1
|
Comparison between Occlusal Errors of Single Posterior Crowns Adjusted Using Patient Specific Motion or Conventional Methods. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10249140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recently, digital technology has been used in dentistry to enhance accuracy and to reduce operative time. Due to advances in digital technology, the integration of individual mandibular motion into the mapping of the occlusal surface is being attempted. The Patient Specific Motion (PSM) is one such method. However, it is not clear whether the occlusal design that is adjusted using PSM could clinically show reduced occlusal error compared to conventional methods based on static occlusion. In this clinical comparative study including fifteen patients with a single posterior zirconia crown treatment, the occlusal surface after a clinical adjustment was compared to no adjustment (NA; design based on static occlusion), PSM (adjusted using PSM), and adjustment using a semi-adjustable articulator (SA) for the assessment of occlusal error. The root mean square (RMS; μm), average deviation value (±AVG; μm), and proportion inside the tolerance (in Tol; %) were calculated using the entire, subdivided occlusal surface and the out of tolerance area. Using a one-way ANOVA, the RMS and +AVG from the out of tolerance area showed a statistical difference between PSM (202.3 ± 39.8 for RMS, 173.1 ± 31.3 for +AVG) and NA (257.0 ± 73.9 for RMS, 210.9 ± 48.6 for +AVG). For the entire and subdivided occlusal surfaces, there were no significant differences. In the color-coded map analysis, PSM demonstrated a reduced occlusal error compared to NA. In conclusion, adjustment occlusal design using PSM is a simple and effective method for reducing occlusal errors that are difficult to identify in a current computer-aided design (CAD) workflow with static occlusion.
Collapse
|
2
|
Saini H, Ackland DC, Gong L, Cheng, Röhrle O. Occlusal load modelling significantly impacts the predicted tooth stress response during biting: a simulation study. Comput Methods Biomech Biomed Engin 2020; 23:261-270. [PMID: 31965827 DOI: 10.1080/10255842.2020.1711886] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Computational models of the masticatory system can provide estimates of occlusal loading during (static) biting or (dynamic) chewing and therefore can be used to evaluate and optimize functional performance of prosthodontic devices and guide dental surgery planning. The modelling assumptions, however, need to be chosen carefully in order to obtain meaningful predictions. The objectives of this study were two-fold: (i) develop a computational model to calculate the stress response of the first molar during biting of a rubber sample and (ii) evaluate the influence of different occlusal load models on the stress response of dental structures. A three-dimensional finite element model was developed comprising the mandible, first molar, associated dental structures, and the articular fossa and discs. Simulations of a maximum force bite on a rubber sample were performed by applying muscle forces as boundary conditions on the mandible and computing the contact between the rubber and molars (GS case). The molar occlusal force was then modelled as a single point force (CF1 case), four point forces (CF2 case), and as a sphere compressing against the occlusal surface (SL case). The peak enamel stress for the GS case was 110 MPa and 677 MPa, 270 MPa and 305 MPa for the CF1, CF2 and SL cases, respectively. Peak dentin stress for the GS case was 44 MPa and 46 MPa, 50 MPa and 63 MPa for the CF1, CF2 and SL cases, respectively. Furthermore, the enamel stress distribution was also strongly correlated to the occlusal load model. The way in which occlusal load is modelled has a substantial influence on the stress response of enamel during biting, but has relatively little impact on the behavior of dentin. The use of point forces or sphere contact to model occlusal loading during mastication overestimates enamel stress magnitude and also influences enamel stress distribution.
Collapse
Affiliation(s)
- Harnoor Saini
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| | - David C Ackland
- Department of Biomedical Engineering, University of Melbourne, Victoria, Australia
| | - Lulu Gong
- School of Life Sciences and Technology, Tongji University, Shanghai, P.R. China
| | - Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Riddet Institute, Palmerston North, New Zealand
| | - Oliver Röhrle
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center of Simulation Science (SC SimTech), University of Stuttgart, Stuttgart, Germany.,Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA, Stuttgart, Germany
| |
Collapse
|
3
|
Röhrle O, Saini H, Lee PVS, Ackland DC. A novel computational method to determine subject-specific bite force and occlusal loading during mastication. Comput Methods Biomech Biomed Engin 2018; 21:453-460. [PMID: 30010417 DOI: 10.1080/10255842.2018.1479744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The evaluation of three-dimensional occlusal loading during biting and chewing may assist in development of new dental materials, in designing effective and long-lasting restorations such as crowns and bridges, and for evaluating functional performance of prosthodontic components such as dental and/or maxillofacial implants. At present, little is known about the dynamic force and pressure distributions at the occlusal surface during mastication, as these quantities cannot be measured directly. The aim of this study was to evaluate subject-specific occlusal loading forces during mastication using accurate jaw motion measurements. Motion data was obtained from experiments in which an individual performed maximal effort dynamic chewing cycles on a rubber sample with known mechanical properties. A finite element model simulation of one recorded chewing cycle was then performed to evaluate the deformation of the rubber. This was achieved by imposing the measured jaw motions on a three-dimensional geometric surface model of the subject's dental impressions. Based on the rubber's deformation and its material behaviour, the simulation was used to compute the resulting stresses within the rubber as well as the contact pressures and forces on the occlusal surfaces. An advantage of this novel modelling approach is that dynamic occlusal pressure maps and biting forces may be predicted with high accuracy and resolution at each time step throughout the chewing cycle. Depending on the motion capture technique and the speed of simulation, the methodology may be automated in such a way that it can be performed chair-side. The present study demonstrates a novel modelling methodology for evaluating dynamic occlusal loading during biting or chewing.
Collapse
Affiliation(s)
- Oliver Röhrle
- a Institute of Applied Mechanics (Civil Engineering) , University of Stuttgart , Stuttgart , Germany.,b Cluster of Excellence for Simulation Technology (SimTech) , Stuttgart , Germany.,c Biomechatronic Systems , Fraunhofer Institute for Manufacturing Engineering and Automation IPA , Stuttgart , Germany
| | - Harnoor Saini
- a Institute of Applied Mechanics (Civil Engineering) , University of Stuttgart , Stuttgart , Germany
| | - Peter V S Lee
- d Department of Biomedical Engineering , The University of Melbourne , Parkville , Australia
| | - David C Ackland
- d Department of Biomedical Engineering , The University of Melbourne , Parkville , Australia
| |
Collapse
|
4
|
Occlusal loading during biting from an experimental and simulation point of view. Dent Mater 2017; 34:58-68. [PMID: 29017762 DOI: 10.1016/j.dental.2017.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/15/2017] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Occlusal loading during clenching and biting is achieved by the action of the masticatory system, and forms the basis for the evaluation of the functional performance of prosthodontic and maxillofacial components. This review provides an overview of (i) current bite force measurement techniques and their limitations and (ii) the use of computational modelling to predict bite force. A brief simulation study highlighting the challenges of current computational dental models is also presented. METHODS Appropriate studies were used to highlight the development and current bite force measurement methodologies and state-of-the-art simulation for computing bite forces using biomechanical models. RESULTS While a number of strategies have been developed to measure occlusal forces in three-dimensions, the use of strain-gauges, piezo-electric sensors and pressure sheets remain the most widespread. In addition to experimental-based measurement techniques, bite force may be also estimated using computational models of the masticatory system. Simulations of different bite force models clearly show that the use of three-dimensional force measurements enriches the evaluation of masticatory functional performance. SIGNIFICANCE Hence, combining computational modelling with three-dimensional force measurement techniques can significantly improve the evaluation of masticatory system and the functional performance of prosthodontic components.
Collapse
|
5
|
Chong SY, Dorow B, Ramasamy E, Dennerlein F, Röehrle O. The use of collision detection to infer multi-camera calibration quality. Front Bioeng Biotechnol 2015; 3:65. [PMID: 26029691 PMCID: PMC4428221 DOI: 10.3389/fbioe.2015.00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/27/2015] [Indexed: 11/13/2022] Open
Abstract
Optical motion capture systems are widely used in sports and medicine. The performance of these systems depends on, amongst other factors, the quality of the camera calibration process. This study proposes a technique to assess the accuracy of the extrinsic camera parameters, as estimated during calibration. This method relies on the fact that solid objects in the real world cannot possess a gap in between, nor interpenetrate, when in contact with each other. In our study, we used motion capture to track successive collisions of two solid moving objects. The motion of solid objects was simulated based on trajectories measured by a multi-camera system and geometric information acquired from computed tomography. The simulations were then used to determine the amount of overlap or gap between them. This technique also takes into account errors resulting from markers moving close to one another, and better replicates actual movements during motion capture. We propose that this technique of successively colliding two solid moving objects may provide a means of measuring calibration accuracy.
Collapse
Affiliation(s)
- Sook-Yee Chong
- SimTech Research Group on Continuum Biomechanics and Mechanobiology, Institute of Applied Mechanics (CE), University of Stuttgart , Stuttgart , Germany
| | - Beate Dorow
- Biomechatronic Systems, Fraunhofer IPA , Stuttgart , Germany
| | | | | | - Oliver Röehrle
- SimTech Research Group on Continuum Biomechanics and Mechanobiology, Institute of Applied Mechanics (CE), University of Stuttgart , Stuttgart , Germany ; Biomechatronic Systems, Fraunhofer IPA , Stuttgart , Germany
| |
Collapse
|
6
|
Model-based identification of motion sensor placement for tracking retraction and elongation of the tongue. Biomech Model Mechanobiol 2012; 12:383-99. [DOI: 10.1007/s10237-012-0407-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 05/09/2012] [Indexed: 10/28/2022]
|
7
|
Iwase Y, Saitoh I, Okamoto A, Nakakura-Ohshima K, Inada E, Yamada C, Takemoto Y, Yamasaki Y, Hayasaki H. Do occlusal contact areas of maximum closing position during gum chewing and intercuspal position coincide? Arch Oral Biol 2012; 56:1616-23. [PMID: 21855855 DOI: 10.1016/j.archoralbio.2011.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 07/01/2011] [Accepted: 07/11/2011] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Occlusal contact area (OCA) is most important during the occlusal phase when food particles are being pulverized. OCA is most easily measured statically at the maximum intercuspal position (ICP). However, the assumption of coincidence between dynamic maximum closing position (MCP) and statically determined ICP has not been previously tested. The purpose of this study is to introduce a method of quantifying OCA of all teeth during dynamic mastication to determine whether the OCA at the dynamic MCP during chewing is similar to the statically determined maximum possible OCA. DESIGN Thirteen healthy females participated in this study. Morphologic tooth shape data were measured from dental models using an automatic 3D digitizer. Mandibular movement during gum chewing was recorded using an optoelectronic analysis system with 6 degrees of freedom, and ten cycles were selected for analysis. The dynamic OCA was estimated with a measurement system combining 3D tracking of mandibular movements with 3D digitization of tooth shape. RESULTS The estimated mean 3D difference between the incisor position at ICP and MCP was 0.129 mm. At the dynamic MCP, the maximum OCA was 98.5% (68.42 mm(2)) of the maximum possible contact area in the static ICP (69.46 mm(2)). Both between-subject and within-subject variation were least at the dynamic MCP. CONCLUSION The maximum OCA during chewing is nearly identical to statically determined maximum possible OCA.
Collapse
Affiliation(s)
- Yoko Iwase
- Department of Dental Anesthesia, Anesthesia and Critical Care Center, Kagoshima University Medical and Dental Hospital, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hannam AG. Current computational modelling trends in craniomandibular biomechanics and their clinical implications. J Oral Rehabil 2010; 38:217-34. [PMID: 20819138 DOI: 10.1111/j.1365-2842.2010.02149.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Computational models of interactions in the craniomandibular apparatus are used with increasing frequency to study biomechanics in normal and abnormal masticatory systems. Methods and assumptions in these models can be difficult to assess by those unfamiliar with current practices in this field; health professionals are often faced with evaluating the appropriateness, validity and significance of models which are perhaps more familiar to the engineering community. This selective review offers a foundation for assessing the strength and implications of a craniomandibular modelling study. It explores different models used in general science and engineering and focuses on current best practices in biomechanics. The problem of validation is considered at some length, because this is not always fully realisable in living subjects. Rigid-body, finite element and combined approaches are discussed, with examples of their application to basic and clinically relevant problems. Some advanced software platforms currently available for modelling craniomandibular systems are mentioned. Recent studies of the face, masticatory muscles, tongue, craniomandibular skeleton, temporomandibular joint, dentition and dental implants are reviewed, and the significance of non-linear and non-isotropic material properties is emphasised. The unique challenges in clinical application are discussed, and the review concludes by posing some questions which one might reasonably expect to find answered in plausible modelling studies of the masticatory apparatus.
Collapse
Affiliation(s)
- A G Hannam
- Faculty of Dentistry, Department of Oral Health Sciences, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Donovan TE, Becker W, Cagna DR, Hilton TJ, Rouse J. Annual review of selected scientific literature: Report of the Committee on Scientific Investigation of the American Academy of Restorative Dentistry. J Prosthet Dent 2010; 104:13-47. [DOI: 10.1016/s0022-3913(10)60087-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|