1
|
Wang Y, Zhao ZG, Chai Z, Fang JC, Chen M. Electromagnetic field and cardiovascular diseases: A state-of-the-art review of diagnostic, therapeutic, and predictive values. FASEB J 2023; 37:e23142. [PMID: 37650634 DOI: 10.1096/fj.202300201rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
Despite encouraging advances in early diagnosis and treatment, cardiovascular diseases (CVDs) remained a leading cause of morbidity and mortality worldwide. Increasing evidence has shown that the electromagnetic field (EMF) influences many biological processes, which has attracted much attention for its potential therapeutic and diagnostic modalities in multiple diseases, such as musculoskeletal disorders and neurodegenerative diseases. Nonionizing EMF has been studied as a therapeutic or diagnostic tool in CVDs. In this review, we summarize the current literature ranging from in vitro to clinical studies focusing on the therapeutic potential (external EMF) and diagnostic potential (internal EMF generated from the heart) of EMF in CVDs. First, we provided an overview of the therapeutic potential of EMF and associated mechanisms in the context of CVDs, including cardiac arrhythmia, myocardial ischemia, atherosclerosis, and hypertension. Furthermore, we investigated the diagnostic and predictive value of magnetocardiography in CVDs. Finally, we discussed the critical steps necessary to translate this promising approach into clinical practice.
Collapse
Affiliation(s)
- Yan Wang
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen-Gang Zhao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zheng Chai
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian-Cheng Fang
- School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing, China
| | - Mao Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Low-Frequency Magnetic Field Exposure System for Cells Electromagnetic Biocompatibility Studies. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The advancement in science and technology has resulted in the invention and widespread usage of many electrical devices in the daily lives of humans. The exponential use of modern electronic facilities has increased electromagnetic field exposure in the current population. Therefore, the presented article deals with designing, constructing, and testing a new applicator system developed for cells electromagnetic biocompatibility studies. The applicator system is intended for studying the non-thermal impacts of low-frequency magnetic field on cell cultures growth. Main attention is focused on increasing the capacity of the applicator and effectivity of the experiments. The key idea is to reach high level of the magnetic field homogeneity in an area of interest and the temperature stability during the biocompatibility studies. The applicator system is designed based on numerical simulations and its construction, measurements, and properties evaluation are also reported for proving the applicator’s functionality. The new applicator allows performing five parallel experiments at the same time under the same conditions. The simulation together with the experimental results confirm that the magnetic field homogeneity reaches 99% in the area of interest and the maximum temperature instability is lower than 2% during the experiments. The effectiveness of new applicator is tested and proved during preliminary experiments with Saccharomyces Cerevisiae cells. The observed effects of MF exposure represent maximal stimulation of 74% and maximal inhibition of 49%. The reason why MF with the same parameters induces inhibition in one sample and stimulation in the other will be the subject of further research.
Collapse
|
3
|
Aharonovich Y, Scheinowitz M, Zlochiver S. Cardiac KATP channel modulation by 16Hz magnetic fields - A theoretical study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:161-164. [PMID: 28268304 DOI: 10.1109/embc.2016.7590665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Heart exposure to 16Hz magnetic fields (MFs) was shown to be cardio-protective for diseased hearts; still, the mechanism of this effect is unknown. We hypothesize that a possible one mechanism is an increased trans-membrane KATP channel open probability due to modulation of the degree of dissociation between K+ ions, having a resonance frequency of 16Hz, and the channel selectivity filter. The Fan-Makielski Markovian KATP channel model was adopted, and the MF bio-effect was manifested by modulating the open probability of the channel using the predictive MF bio-effect parameter based on Binhi's quantum mechanics model. The model was integrated in a ventricular single cell model and the MF effect on the calcium transients [Ca2+] was assessed. Periodic pacing (Cycle Length CL=1sec) was applied and a 16Hz or 32Hz MF was turned on at t=0 for 10min. MF exposure gradually decreased [Ca2+] due to KATP channel opening, more strongly at 16Hz. Additionally, a small negative diastolic shift was observed. These numerical results demonstrated similarity to published experimental data using similar 16Hz MF exposure. We conclude that 16Hz MF exposure increases the KATP channel open probability, lowering the cellular calcium load. Our model could be integrated in a tissue model to predict optimal MF parameters for future cardiac therapy devices.
Collapse
|
4
|
Wei J, Tong J, Yu L, Zhang J. EMF protects cardiomyocytes against hypoxia-induced injury via heat shock protein 70 activation. Chem Biol Interact 2016; 248:8-17. [DOI: 10.1016/j.cbi.2016.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/04/2016] [Accepted: 02/07/2016] [Indexed: 01/10/2023]
|
5
|
Wei J, Sun J, Xu H, Shi L, Sun L, Zhang J. Effects of extremely low frequency electromagnetic fields on intracellular calcium transients in cardiomyocytes. Electromagn Biol Med 2014; 34:77-84. [DOI: 10.3109/15368378.2014.881744] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Abstract
Recently, biomedical research has moved toward cell culture in three dimensions to better recapitulate native cellular environments. This protocol describes one method for 3D culture, the magnetic levitation method (MLM), in which cells bind with a magnetic nanoparticle assembly overnight to render them magnetic. When resuspended in medium, an external magnetic field levitates and concentrates cells at the air-liquid interface, where they aggregate to form larger 3D cultures. The resulting cultures are dense, can synthesize extracellular matrix (ECM) and can be analyzed similarly to the other culture systems using techniques such as immunohistochemical analysis (IHC), western blotting and other biochemical assays. This protocol details the MLM and other associated techniques (cell culture, imaging and IHC) adapted for the MLM. The MLM requires 45 min of working time over 2 d to create 3D cultures that can be cultured in the long term (>7 d).
Collapse
|
7
|
Abstract
The use of electrical devices has gradually increased throughout the last century, and scientists have suggested that electromagnetic fields (EMF) generated by such devices may have harmful effects on living creatures. This work represents a systematic review of collective scholarly literature examining the effects of EMFs on the heart. Although most works describing effects of EMF exposure have been carried out using city electric frequencies (50–60 Hz), a consensus has not been reached about whether long- or short-term exposure to 50–60 Hz EMF negatively affects the heart. Studies have indicated that EMFs produced at cell-phone frequencies cause no-effect on the heart. Differences between results of studies may be due to a compensatory response developed by the body over time. At greater EMF strengths or shorter exposures, the ability of the body to develop compensation mechanisms is reduced and the potential for heart-related effects increases. It is noteworthy that diseases of heart tissues such as myocardial ischemia can also be successfully treated using EMF. Despite the substantial volume of data that has been collected on heart-related effects of EMFs, additional studies are needed at the cellular and molecular level to fully clarify the subject. Until the effects of EMF on heart tissue are more fully explored, electronic devices generating EMFs should be approached with caution.
Collapse
Affiliation(s)
- Onur Elmas
- Sanliurfa Training and Research Hospital, Physiology Laboratory, Sanliurfa, Turkey
| |
Collapse
|
8
|
Bókkon I, Erdöfi-Szabó A, Till A, Balázs R, Sárosi Z, Szabó ZL, Kolonics G, Popper G. EMOST: Report about the application of low-frequency and intensity electromagnetic fields in disaster situation and commando training. Electromagn Biol Med 2012; 31:394-403. [PMID: 22676138 DOI: 10.3109/15368378.2012.681823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recently, we published our results (Bókkon et al., 2011. Electromagn Biol Med.) regarding the effectiveness of the EMOST (Electro-Magnetic-Own-Signal-Treatment) method for the reduction of phantom limb pain under clinical circumstances. However, EMOST treatments not only significantly reduced phantom pain, but that most of the patients also reported about additional benefits such as improvement of their sleep and mood quality after treatments. Here we report some unusual applications of EMOST method under special situations. That is, we report about our effective EMOST treatments of humans under catastrophic conditions and commando training course. This article points out that it is reasonable to apply biophysical electromagnetic management under unique circumstances. We also report some preliminary experiments on 12 members of our BioLabor regarding the effectiveness of single EMOST treatment on some serum parameters and electrocardiogram.
Collapse
Affiliation(s)
- István Bókkon
- Chief Scientific Consulting of BioLabor Biophysical- and Laboratories Services Ltd, Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Fixler D, Yitzhaki S, Axelrod A, Zinman T, Shainberg A. Correlation of magnetic AC field on cardiac myocyte Ca(2+) transients at different magnetic DC levels. Bioelectromagnetics 2012; 33:634-40. [PMID: 22532275 DOI: 10.1002/bem.21729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/29/2012] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to determine the effect of extremely low frequency and weak magnetic fields (WMF) on cardiac myocyte Ca(2+) transients, and to explore the involvement of potassium channels under the WMF effect. In addition, we aimed to find a physical explanation for the effect of WMF on cardiac myocyte Ca(2+) transients. Indo-1 loaded cells, which were exposed to a WMF at 16 Hz and 40 nT, demonstrated a 75 ± 4% reduction in cytosolic Ca(2+) transients versus control. Treatment with the K(ATP) channel blocker, glibenclamide, followed by WMF at 16 Hz exposure, blocked the reduction in cytosolic calcium transients while treatment with pinacidil, a K(ATP) channel opener, or chromanol 293B, a selective potassium channel blocker of the delayed rectifier K(+) channels, did not inhibit the effect. Based on these finding and the ion cyclotron resonance frequency theory, we further investigated the effect of WMF by changing the direct current (DC) magnetic field (B(0) ). When operating different DC magnetic fields we showed that the WMF value changed correspondingly: for B(0) = 44.5 µT, the effect was observed at 17.05 Hz; for B(0) = 46.5 µT, the effect was observed at 18.15 Hz; and for B(0) = 49 µT the effect was observed at 19.1 Hz. We can conclude that the effect of WMF on Ca(2+) transients depends on the DC magnetic field level.
Collapse
Affiliation(s)
- Dror Fixler
- Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel.
| | | | | | | | | |
Collapse
|