division of Pediatrics and Neonatal Critical Care, Medical Center, "A. Béclère," South Paris University Hospitals, Assistance Publique-Hopitaux de Paris (APHP), Paris, France
| | - Lucilla Pezza
- Pediatric Intensive Care Unit, Department of Anesthesia and Critical Care, University Hospital "A.Gemelli"-IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Marco Piastra
- Pediatric Intensive Care Unit, Department of Anesthesia and Critical Care, University Hospital "A.Gemelli"-IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Chiara Autilio
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institut-Hospital "12 de Octubre,", Complutense University, Madrid, Spain
| | - Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, Medical Center, "A. Béclère," South Paris University Hospitals, Assistance Publique-Hopitaux de Paris (APHP), Paris, France.,Physiopathology and Therapeutic Innovation Unit-INSERM U999, South Paris/Saclay University, Paris, France
| |
Collapse
|
5
|
Mayer D, Armstrong D, Schultz G, Percival S, Malone M, Romanelli M, Keast D, Jeffery S. Cell salvage in acute and chronic wounds: a potential treatment strategy. Experimental data and early clinical results. J Wound Care 2019; 27:594-605. [PMID: 30204575 DOI: 10.12968/jowc.2018.27.9.594] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
On 9 May 2018, the authors took part in a closed panel discussion on the impact of cell salvage in acute and chronic wounds. The goal was to deliberate the possible use of plurogel micelle matrix (PMM) as a new treatment strategy for wound healing and the authors openly shared their experiences, thoughts, experimental data and early clinical results. The outcome of the panel discussion has been abridged in this paper. The cell membrane consists of a lipid bilayer, which provides a diffusion barrier separating the inside of a cell from its environment. Cell membrane injury can result in acute cellular necrosis when defects are too large and cannot be resealed. There is a potential hazard to the body when these dying cells release endogenous alarm signals referred to as 'damage (or danger) associated molecular patterns' (DAMPs), which trigger the innate immune system and modulate inflammation. Cell salvage by membrane resealing is a promising target to ensure the survival of the individual cell and prevention of further tissue degeneration by inflammatory processes. Non-ionic surfactants such as poloxamers, poloxamines and PMM have the potential to resuscitate cells by inserting themselves into damaged membranes and stabilising the unstable portions of the lipid bilayers. The amphiphilic properties of these molecules are amenable to insertion into cell wall defects and so can play a crucial, reparative role. This new approach to cell rescue or salvage has gained increasing interest as several clinical conditions have been linked to cell membrane injury via oxidative stress-mediated lipid peroxidation or thermal disruption. The repair of the cell membrane is an important step in salvaging cells from necrosis to prevent further tissue degeneration by inflammatory processes. This is applicable to acute burns and chronic wounds such as diabetic foot ulcers (DFUs), chronic venous leg ulcers (VLUs), and pressure ulcers (PUs). Experimental data shows that PMM is biocompatible and able to insert itself into damaged membranes, salvaging their barrier function and aiding cell survival. Moreover, the six case studies presented in this paper reveal the potential of this treatment strategy.
Collapse
Affiliation(s)
| | | | | | | | - Matt Malone
- South West Sydney Limb Preservation and Wound Research, South Western Syndey Local Health District, Ingham Institute of Applied Medical Research, Syndey, Australia and Infectious Disease and Microbiology, School of Medicine, Western Sydney University, Sydney, Australia
| | | | | | - Steven Jeffery
- The Queen Elizabeth Hospital, Birmingham, UK and Birmingham City University
| |
Collapse
|
6
|
Houang EM, Sham YY, Bates FS, Metzger JM. Muscle membrane integrity in Duchenne muscular dystrophy: recent advances in copolymer-based muscle membrane stabilizers. Skelet Muscle 2018; 8:31. [PMID: 30305165 PMCID: PMC6180502 DOI: 10.1186/s13395-018-0177-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023] Open
Abstract
The scientific premise, design, and structure-function analysis of chemical-based muscle membrane stabilizing block copolymers are reviewed here for applications in striated muscle membrane injury. Synthetic block copolymers have a rich history and wide array of applications from industry to biology. Potential for discovery is enabled by a large chemical space for block copolymers, including modifications in block copolymer mass, composition, and molecular architecture. Collectively, this presents an impressive chemical landscape to leverage distinct structure-function outcomes. Of particular relevance to biology and medicine, stabilization of damaged phospholipid membranes using amphiphilic block copolymers, classified as poloxamers or pluronics, has been the subject of increasing scientific inquiry. This review focuses on implementing block copolymers to protect fragile muscle membranes against mechanical stress. The review highlights interventions in Duchenne muscular dystrophy, a fatal disease of progressive muscle deterioration owing to marked instability of the striated muscle membrane. Biophysical and chemical engineering advances are presented that delineate and expand upon current understanding of copolymer-lipid membrane interactions and the mechanism of stabilization. The studies presented here serve to underscore the utility of copolymer discovery leading toward the therapeutic application of block copolymers in Duchenne muscular dystrophy and potentially other biomedical applications in which membrane integrity is compromised.
Collapse
Affiliation(s)
- Evelyne M. Houang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455 USA
| | - Yuk Y. Sham
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455 USA
- University of Minnesota Informatics Institute, MN, USA
- Bioinformatics and Computational Biology Program, University of Minnesota, MN, USA
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, MN, USA
| | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455 USA
| |
Collapse
|
7
|
Percival SL, Chen R, Mayer D, Salisbury AM. Mode of action of poloxamer-based surfactants in wound care and efficacy on biofilms. Int Wound J 2018; 15:749-755. [PMID: 29869367 DOI: 10.1111/iwj.12922] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 12/19/2022] Open
Abstract
Surfactants are widely used as detergents, emulsifiers, wetting agents, foaming agents, and dispersants in both the food and oil industry. Their use in a clinical setting is also common, particularly in wound care. Complicated or chronic wounds show clinical signs of delayed healing, persistent inflammation, and the production of non-viable tissue. These types of wounds also present challenges such as infection and potentially house antimicrobial-tolerant biofilms. The use of wound cleansers to aid cleaning and debridement of the wound is essential. A large proportion of skin and wound cleansers contain surfactants but there is only a small amount of data that shows the effectiveness of them in the enhancement of wound closure. This review paper aims to explore the available literature surrounding the use and mode of action of surfactants in wound healing, in particular Poloxamer 188 (Pluronic F-68) and Poloxamer 407 (Pluronic F-127), and also uncover the potential mechanisms behind the enhancement of wound healing and comparison to other surfactants used in wound care. Furthermore, the presence of a microbial biofilm in the wound is a significant factor in delayed wound healing. Therefore, the effect of clinically used surfactants on biofilms will be discussed, with emphasis on poloxamer-based surfactants.
Collapse
Affiliation(s)
- Steven L Percival
- Centre of Excellence in Biofilm Science and Technologies (CEBST), 5D Health Protection Group Ltd, Liverpool Bio-Innovation Hub, Liverpool, UK
| | - Rui Chen
- Centre of Excellence in Biofilm Science and Technologies (CEBST), 5D Health Protection Group Ltd, Liverpool Bio-Innovation Hub, Liverpool, UK
| | - Dieter Mayer
- Department of Surgery, HFR Fribourg - Cantonal Hospital, Fribourg, Switzerland
| | - Anne-Marie Salisbury
- Centre of Excellence in Biofilm Science and Technologies (CEBST), 5D Health Protection Group Ltd, Liverpool Bio-Innovation Hub, Liverpool, UK
| |
Collapse
|
8
|
Chernysheva MG, Badun GA, Shnitko AV, Petrova VI, Ksenofontov AL. Lysozyme-surfactant adsorption at the aqueous-air and aqueous-organic liquid interfaces as studied by tritium probe. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.10.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Chernysheva MG, Shnitko AV, Soboleva OA, Badun GA. Competitive adsorption of lysozyme and non-ionic surfactants (Brij-35 and pluronic P123) from a mixed solution at water-air and water-xylene interfaces. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4240-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Yamamoto E, Yamaguchi S, Nagamune T. Protein refolding is improved by adding nonionic polyethylene glycol monooleyl ethers with various polyethylene glycol lengths. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/20/2017] [Accepted: 03/02/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Etsushi Yamamoto
- Department of Chemistry and Biotechnology, School of Engineering; The University of Tokyo; Tokyo Japan
| | - Satoshi Yamaguchi
- Research Center for Advanced Science and Technology (RCAST); The University of Tokyo; Tokyo Japan
| | - Teruyuki Nagamune
- Department of Chemistry and Biotechnology, School of Engineering; The University of Tokyo; Tokyo Japan
- Department of Bioengineering, School of Engineering; The University of Tokyo; Tokyo Japan
| |
Collapse
|
11
|
Chin J, Mustafi D, Poellmann MJ, Lee RC. Amphiphilic copolymers reduce aggregation of unfolded lysozyme more effectively than polyethylene glycol. Phys Biol 2017; 14:016003. [PMID: 28061483 DOI: 10.1088/1478-3975/aa5788] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Certain amphiphilic block copolymers are known to prevent aggregation of unfolded proteins. To better understand the mechanism of this effect, the optical properties of heat-denatured and dithiothreitol reduced lysozyme were evaluated with respect to controls using UV-Vis spectroscopy, transmission electron microscopy (TEM) and circular dichroism (CD) measurements. Then, the effects of adding Polyethylene Glycol (8000 Da), the triblock surfactant Poloxamer 188 (P188), and the tetrablock copolymer Tetronic 1107 (T1107) to the lysozyme solution were compared. Overall, T1107 was found to be more effective than P188 in inhibiting aggregation, while PEG exhibited no efficacy. TEM imaging of heat-denatured and reduced lysozymes revealed spherical aggregates with on average 250-450 nm diameter. Using CD, more soluble lysozyme was recovered with T1107 than P188 with β-sheet secondary structure. The greater effectiveness of the larger T1107 in preventing aggregation of unfolded lysozyme than the smaller P188 and PEG points to steric hindrance at play; signifying the importance of size match between the hydrophobic region of denatured protein and that of amphiphilic copolymers. Thus, our results corroborate that certain multi-block copolymers are effective in preventing heat-induced aggregation of reduced lysozymes and future studies warrant more detailed focus on specific applications of these copolymers.
Collapse
Affiliation(s)
- Jaemin Chin
- Departments of Surgery, The University of Chicago, Chicago, IL 60637, United States of America
| | | | | | | |
Collapse
|
12
|
Poellmann MJ, Sosnick TR, Meredith SC, Lee RC. The Pentablock Amphiphilic Copolymer T1107 Prevents Aggregation of Denatured and Reduced Lysozyme. Macromol Biosci 2016; 17. [PMID: 27615730 DOI: 10.1002/mabi.201600217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/25/2016] [Indexed: 12/31/2022]
Abstract
Aggregation of denatured or unfolded proteins establishes a large energy barrier to spontaneous recovery of protein form and function following traumatic injury, tissue cryopreservation, and biopharmaceutical storage. Some tissues utilize small heat shock proteins (sHSPs) to prevent irreversible aggregation, which allows more complex processes to refold or remove the unfolded proteins. It is postulated that large, amphiphilic, and biocompatible block copolymers can mimic sHSP function. Reduced and denatured hen egg white lysozyme (HEWL) is used as a model aggregating protein. The poloxamine T1107 prevents aggregation of HEWL at 37 °C by three complimentary measures. Structural analysis of denatured HEWL reveals a partially folded conformation with preserved or promoted beta-sheet structures only in the presence of T1107. The physical association of T1107 with denatured HEWL, and the ability to prevent aggregation, is linked to the critical micelle temperature of the polymer. The results suggest that T1107, or a similar amphiphilic block copolymer, can find use as a synthetic chaperone to augment the innate molecular repair mechanisms of natural cells.
Collapse
Affiliation(s)
| | - Tobin R Sosnick
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.,Institute for Biophysical Dynamics, Computation Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Stephen C Meredith
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.,Department of Pathology, Department of Neurology, The University of Chicago, Chicago, IL, 60637, USA
| | - Raphael C Lee
- Department of Surgery, The University of Chicago, Chicago, IL, 60637, USA.,Department of Organismal Biology and Anatomy, Institute for Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
13
|
Ji C, Sun M, Yu J, Wang Y, Zheng Y, Wang H, Niu R. Trehalose and Tween 80 Improve the Stability of Marine Lysozyme During Freeze-Drying. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2009.10817668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
14
|
Liu X, Liu Y, Zhang Z, Huang F, Tao Q, Ma R, An Y, Shi L. Temperature-Responsive Mixed-Shell Polymeric Micelles for the Refolding of Thermally Denatured Proteins. Chemistry 2013; 19:7437-42. [DOI: 10.1002/chem.201300634] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Indexed: 11/08/2022]
|
15
|
Gautam S, Dubey P, Singh P, Kesavardhana S, Varadarajan R, Gupta MN. Smart polymer mediated purification and recovery of active proteins from inclusion bodies. J Chromatogr A 2012; 1235:10-25. [DOI: 10.1016/j.chroma.2012.02.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/16/2012] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
|
16
|
Effect of Poloxamer 188 on deepening of deep second-degree burn wounds in the early stage. Burns 2011; 38:95-101. [PMID: 22079539 DOI: 10.1016/j.burns.2010.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 06/02/2010] [Accepted: 06/30/2010] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To discuss the effect of Poloxamer 188 (P188) on deepening of deep second-degree burn wounds in the early stage after burn. METHODS We divided Wistar rats with deep second-degree burn wounds on the backs thereof into two groups, then intravenously injected P188 for the treatment group and intravenously injecting physiological saline for the control group, detecting the activity of Na(+)-K(+)-adenosine triphosphatase (Na(+)-K(+)-ATPase), myeloperoxidase (MPO) and the content of malonaldehyde (MDA) and succinic dehydrogenase (SDH) in the burn wound, and showing the degree of necrosis in the wound by haematoxylin-eosin (HE) and proliferating cell nuclear antigen (PCNA) immunohistochemical staining. RESULTS In the control group and treatment group, the activity of SDH and Na(+)-K(+)-ATPase dropped to the lowest point 24 h after the burn took place, and then increased gradually, but was still far lower than the normal level at the furthest time point. At 24 h after burn, activity of SDH and Na(+)-K(+)-ATPase in the treatment group was higher than that of the control group (P<0.05); the activity of MPO of the control group reached the highest point at 24 h while that of MPO of the treatment group reached the highest point after 48 h; later, that of MPO of both groups decreased, but was still higher than the normal level. Compared with the highest values of the activity of MPO of both groups, that of the control group was higher than that of the treatment group (p<0.05); the contents of MDA of both groups kept increasing after the burn; 72 h later, that of the control group was higher than that of the treatment group (p<0.05). HE and PCNA staining showed progressive damage of the wound in the treatment group, which was decreased with treatment, particularly at the early stages. CONCLUSION Systemic application of P188 on deep second-degree burn wounds at the early stage may alleviate wound deepening, whose mechanism may be related to timely sealing up the damaged cell membrane and inhibiting the inflammatory reaction.
Collapse
|
17
|
Mallamace F, Corsaro C, Mallamace D, Baglioni P, Stanley HE, Chen SH. A Possible Role of Water in the Protein Folding Process. J Phys Chem B 2011; 115:14280-94. [DOI: 10.1021/jp205285t] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Francesco Mallamace
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Dipartimento di Fisica and CNISM, Università di Messina, I-98166 Messina, Italy
| | - Carmelo Corsaro
- Dipartimento di Fisica and CNISM, Università di Messina, I-98166 Messina, Italy
- Fondazione F. Frisone, Via Etnea 73, Catania I-95125, Italy
| | - Domenico Mallamace
- Dipartimento di Scienze degli Alimenti e dellˈAmbiente “G. Stagno DˈAlcontres”, Università di Messina, I-98166 Messina, Italy
| | - Piero Baglioni
- Department of Chemistry and CSGI, University of Florence, Florence 50019, Italy
| | - H. Eugene Stanley
- Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, United States
| | - Sow-Hsin Chen
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
18
|
Paillard-Giteau A, Tran V, Thomas O, Garric X, Coudane J, Marchal S, Chourpa I, Benoît J, Montero-Menei C, Venier-Julienne M. Effect of various additives and polymers on lysozyme release from PLGA microspheres prepared by an s/o/w emulsion technique. Eur J Pharm Biopharm 2010; 75:128-36. [DOI: 10.1016/j.ejpb.2010.03.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 03/01/2010] [Accepted: 03/06/2010] [Indexed: 10/19/2022]
|
19
|
Zhang Y, Lagi M, Liu D, Mallamace F, Fratini E, Baglioni P, Mamontov E, Hagen M, Chen SH. Observation of high-temperature dynamic crossover in protein hydration water and its relation to reversible denaturation of lysozyme. J Chem Phys 2009; 130:135101. [DOI: 10.1063/1.3081137] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
20
|
Abstract
Burn injury leads to a direct damaging effect on cells, disrupting the assembly of the cell and denaturing proteins. Although modern medicine has significantly improved the survival of burn victims, a method to treat injury at the cellular level is presented. In particular, the cell membrane is most vulnerable to heat injury. Copolymer surfactants have been shown to repair the cell membrane, and agents such as poloxamer 188 have demonstrated this effect in numerous studies. Furthermore, copolymer surfactants have been shown to act as molecular chaperones, allowing denatured proteins to regain their native confirmation. Pharmaceutical agents may be developed to repair the cell membrane and refold proteins, mimicking endogenous repair mechanisms and salvaging cells that would otherwise be lost.
Collapse
|
21
|
Lee B, Firestone MA. Electron Density Mapping of Triblock Copolymers Associated with Model Biomembranes: Insights into Conformational States and Effect on Bilayer Structure. Biomacromolecules 2008; 9:1541-50. [DOI: 10.1021/bm701348r] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Byeongdu Lee
- X-ray Science and Materials Science Divisions, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439
| | - Millicent A. Firestone
- X-ray Science and Materials Science Divisions, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439
| |
Collapse
|
22
|
Taluja A, Bae YH. Role of a novel excipient poly(ethylene glycol)-b-poly(L-histidine) in retention of physical stability of insulin at aqueous/organic interface. Mol Pharm 2007; 4:561-70. [PMID: 17439239 PMCID: PMC2562025 DOI: 10.1021/mp060120z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of this study was to investigate whether a cationic polyelectrolyte, poly(ethylene glycol)-b-poly(L-histidine) diblock copolymer (PEG-polyHis), can stabilize insulin, at the aqueous/methylene chloride interface formed during the microencapsulation process. Insulin aggregation at this interface was monitored spectrophotometrically at 276 nm. The effects of protein concentration, pH of the aqueous medium, and the presence of poly(lactic-co-glycolic acid) (PLGA) in methylene chloride (MC) on insulin aggregation were observed. For the 2.0 mg/mL insulin solutions in phosphate buffer (PB), the effect of addition of Pluronic F-127 as a positive control and addition of PEG-polyHis as a novel excipient in PB was also evaluated at various insulin/polymeric excipient weight ratios. The conformation of insulin protected by PEG-polyHis and recovered after interfacial exposure was evaluated via circular dichroism (CD) spectroscopy. Greater loss in soluble insulin was observed with increasing insulin concentrations. pH 6.0 was selected for optimal ionic interactions between insulin and PEG-polyHis based on zeta potential and particle size studies. pH 4.5 and 7.4 (no ionic complexation between insulin and PEG-polyHis) were selected as controls to compare the stabilization effect of PEG-polyHis with that at pH 6.0. Incubation of PEG-polyHis with insulin at pH 6.0 drastically reduced protein aggregation, even in the presence of PLGA. PEG-polyHis and F-127 reduced insulin aggregation in noncomplexing pH conditions pointing to the role played by PEG in modulation of insulin adsorption at the interface. Far-UV (205-250 nm) CD study revealed negligible qualitative effects on soluble insulin's secondary structure after interfacial exposure. RP-HPLC and size-exclusion HPLC showed no deamidation of insulin or formation of soluble high molecular weight transformation products respectively. MALDI-TOF mass spectrometry confirmed the results from chromatographic procedures. Radioimmunoassay carried out on select samples showed that recovered soluble insulin had retained its immunoreactivity. An experimental method to simulate interfacial denaturation of proteins was designed for assessment of protein stability at the interface and screening for novel protein stabilizers. Understanding and manipulation of such polyelectrolyte-insulin complexation will likely play a role in insulin controlled delivery via microsphere formulation(s).
Collapse
Affiliation(s)
- Ajay Taluja
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84108, USA
| | | |
Collapse
|