1
|
Agarwal H, Bynum RC, Saleh N, Harris D, MacCuaig WM, Kim V, Sanderson EJ, Dennahy IS, Singh R, Behkam B, Gomez-Gutierrez JG, Jain A, Edil BH, McNally LR. Theranostic nanoparticles for detection and treatment of pancreatic cancer. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1983. [PMID: 39140128 PMCID: PMC11328968 DOI: 10.1002/wnan.1983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most recalcitrant cancers due to its late diagnosis, poor therapeutic response, and highly heterogeneous microenvironment. Nanotechnology has the potential to overcome some of the challenges to improve diagnostics and tumor-specific drug delivery but they have not been plausibly viable in clinical settings. The review focuses on active targeting strategies to enhance pancreatic tumor-specific uptake for nanoparticles. Additionally, this review highlights using actively targeted liposomes, micelles, gold nanoparticles, silica nanoparticles, and iron oxide nanoparticles to improve pancreatic tumor targeting. Active targeting of nanoparticles toward either differentially expressed receptors or PDAC tumor microenvironment (TME) using peptides, antibodies, small molecules, polysaccharides, and hormones has been presented. We focus on microenvironment-based hallmarks of PDAC and the potential for actively targeted nanoparticles to overcome the challenges presented in PDAC. It describes the use of nanoparticles as contrast agents for improved diagnosis and the delivery of chemotherapeutic agents that target various aspects within the TME of PDAC. Additionally, we review emerging nano-contrast agents detected using imaging-based technologies and the role of nanoparticles in energy-based treatments of PDAC. This article is categorized under: Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Happy Agarwal
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Ryan C Bynum
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Nada Saleh
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Danielle Harris
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - William M MacCuaig
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Vung Kim
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Emma J Sanderson
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Isabel S Dennahy
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Rohit Singh
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Virginia, USA
| | | | - Ajay Jain
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Barish H Edil
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Lacey R McNally
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| |
Collapse
|
2
|
Ma X, Zhao T, Ren X, Lin H, He P. Recent Progress in Polyion Complex Nanoparticles with Enhanced Stability for Drug Delivery. Polymers (Basel) 2024; 16:1871. [PMID: 39000726 PMCID: PMC11244007 DOI: 10.3390/polym16131871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
Polyion complex (PIC) nanoparticles, including PIC micelles and PICsomes, are typically composed of poly(ethylene glycol) block copolymers coupled with oppositely charged polyelectrolytes or therapeutic agents via electrostatic interaction. Due to a simple and rapid preparation process with high drug-loading efficiency, PIC nanoparticles are beneficial to maintaining the chemical integrity and high biological activity of the loaded drugs. However, the stability of PIC nanoparticles can be disrupted in high-ionic-strength solutions because electrostatic interaction is the DRIVING force; these disruptions can thus impair drug delivery. Herein, we summarize the advances in the use of PIC nanoparticles for delivery of charged drugs, focusing on the different chemical and physical strategies employed to enhance their stability, including enhancing the charge density, crosslinking, increasing hydrophobic interactions, forming hydrogen bonds, and the development of PIC-based gels. In particular, we describe the use of PIC nanoparticles to load peptide antibiotics targeting antibiotic-resistant and biofilm-related diseases and the use of nanoparticles that load chemotherapeutics and gaseous donors for cancer treatment. Furthermore, the application of PIC nanoparticles as magnetic resonance imaging contrast agents is summarized for the first time. Therefore, this review is of great significance for advances in the use of polymeric nanoparticles for functional drug delivery.
Collapse
Affiliation(s)
- Xinlin Ma
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Tianyi Zhao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiaoyue Ren
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Hui Lin
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Pan He
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| |
Collapse
|
3
|
Trimaille T, Verrier B. Copolymer Micelles: A Focus on Recent Advances for Stimulus-Responsive Delivery of Proteins and Peptides. Pharmaceutics 2023; 15:2481. [PMID: 37896241 PMCID: PMC10609739 DOI: 10.3390/pharmaceutics15102481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Historically used for the delivery of hydrophobic drugs through core encapsulation, amphiphilic copolymer micelles have also more recently appeared as potent nano-systems to deliver protein and peptide therapeutics. In addition to ease and reproducibility of preparation, micelles are chemically versatile as hydrophobic/hydrophilic segments can be tuned to afford protein immobilization through different approaches, including non-covalent interactions (e.g., electrostatic, hydrophobic) and covalent conjugation, while generally maintaining protein biological activity. Similar to many other drugs, protein/peptide delivery is increasingly focused on stimuli-responsive nano-systems able to afford triggered and controlled release in time and space, thereby improving therapeutic efficacy and limiting side effects. This short review discusses advances in the design of such micelles over the past decade, with an emphasis on stimuli-responsive properties for optimized protein/peptide delivery.
Collapse
Affiliation(s)
- Thomas Trimaille
- Ingénierie des Matériaux Polymères, Univ Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, CEDEX, 69622 Villeurbanne, France
| | - Bernard Verrier
- Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, Univ Lyon, CNRS, Université Claude Bernard Lyon 1, UMR 5305, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France;
| |
Collapse
|
4
|
Gagliardi M, Vincenzi A, Baroncelli L, Cecchini M. Stabilized Reversed Polymeric Micelles as Nanovector for Hydrophilic Compounds. Polymers (Basel) 2023; 15:946. [PMID: 36850229 PMCID: PMC9966941 DOI: 10.3390/polym15040946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Small hydrophilic drugs are widely used for systemic administration, but they suffer from poor absorption and fast clearance. Their nanoencapsulation can improve biodistribution, targeted delivery, and pharmaceutical efficacy. Hydrophilics are effectively encapsulated in compartmented particles, such as liposomes or extracellular vesicles, which are biocompatible but poorly customizable. Polymeric vectors can form compartmental structures, also being functionalizable. Here, we report a system composed of polymeric stabilized reversed micelles for hydrophilic drugs encapsulation. We optimized the preparation procedure, and calculated the critical micellar concentration. Then, we developed a strategy for stabilization that improves micelle stability upon dilution. We tested the drug loading and delivery capabilities with creatine as a drug molecule. Prepared stabilized reversed micelles had a size of around 130 nm and a negative z-potential around -16 mV, making them functional as a drug carrier. The creatine cargo increased micelle size and depended on the loading conditions. The higher amount of loaded creatine was around 60 μg/mg of particles. Delivery tests indicated full release within three days in micelles with the lower cargo, while higher loadings can provide a sustained release for longer times. Obtained results are interesting and encouraging to test the same system with different drug cargoes.
Collapse
Affiliation(s)
- Mariacristina Gagliardi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 56127 Pisa, Italy
| | - Agnese Vincenzi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 56127 Pisa, Italy
| | - Laura Baroncelli
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128 Calambrone, Italy
| | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 56127 Pisa, Italy
| |
Collapse
|
5
|
Weiss AM, Hossainy S, Rowan SJ, Hubbell JA, Esser-Kahn AP. Immunostimulatory Polymers as Adjuvants, Immunotherapies, and Delivery Systems. Macromolecules 2022; 55:6913-6937. [PMID: 36034324 PMCID: PMC9404695 DOI: 10.1021/acs.macromol.2c00854] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/16/2022] [Indexed: 12/14/2022]
Abstract
![]()
Activating innate immunity in a controlled manner is
necessary
for the development of next-generation therapeutics. Adjuvants, or
molecules that modulate the immune response, are critical components
of vaccines and immunotherapies. While small molecules and biologics
dominate the adjuvant market, emerging evidence supports the use of
immunostimulatory polymers in therapeutics. Such polymers can stabilize
and deliver cargo while stimulating the immune system by functioning
as pattern recognition receptor (PRR) agonists. At the same time,
in designing polymers that engage the immune system, it is important
to consider any unintended initiation of an immune response that results
in adverse immune-related events. Here, we highlight biologically
derived and synthetic polymer scaffolds, as well as polymer–adjuvant
systems and stimuli-responsive polymers loaded with adjuvants, that
can invoke an immune response. We present synthetic considerations
for the design of such immunostimulatory polymers, outline methods
to target their delivery, and discuss their application in therapeutics.
Finally, we conclude with our opinions on the design of next-generation
immunostimulatory polymers, new applications of immunostimulatory
polymers, and the development of improved preclinical immunocompatibility
tests for new polymers.
Collapse
Affiliation(s)
- Adam M. Weiss
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago 5735 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Samir Hossainy
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Stuart J. Rowan
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago 5735 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Jeffrey A. Hubbell
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
Zheng M, Pan M, Zhang W, Lin H, Wu S, Lu C, Tang S, Liu D, Cai J. Poly(α-l-lysine)-based nanomaterials for versatile biomedical applications: Current advances and perspectives. Bioact Mater 2021; 6:1878-1909. [PMID: 33364529 PMCID: PMC7744653 DOI: 10.1016/j.bioactmat.2020.12.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/05/2023] Open
Abstract
Poly(α-l-lysine) (PLL) is a class of water-soluble, cationic biopolymer composed of α-l-lysine structural units. The previous decade witnessed tremendous progress in the synthesis and biomedical applications of PLL and its composites. PLL-based polymers and copolymers, till date, have been extensively explored in the contexts such as antibacterial agents, gene/drug/protein delivery systems, bio-sensing, bio-imaging, and tissue engineering. This review aims to summarize the recent advances in PLL-based nanomaterials in these biomedical fields over the last decade. The review first describes the synthesis of PLL and its derivatives, followed by the main text of their recent biomedical applications and translational studies. Finally, the challenges and perspectives of PLL-based nanomaterials in biomedical fields are addressed.
Collapse
Affiliation(s)
- Maochao Zheng
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Miao Pan
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Wancong Zhang
- The Second Affiliated Hospital of Shantou University Medical College, 69 Dongxiabei Road, Shantou, 515041, China
| | - Huanchang Lin
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Shenlang Wu
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Shijie Tang
- The Second Affiliated Hospital of Shantou University Medical College, 69 Dongxiabei Road, Shantou, 515041, China
| | - Daojun Liu
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| |
Collapse
|
7
|
Sokolov AV, Limareva LV, Iliasov PV, Gribkova OV, Sustretov AS. Methods of Encapsulation of Biomacromolecules and Living Cells. Prospects of Using Metal–Organic Frameworks. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [PMCID: PMC8141827 DOI: 10.1134/s1070428021040011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The review discusses different methods of encapsulation and biomineralization of macromolecules and living cells. Main advantages and disadvantages of most commonly used carriers, matrices, and materials for immobilization of proteins, enzymes, nucleic acids, and living cells are briefly surveyed. Examples of delivery vehicles for multifunctional encapsulation of protein-like substances are presented. Particular attention is paid to prospects of using metal–organic frameworks in medicine and biotechnology.
Collapse
Affiliation(s)
- A. V. Sokolov
- Institute of Experimental Medicine and Biotechnologies, Samara State Medical University, Ministry of Health of the Russian Federation, 443099 Samara, Russia
| | - L. V. Limareva
- Institute of Experimental Medicine and Biotechnologies, Samara State Medical University, Ministry of Health of the Russian Federation, 443099 Samara, Russia
| | - P. V. Iliasov
- Institute of Experimental Medicine and Biotechnologies, Samara State Medical University, Ministry of Health of the Russian Federation, 443099 Samara, Russia
| | - O. V. Gribkova
- Institute of Experimental Medicine and Biotechnologies, Samara State Medical University, Ministry of Health of the Russian Federation, 443099 Samara, Russia
| | - A. S. Sustretov
- Institute of Experimental Medicine and Biotechnologies, Samara State Medical University, Ministry of Health of the Russian Federation, 443099 Samara, Russia
| |
Collapse
|
8
|
Magana JR, Sproncken CCM, Voets IK. On Complex Coacervate Core Micelles: Structure-Function Perspectives. Polymers (Basel) 2020; 12:E1953. [PMID: 32872312 PMCID: PMC7565781 DOI: 10.3390/polym12091953] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022] Open
Abstract
The co-assembly of ionic-neutral block copolymers with oppositely charged species produces nanometric colloidal complexes, known, among other names, as complex coacervates core micelles (C3Ms). C3Ms are of widespread interest in nanomedicine for controlled delivery and release, whilst research activity into other application areas, such as gelation, catalysis, nanoparticle synthesis, and sensing, is increasing. In this review, we discuss recent studies on the functional roles that C3Ms can fulfil in these and other fields, focusing on emerging structure-function relations and remaining knowledge gaps.
Collapse
Affiliation(s)
| | | | - Ilja K. Voets
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (J.R.M.); (C.C.M.S.)
| |
Collapse
|
9
|
Wang Y, Cheng YT, Cao C, Oliver JD, Stenzel MH, Chapman R. Polyion Complex-Templated Synthesis of Cross-Linked Single-Enzyme Nanoparticles. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yiping Wang
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Yen Theng Cheng
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
- Australian Centre for Nanotechnology (ACN), UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Cheng Cao
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - James D. Oliver
- Australian Centre for Research on Separation Science (ACROSS), School of Science, WSU, Parramatta, New South Wales 2150, Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Robert Chapman
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
- Australian Centre for Nanotechnology (ACN), UNSW Sydney, Kensington, New South Wales 2052, Australia
| |
Collapse
|
10
|
Li Y, Ayala-Orozco C, Rauta PR, Krishnan S. The application of nanotechnology in enhancing immunotherapy for cancer treatment: current effects and perspective. NANOSCALE 2019; 11:17157-17178. [PMID: 31531445 PMCID: PMC6778734 DOI: 10.1039/c9nr05371a] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cancer immunotherapy is emerging as a promising treatment modality that suppresses and eliminates tumors by re-activating and maintaining the tumor-immune cycle, and further enhancing the body's anti-tumor immune response. Despite the impressive therapeutic potential of immunotherapy approaches such as immune checkpoint inhibitors and tumor vaccines in pre-clinical and clinical applications, the effective response is limited by insufficient accumulation in tumor tissues and severe side-effects. Recent years have witnessed the rise of nanotechnology as a solution to improve these technical weaknesses due to its inherent biophysical properties and multifunctional modifying potential. In this review, we summarized and discussed the current status of nanoparticle-enhanced cancer immunotherapy strategies, including intensified delivery of tumor vaccines and immune adjuvants, immune checkpoint inhibitor vehicles, targeting capacity to tumor-draining lymph nodes and immune cells, triggered releasing and regulating specific tumor microenvironments, and adoptive cell therapy enhancement effects.
Collapse
Affiliation(s)
- Yongjiang Li
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China. and Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Ciceron Ayala-Orozco
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Pradipta Ranjan Rauta
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Sunil Krishnan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. and Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
11
|
|
12
|
Azadian E, Arjmand B, Khodaii Z, Ardeshirylajimi A. A comprehensive overview on utilizing electromagnetic fields in bone regenerative medicine. Electromagn Biol Med 2019; 38:1-20. [PMID: 30661411 DOI: 10.1080/15368378.2019.1567527] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stem cells are one of the most important sources to develope a new strategy for repairing bone lesions through tissue engineering. Osteogenic differentiation of stem cells can be affected by various factors such as biological, chemical, physiological, and physical ones. The application of ELF-EMFs has been the subject of many research in bone tissue engineering and evidence suggests that this exogenous physical stimulus can promote osteogenic differentiation in several types of cells. The purpose of this paper is to review the current knowledge on the effects of EMFs on stem cells in bone tissue engineering studies. We recapitulated and analyzed 39 articles that were focused on the application of EMFs for bone tissue engineering purposes. We tabulated scattered information from these articles for easy use and tried to provide an overview of conducted research and identify the knowledge gaps in the field.
Collapse
Affiliation(s)
- Esmaeel Azadian
- a Urogenital Stem Cell Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran.,b Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Bahar Arjmand
- a Urogenital Stem Cell Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran.,b Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Zohreh Khodaii
- c Dietary supplements and Probiotics research center , Alborz University of Medical Sciences , Karaj , Iran.,d Department of Biochemistry, Genetics and Nutrition, Faculty of Medicine , Alborz University of Medical Sciences , Karaj , Iran
| | - Abdolreza Ardeshirylajimi
- a Urogenital Stem Cell Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran.,b Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
13
|
Modular core-shell polymeric nanoparticles mimicking viral structures for vaccination. J Control Release 2019; 293:48-62. [DOI: 10.1016/j.jconrel.2018.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/23/2018] [Accepted: 11/04/2018] [Indexed: 12/14/2022]
|
14
|
Chen F, Raveendran R, Cao C, Chapman R, Stenzel MH. Correlation between polymer architecture and polyion complex micelle stability with proteins in spheroid cancer models as seen by light-sheet microscopy. Polym Chem 2019. [DOI: 10.1039/c8py01565a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyion complex (PIC) micelles are frequently used as a means to deliver biologics such as proteins.
Collapse
Affiliation(s)
- Fan Chen
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Radhika Raveendran
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Cheng Cao
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Robert Chapman
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| |
Collapse
|
15
|
Wang K, Yang Y, Xue W, Liu Z. Cell Penetrating Peptide-Based Redox-Sensitive Vaccine Delivery System for Subcutaneous Vaccination. Mol Pharm 2018; 15:975-984. [PMID: 29359945 DOI: 10.1021/acs.molpharmaceut.7b00905] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In immunotherapy, induction of potent cellular immunity by vaccination is essential to treat intracellular infectious diseases and tumors. In this work, we designed a new synthetic peptide carrier, Cys-Trp-Trp-Arg8-Cys-Arg8-Cys-Arg8-Cys, for vaccine delivery by integrating a redox-responsive disulfide bond cross-linking and cell-penetrating peptide arginine octamer. The carrier peptide bound to the antigen protein ovalbumin (OVA) via electrostatic self-assembly to form peptide/OVA nanocomposites. Then, the spontaneous oxidization of the thiols of the cysteine residues induced interpeptide disulfide bond cross-linking to construct denser peptide/OVA condensates. The cell-penetrating peptides incorporated in the carrier peptide could increase antigen uptake by antigen presenting cells. After being internalized by antigen presenting cells, the antigen could be rapidly released in cytoplasm along with degradation of the disulfide bonds by intracellular glutathione, which could promote potent CD8+ T cell immunity. The cross-linked peptide/OVA condensates were used for subcutaneous vaccination. The results showed that the peptide carrier mediated potent antigen-specific immune response by significantly increasing IgG titer; splenocyte proliferation; the secretion level of cytokines INF-γ, IL-12, IL-4, and IL-10; immune memory function, and the activation and maturation of dendritic cells. From the results, the low-molecular weight vaccine-condensing peptide with definite chemical composition could be developed as a novel class of vaccine delivery systems.
Collapse
Affiliation(s)
- Kewei Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering , Jinan University , Guangzhou 510632 , China
| | - Yong Yang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering , Jinan University , Guangzhou 510632 , China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering , Jinan University , Guangzhou 510632 , China
| | - Zonghua Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering , Jinan University , Guangzhou 510632 , China
| |
Collapse
|
16
|
Abstract
Proteins are ubiquitous in life and next to water, they are the most abundant compounds found in human bodies. Proteins have very specific roles in the body and depending on their function, they are for example classified as enzymes, antibodies or transport proteins. Recently, therapeutic proteins have made an impact in the drug market. However, some proteins can be subject to quick hydrolytic degradation or denaturation depending on the environment and therefore require a protective layer. A range of strategies are available to encapsulate and deliver proteins, but techniques based on polyelectrolyte complex formation stand out owing to their ease of formulation. Depending on their isoelectric point, proteins are charged and can condense with oppositely charged polymers. Using block copolymers with a neutral block and a charged block results in the formation of polyion complex (PIC) micelles when mixed with the oppositely charged protein. The neutral block stabilises the charged protein–polymer core, leading to nanoparticles. The types of micelles are also known under the names interpolyelectrolyte complex, complex coacervate core micelles, and block ionomer complexes. In this article, we discuss the formation of PIC micelles and their stability. Strategies to enhance the stability such as supercharging the protein or crosslinking the PIC micelles are discussed.
Collapse
|
17
|
Jiménez-Sánchez G, Terrat C, Verrier B, Gigmes D, Trimaille T. Improving bioassay sensitivity through immobilization of bio-probes onto reactive micelles. Chem Commun (Camb) 2017; 53:8062-8065. [DOI: 10.1039/c7cc02057k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a straightforward approach based on reactive copolymer micelles to improve bioassay sensitivity through enhanced probe accessibility.
Collapse
Affiliation(s)
| | - Céline Terrat
- Université Lyon 1
- CNRS
- UMR 5305
- Biologie Tissulaire et Ingénierie Thérapeutique
- IBCP
| | - Bernard Verrier
- Université Lyon 1
- CNRS
- UMR 5305
- Biologie Tissulaire et Ingénierie Thérapeutique
- IBCP
| | - Didier Gigmes
- Aix Marseille Univ
- CNRS
- Institut de Chimie Radicalaire
- Marseille
- France
| | - Thomas Trimaille
- Aix Marseille Univ
- CNRS
- Institut de Chimie Radicalaire
- Marseille
- France
| |
Collapse
|
18
|
Zhao Y. Surface-Cross-Linked Micelles as Multifunctionalized Organic Nanoparticles for Controlled Release, Light Harvesting, and Catalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5703-13. [PMID: 27181610 PMCID: PMC4907858 DOI: 10.1021/acs.langmuir.6b01162] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/05/2016] [Indexed: 05/30/2023]
Abstract
Surfactant micelles are dynamic entities with a rapid exchange of monomers. By "clicking" tripropargylammonium-containing surfactants with diazide cross-linkers, we obtained surface-cross-linked micelles (SCMs) that could be multifunctionalized for different applications. They triggered membrane fusion through tunable electrostatic interactions with lipid bilayers. Antenna chromophores could be installed on them to create artificial light-harvesting complexes with efficient energy migration among tens to hundreds of chromophores. When cleavable cross-linkers were used, the SCMs could break apart in response to redox or pH signals, ejecting entrapped contents quickly as a result of built-in electrostatic stress. They served as caged surfactants whose surface activity was turned on by environmental stimuli. They crossed cell membranes readily. Encapsulated fluorophores showed enhanced photophysical properties including improved quantum yields and greatly expanded Stokes shifts. Catalytic groups could be installed on the surface or in the interior, covalently attached or physically entrapped. As enzyme mimics, the SCMs enabled rational engineering of the microenvironment around the catalysts to afford activity and selectivity not possible with conventional catalysts.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
19
|
Kumar K, Castaño EJ, Weidner AR, Yildirim A, Goodwin AP. Depolymerizable Poly(O-vinyl carbamate- alt-sulfones) as Customizable Macromolecular Scaffolds for Mucosal Drug Delivery. ACS Macro Lett 2016; 5:636-640. [PMID: 28480130 PMCID: PMC5417698 DOI: 10.1021/acsmacrolett.6b00219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interest in stimulus responsive materials and polymers has grown over the years, having shown great promise in a diverse set of applications. For drug delivery, stimulus-responsive polymers have been shown to encapsulate therapeutic cargo such as small molecule drugs or proteins, deliver them to specific locations in the body, and release them so that they can induce a therapeutic effect in the patient. Most hydrolytically degradable polymers are synthesized via nucleophilic, anionic, or cationic polymerization, which generally requires protection of nucleophilic or protic side chains prior to polymerization. Here, we report the synthesis of novel, alternating copolymers of sulfur dioxide and O-vinyl carbamate monomers that boast excellent functional group tolerance and pH-dependent instability. Alternating copolymers were synthesized containing pendant functionalities such as alcohol, carboxylic acid, ester, and azide without deprotection or post-polymerization modification. The copolymers were then formulated via nanoprecipitation into polymer nanoparticles capable of encapsulating small molecule dyes. The polymer nanoparticles were found to degrade rapidly at pH > 6 and were stable even in highly acidic conditions. Based on this observation, a proof-of-concept study for mucosal delivery was performed in polymer nanoparticles entrapped in a mucus model. At pH 8 the diffusion of encapsulated dye was found to be similar to free dye, while at pH 5 the diffusion coefficient was an order of magnitude lower. Cell viability was retained at 200 µg/mL particles after 24 h incubation. These polymers thus show promise as highly customizable scaffolds for mucosal drug delivery.
Collapse
Affiliation(s)
- Kaushlendra Kumar
- Department of Chemical and Biological Engineering. University of Colorado Boulder. Boulder, CO 80303, USA
| | - Eduard Jimenez Castaño
- Department of Chemical and Biological Engineering. University of Colorado Boulder. Boulder, CO 80303, USA
| | - Andrew R. Weidner
- Department of Chemical and Biological Engineering. University of Colorado Boulder. Boulder, CO 80303, USA
| | - Adem Yildirim
- Department of Chemical and Biological Engineering. University of Colorado Boulder. Boulder, CO 80303, USA
| | - Andrew P. Goodwin
- Department of Chemical and Biological Engineering. University of Colorado Boulder. Boulder, CO 80303, USA
| |
Collapse
|
20
|
New progress and prospects: The application of nanogel in drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 60:560-568. [PMID: 26706564 DOI: 10.1016/j.msec.2015.11.041] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/21/2015] [Accepted: 11/16/2015] [Indexed: 12/29/2022]
Abstract
Nanogel has attracted considerable attention as one of the most versatile drug delivery systems especially for site-specific and/or time-controlled delivery of bioactive agents owing to their combining features of hydrogel and nanoparticle. Physically synthesized nanogels can offer a platform to encapsulate various types of bioactive compounds, particularly hydrophobic drugs and biomacromolecules, but they have poor mechanical stability, whereas nanogels prepared by chemical cross-link have a wider application and larger flexibility. As an ideal drug-delivery carrier, nanogel has excellent drug loading capacity, high stability, biologic consistence and response to a wide variety of environmental stimuli. Nowadays, targeting and response especially multi-response of the nanogel system for drug delivery have become an issue in research. And the application study of nanogels mainly focuses on antitumor agents and proteins. This review focuses on the formation of nanogels (physical and chemical cross-linking) and their release behavior. Recent application of nanogels is also discussed.
Collapse
|
21
|
Richard PU, Duskey JT, Stolarov S, Spulber M, Palivan CG. New concepts to fight oxidative stress: nanosized three-dimensional supramolecular antioxidant assemblies. Expert Opin Drug Deliv 2015; 12:1527-45. [DOI: 10.1517/17425247.2015.1036738] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
Akash MSH, Rehman K, Chen S. Polymeric-based particulate systems for delivery of therapeutic proteins. Pharm Dev Technol 2015; 21:367-78. [DOI: 10.3109/10837450.2014.999785] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Muhammad Sajid Hamid Akash
- Institute of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China,
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan, and
| | - Kanwal Rehman
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan, and
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China
| | - Shuqing Chen
- Institute of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China,
| |
Collapse
|
23
|
Ficheux D, Terrat C, Verrier B, Gigmes D, Trimaille T. “Reactive nanoprecipitation”: a one-step route to functionalized polylactide-based nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra21578a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report here a straightforward nanoprecipitation-based process to prepare functionalized polylactide (PLA) nanoparticles (NPs).
Collapse
Affiliation(s)
- Damien Ficheux
- Université Lyon 1
- CNRS
- LBTI UMR 5305
- 69367 Lyon Cedex 07
- France
| | - Céline Terrat
- Université Lyon 1
- CNRS
- LBTI UMR 5305
- 69367 Lyon Cedex 07
- France
| | | | - Didier Gigmes
- Aix-Marseille Université
- CNRS
- ICR UMR 7273
- 13397 Marseille Cedex 20
- France
| | - Thomas Trimaille
- Aix-Marseille Université
- CNRS
- ICR UMR 7273
- 13397 Marseille Cedex 20
- France
| |
Collapse
|
24
|
Coué G, Engbersen JFJ. Cationic Polymers for Intracellular Delivery of Proteins. CATIONIC POLYMERS IN REGENERATIVE MEDICINE 2014. [DOI: 10.1039/9781782620105-00356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Many therapeutic proteins exert their pharmaceutical action inside the cytoplasm or onto individual organelles inside the cell. Intracellular protein delivery is considered to be the most direct, fastest and safest approach for curing gene-deficiency diseases, enhancing vaccination and triggering cell transdifferentiation processes, within other curative applications. However, several hurdles have to be overcome. For this purpose the use of polymers, with their ease of modification in physical and chemical properties, is attractive in protein drug carriers. They can protect their therapeutic protein cargo from degradation and enhance their bioavailability at targeted sites. In this chapter, potential and currently used polymers for fabrication of protein delivery systems and their applications for intracellular administration are discussed. Special attention is given to the use of cationic polymers for their ability to promote the cellular uptake of therapeutic proteins.
Collapse
Affiliation(s)
- Grégory Coué
- MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente P.O. Box 217, 7500 AE Enschede The Netherlands
| | - Johan F. J. Engbersen
- MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente P.O. Box 217, 7500 AE Enschede The Netherlands
| |
Collapse
|
25
|
Jiménez-Sánchez G, Pavot V, Chane-Haong C, Handké N, Terrat C, Gigmes D, Trimaille T, Verrier B. Preparation and In Vitro Evaluation of Imiquimod Loaded Polylactide-based Micelles as Potential Vaccine Adjuvants. Pharm Res 2014; 32:311-20. [DOI: 10.1007/s11095-014-1465-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
|
26
|
Sun H, Meng F, Cheng R, Deng C, Zhong Z. Reduction-responsive polymeric micelles and vesicles for triggered intracellular drug release. Antioxid Redox Signal 2014; 21:755-67. [PMID: 24279980 PMCID: PMC4098852 DOI: 10.1089/ars.2013.5733] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 11/26/2013] [Indexed: 12/25/2022]
Abstract
SIGNIFICANCE The therapeutic effects of current micellar and vesicular drug formulations are restricted by slow and inefficient drug release at the pathological site. The development of smart polymeric nanocarriers that release drugs upon arriving at the target site has received a tremendous amount of attention for cancer therapy. RECENT ADVANCES Taking advantage of a high reducing potential in the tumor tissues and in particular inside the tumor cells, various reduction-sensitive polymeric micelles and vesicles have been designed and explored for triggered anticancer drug release. These reduction-responsive nanosystems have demonstrated several unique features, such as good stability under physiological conditions, fast response to intracellular reducing environment, triggering drug release right in the cytosol and cell nucleus, and significantly improved antitumor activity, compared to traditional reduction-insensitive counterparts. CRITICAL ISSUES Although reduction-sensitive micelles and polymersomes have accomplished rapid intracellular drug release and enhanced in vitro antitumor effect, their fate inside the cells including the mechanism, site, and rate of reduction reaction remains unclear. Moreover, the systemic fate and performance of reduction-sensitive polymeric drug formulations have to be investigated. FUTURE DIRECTIONS Biophysical studies should be carried out to gain insight into the degradation and drug release behaviors of reduction-responsive nanocarriers inside the tumor cells. Furthermore, novel ligand-decorated reduction-sensitive nanoparticulate drug formulations should be designed and explored for targeted cancer therapy in vivo.
Collapse
Affiliation(s)
- Huanli Sun
- Biomedical Polymers Laboratory, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, People's Republic of China
| | | | | | | | | |
Collapse
|
27
|
Pahovnik D, Grujić M, Cegnar M, Kerč J, Žagar E. Synthesis of alkyl-modified poly(sodium glutamate)s for preparation of polymer-protein nanoparticles in combination withN,N,N-trimethyl chitosan. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- David Pahovnik
- National Institute of Chemistry, Laboratory for Polymer Chemistry and Technology; Hajdrihova 19 SI-1001 Ljubljana Slovenia
| | - Milijana Grujić
- National Institute of Chemistry, Laboratory for Polymer Chemistry and Technology; Hajdrihova 19 SI-1001 Ljubljana Slovenia
| | - Mateja Cegnar
- Lek Pharmaceuticals d.d., Sandoz Development Center Slovenia; Verovškova 57 SI-1526 Ljubljana Slovenia
| | - Janez Kerč
- Lek Pharmaceuticals d.d., Sandoz Development Center Slovenia; Verovškova 57 SI-1526 Ljubljana Slovenia
- University of Ljubljana, Faculty of Pharmacy; Aškerčeva 7 SI-1000 Ljubljana Slovenia
| | - Ema Žagar
- National Institute of Chemistry, Laboratory for Polymer Chemistry and Technology; Hajdrihova 19 SI-1001 Ljubljana Slovenia
| |
Collapse
|
28
|
Abstract
Discovery of insulin in the early 1900s initiated the research and development to improve the means of therapeutic protein delivery in patients. In the past decade, great emphasis has been placed on bringing protein and peptide therapeutics to market. Despite tremendous efforts, parenteral delivery still remains the major mode of administration for protein and peptide therapeutics. Other routes such as oral, nasal, pulmonary and buccal are considered more opportunistic rather than routine application. Improving biological half-life, stability and therapeutic efficacy is central to protein and peptide delivery. Several approaches have been tried in the past to improve protein and peptide in vitro/in vivo stability and performance. Approaches may be broadly categorized as chemical modification and colloidal delivery systems. In this review we have discussed various chemical approaches such as PEGylation, hyperglycosylation, mannosylation, and colloidal carriers including microparticles, nanoparticles, liposomes, carbon nanotubes and micelles for improving protein and peptide delivery. Recent developments on in situ thermosensitive gel-based protein and peptide delivery have also been described. This review summarizes recent developments on some currently existing approaches to improve stability, bioavailability and bioactivity of peptide and protein therapeutics following parenteral administration.
Collapse
|
29
|
Deng C, Wu J, Cheng R, Meng F, Klok HA, Zhong Z. Functional polypeptide and hybrid materials: Precision synthesis via α-amino acid N-carboxyanhydride polymerization and emerging biomedical applications. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2013.10.008] [Citation(s) in RCA: 274] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Wang J, Zhao D, Wang Y, Wu G. Imine bond cross-linked poly(ethylene glycol)-block-poly(aspartamide) complex micelle as a carrier to deliver anticancer drugs. RSC Adv 2014. [DOI: 10.1039/c3ra46160b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
31
|
Morshed RA, Cheng Y, Auffinger B, Wegscheid ML, Lesniak MS. The potential of polymeric micelles in the context of glioblastoma therapy. Front Pharmacol 2013; 4:157. [PMID: 24416018 PMCID: PMC3874582 DOI: 10.3389/fphar.2013.00157] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/29/2013] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM), a type of malignant glioma, is the most common form of brain cancer found in adults. The current standard of care for GBM involves adjuvant temozolomide-based chemotherapy in conjunction with radiotherapy, yet patients still suffer from poor outcomes with a median survival of 14.6 months. Many novel therapeutic agents that are toxic to GBM cells in vitro cannot sufficiently accumulate at the site of an intracranial tumor after systemic administration. Thus, new delivery strategies must be developed to allow for adequate intratumoral accumulation of such therapeutic agents. Polymeric micelles offer the potential to improve delivery to brain tumors as they have demonstrated the capacity to be effective carriers of chemotherapy drugs, genes, and proteins in various preclinical GBM studies. In addition to this, targeting moieties and trigger-dependent release mechanisms incorporated into the design of these particles can promote more specific delivery of a therapeutic agent to a tumor site. However, despite these advantages, there are currently no micelle formulations targeting brain cancer in clinical trials. Here, we highlight key aspects of the design of polymeric micelles as therapeutic delivery systems with a review of their clinical applications in several non-brain tumor cancer types. We also discuss their potential to serve as nanocarriers targeting GBM, the major barriers preventing their clinical implementation in this disease context, as well as current approaches to overcome these limitations.
Collapse
Affiliation(s)
- Ramin A Morshed
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine Chicago, IL, USA
| | - Yu Cheng
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine Chicago, IL, USA
| | - Brenda Auffinger
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine Chicago, IL, USA
| | - Michelle L Wegscheid
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine Chicago, IL, USA
| | - Maciej S Lesniak
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine Chicago, IL, USA
| |
Collapse
|
32
|
Jacobs J, Gathergood N, Heise A. Synthesis of Polypeptide Block Copolymer Hybrids by the Combination of N
-Carboxyanhydride Polymerization and RAFT. Macromol Rapid Commun 2013; 34:1325-9. [DOI: 10.1002/marc.201300402] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/15/2013] [Indexed: 01/02/2023]
Affiliation(s)
- Jaco Jacobs
- Dublin City University, School of Chemical Sciences; Glasnevin Dublin 9 Ireland
| | - Nicholas Gathergood
- Dublin City University, School of Chemical Sciences; Glasnevin Dublin 9 Ireland
| | - Andreas Heise
- Dublin City University, School of Chemical Sciences; Glasnevin Dublin 9 Ireland
| |
Collapse
|
33
|
|
34
|
Cheng R, Meng F, Deng C, Zhong Z. Reduction-sensitive Nanosystems for Active Intracellular Drug Delivery. SMART MATERIALS FOR DRUG DELIVERY 2013. [DOI: 10.1039/9781849736800-00208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The past several years have witnessed explosive progress in reduction-sensitive nanosystems that are stable under physiological conditions, but rapidly destabilized under a reducing environment for “active” intra-cellular drug delivery. The uniqueness of the disulfide chemistry has enabled versatile design of smart nanosystems ranging from reduction-sensitive degradable micelles, polymersomes, nanogels and capsules to nanoparticles. This superior intra-cellular drug release approach has been shown to significantly enhance drug efficacy, overcome multi-drug resistance (MDR) and/or reduce drug- and carrier-associated side effects. In vivo studies have demonstrated that reduction-sensitive reversibly cross-linked nanosystems result in enhanced stability, longer circulation time, improved tumor-targetability and better therapeutic outcomes as compared to the non-cross-linked controls as well as to free drugs. It is anticipated that reduction-sensitive nanosystems will play a relevant role in the arena of targeted cancer therapy.
Collapse
Affiliation(s)
- Ru Cheng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 P. R. China
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 P. R. China
| |
Collapse
|
35
|
Sosnik A. Temperature- and pH-sensitive Polymeric Micelles for Drug Encapsulation, Release and Targeting. SMART MATERIALS FOR DRUG DELIVERY 2013. [DOI: 10.1039/9781849736800-00115] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
More than 50% of the drugs in the market and 70% of the new candidates are poorly water soluble according to the Biopharmaceutic Classification System (BCS(. Poor aqueous solubility and physico-chemical stability of drugs in biological fluids remain key limitations in oral, parenteral and transdermal administration and contribute to an increase the drug attrition rate. Motivated by the outbreak of nanotechnology, different nanocarriers made of lipids and polymers have been designed and developed to address these limitations. Moreover, robust platforms were exploited to achieve the temporal and spatial release of drugs, thus constraining the systemic exposure to toxic agents and the appearance of severe adverse effects and improving the safety ratio. Owing to unique features such as (i( great chemical flexibility, (ii( capacity to host, solubilize and physico-chemically stabilize poorly water soluble drugs, (iii( ability to accumulate selectively in highly vascularized solid tumors and (iv( ability of single amphiphile molecules (unimers( to inhibit the activity of different pumps of the ATP-binding cassette superfamily (ABCs(, polymeric micelles have emerged as one of the most versatile nanotechnologies. Despite their diverse applications to improve the therapeutic outcomes, polymeric micelles remain clinically uncapitalized. The present chapter overviews the most recent applications of temperature- and pH-responsive polymeric micelles for the encapsulation, release and targeting of drugs and discusses the perspectives for these unique nanocarriers in the near future.
Collapse
Affiliation(s)
- Alejandro Sosnik
- The Group of Biomaterials and Nanotechnology for Improved Medicines (BIONIMED) Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, 956 Junín St., Buenos Aires CP1113 Argentina and National Science Research Council (CONICET) Buenos Aires, Argentina
| |
Collapse
|
36
|
Li P, Luo Z, Liu P, Gao N, Zhang Y, Pan H, Liu L, Wang C, Cai L, Ma Y. Bioreducible alginate-poly(ethylenimine) nanogels as an antigen-delivery system robustly enhance vaccine-elicited humoral and cellular immune responses. J Control Release 2013; 168:271-9. [PMID: 23562637 DOI: 10.1016/j.jconrel.2013.03.025] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/06/2013] [Accepted: 03/17/2013] [Indexed: 01/15/2023]
Abstract
Although polysaccharide nanogels have emerged as a novel antigen delivery system for vaccine development, whether modulating the redox sensitivity of nanogels could improve vaccine efficacy remains unclear. In the present study, we generated bioreducible cationic alginate-polyethylenimine (PEI) nanogels as a novel vaccine delivery system. Briefly, nanogels were prepared by the electrostatic interaction of negatively charged alginate sodium with branched PEI2k, followed by disulfide cross-linking to generate bioreducible nanogels (AP-SS). The AP-SS nanogels demonstrated great antigen-loading capacity and minimal cytotoxicity. The in vitro study showed that reducible AP-SS nanogels not only facilitated antigen uptake by mouse bone marrow dendritic cells (BMDCs), but also promoted intracellular antigen degradation and cytosolic release. Moreover, AP-SS nanogels significantly enhanced both MHC class I and II antigen presentation by BMDCs. Compared with the non-reducible nanogels, AP-SS nanogels more potently enhanced vaccine-induced antibody production and CD8+ T cell-mediated tumor cell lysis. Hence, the bioreducible alginate-PEI nanogels could serve as a potent adjuvant to improve vaccine-elicited humoral and cellular immune responses.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Cancer Nanotechnology, Shenzhen Innovative Pharmacology and Biotherapy Pre-clinical Test Public Service Platform, Shenzhen Institutes of Advance Technology, Chinese Academy of Science, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sun H, Meng F, Cheng R, Deng C, Zhong Z. Reduction-sensitive degradable micellar nanoparticles as smart and intuitive delivery systems for cancer chemotherapy. Expert Opin Drug Deliv 2013; 10:1109-22. [DOI: 10.1517/17425247.2013.783009] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Wei H, Zhuo RX, Zhang XZ. Design and development of polymeric micelles with cleavable links for intracellular drug delivery. Prog Polym Sci 2013. [DOI: 10.1016/j.progpolymsci.2012.07.002] [Citation(s) in RCA: 387] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Shao Y, Huang W, Shi C, Atkinson ST, Luo J. Reversibly crosslinked nanocarriers for on-demand drug delivery in cancer treatment. Ther Deliv 2012; 3:1409-27. [PMID: 23323559 PMCID: PMC3575096 DOI: 10.4155/tde.12.106] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Polymer micelles have proven to be one of the most versatile nanocarriers for anticancer drug delivery. However, the in vitro and in vivo stability of micelles remains a challenge due to the dynamic nature of these self-assembled systems, which leads to premature drug release and nonspecific biodistribution in vivo. Recently, reversibly crosslinked micelles have been developed to provide solutions to stabilize nanocarriers in blood circulation. Increased stability allows nanoparticles to accumulate at tumor sites efficiently via passive and/or active tumor targeting, while cleavage of the micelle crosslinkages, through internal or external stimuli, facilitates on-demand drug release. In this review, various crosslinking chemistries as well as the choices for reversible linkages in these nanocarriers will be introduced. Then, the development of reversibly crosslinked micelles for on-demand drug release in response to single or dual stimuli in the tumor microenvironment is discussed, for example, acidic pH, reducing microenvironment, enzymatic microenvironment, photoirradiation and the administration of competitive reagents postmicelle delivery.
Collapse
Affiliation(s)
- Yu Shao
- Department of Pharmacology, SUNY Upstate Cancer Research Institute, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Wenzhe Huang
- Department of Pharmacology, SUNY Upstate Cancer Research Institute, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Changying Shi
- Department of Pharmacology, SUNY Upstate Cancer Research Institute, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Sean T Atkinson
- Department of Pharmacology, SUNY Upstate Cancer Research Institute, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Juntao Luo
- Department of Pharmacology, SUNY Upstate Cancer Research Institute, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
40
|
Ambati J, Lopez AM, Cochran D, Wattamwar P, Bean K, Dziubla TD, Rankin SE. Engineered silica nanocarriers as a high-payload delivery vehicle for antioxidant enzymes. Acta Biomater 2012; 8:2096-103. [PMID: 22366223 DOI: 10.1016/j.actbio.2012.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 02/08/2012] [Accepted: 02/13/2012] [Indexed: 12/13/2022]
Abstract
Antioxidant enzymes for the treatment of oxidative stress-related diseases remain a highly promising therapeutic approach. As poor localization and stability have been the greatest challenges to their clinical translation, a variety of nanocarrier systems have been developed to directly address these limitations. In most cases, there has been a trade-off between the delivered mass of enzyme loaded and the carrier's ability to protect the enzyme from proteolytic degradation. One potential method of overcoming this limitation is the use of ordered mesoporous silica materials as potential antioxidant enzyme nanocarriers. The present study compared the loading, activity and retention activity of an anti-oxidant enzyme, catalase, on four engineered mesoporous silica types: non-porous silica particles, spherical silica particles with radially oriented pores and hollow spherical silica particles with pores oriented either parallel to the hollow core or expanded, interconnected bimodal pores. All these silica types, except non-porous silica, displayed potential for effective catalase loading and protection against the proteolytic enzyme, pronase. Hollow particles with interconnected pores exhibit protein loading of up to 50 wt.% carrier mass, while still maintaining significant protection against proteolysis.
Collapse
Affiliation(s)
- J Ambati
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Jackson AW, Fulton DA. Triggering Polymeric Nanoparticle Disassembly through the Simultaneous Application of Two Different Stimuli. Macromolecules 2012. [DOI: 10.1021/ma202721s] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Alexander W. Jackson
- Chemical Nanoscience Laboratory,
School of Chemistry,
Bedson Building, Newcastle University,
Newcastle upon Tyne NE1 7RU, United Kingdom
| | - David A. Fulton
- Chemical Nanoscience Laboratory,
School of Chemistry,
Bedson Building, Newcastle University,
Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
42
|
Li X, Zhao Y. Protection/Deprotection of surface activity and its applications in the controlled release of liposomal contents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:4152-4159. [PMID: 22303995 DOI: 10.1021/la2050702] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The micelles of two tripropargylammonium-functionalized cationic surfactants were cross-linked by a disulfide-containing diazido cross-linker in the presence of Cu(I) catalysts. With multiple residual alkyne groups on the surface, the resulting surface cross-linked micelles (SCMs) were postfunctionalized by reaction with 2-azidoethanol and an azido-terminated poly(ethylene glycol), respectively, via the alkyne-azide click reaction. The water-soluble nanoparticles obtained had low surface activity due to the buried hydrophobic tails. Cleavage of the disulfide cross-links by dithiothreitol (DTT) exposed the hydrophobic tails and resumed surface activity of the "caged" surfactants within 2 min after DTT addition. The controlled breakage of the SCMs was used to lower the surface tension of aqueous solutions and trigger the release of liposomal contents on demand.
Collapse
Affiliation(s)
- Xueshu Li
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | | |
Collapse
|
43
|
Bayó-Puxan N, Dufresne MH, Felber AE, Castagner B, Leroux JC. Preparation of polyion complex micelles from poly(ethylene glycol)-block-polyions. J Control Release 2011; 156:118-27. [DOI: 10.1016/j.jconrel.2011.07.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/04/2011] [Accepted: 07/18/2011] [Indexed: 11/15/2022]
|
44
|
Xiong XB, Falamarzian A, Garg SM, Lavasanifar A. Engineering of amphiphilic block copolymers for polymeric micellar drug and gene delivery. J Control Release 2011; 155:248-61. [PMID: 21621570 DOI: 10.1016/j.jconrel.2011.04.028] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/27/2011] [Indexed: 12/22/2022]
Abstract
The use of nano-delivery systems formed through assembly of synthetic amphiphilic block copolymers (ABCs) in experimental medicine and pharmaceutical sciences is experiencing rapid development. This rapid development is driven by a crucial need in improving the performance of existing therapeutic agents, as well as the necessity for the development of advanced delivery systems for complex new entities such as genes, proteins and other cellular components. The flexibility in the construction of appropriate carriers for the delivery requirements of these complex new "drugs" offered by versatile polymer chemistry provides an undeniable advantage for polymer based nano-delivery systems compared to other colloids in this regard. With seven formulations already in different stages of clinical trials, polymeric micelles are in the front line of drug development among different ABC-based nano-carriers. The success in rapid advancement of polymeric micelles from bench to bedside is owed to the rational engineering of core/shell structure so that the polymeric micellar carrier can meet the requirements for optimum delivery of specific drug(s) in certain disease condition(s). The engineering efforts in this regard have mostly been aimed at providing efficient drug loading, micellar stabilization, and sustained and/or site specific drug release. The objective of this review is to provide an update on different engineering strategies employed to achieve optimum polymeric micellar formulations.
Collapse
Affiliation(s)
- Xiao-Bing Xiong
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2N8, Canada
| | | | | | | |
Collapse
|
45
|
Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J Control Release 2011; 152:2-12. [DOI: 10.1016/j.jconrel.2011.01.030] [Citation(s) in RCA: 1014] [Impact Index Per Article: 72.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 01/20/2011] [Accepted: 01/25/2011] [Indexed: 11/17/2022]
|
46
|
Ryu JH, Jiwpanich S, Chacko R, Bickerton S, Thayumanavan S. Surface-Functionalizable Polymer Nanogels with Facile Hydrophobic Guest Encapsulation Capabilities. J Am Chem Soc 2010; 132:8246-7. [DOI: 10.1021/ja102316a] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ja-Hyoung Ryu
- Department of Chemistry, University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - Siriporn Jiwpanich
- Department of Chemistry, University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - Reuben Chacko
- Department of Chemistry, University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - Sean Bickerton
- Department of Chemistry, University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| |
Collapse
|