1
|
Goubergrits L, Schafstedde M, Cesarovic N, Szengel A, Schmitt B, Wiegand M, Romberg J, Arndt A, Kuehne T, Brüning J. CT-based comparison of porcine, ovine, and human pulmonary arterial morphometry. Sci Rep 2023; 13:20211. [PMID: 37980386 PMCID: PMC10657407 DOI: 10.1038/s41598-023-47532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023] Open
Abstract
To facilitate pre-clinical animal and in-silico clinical trials for implantable pulmonary artery pressure sensors, understanding the respective species pulmonary arteries (PA) anatomy is important. Thus, morphological parameters describing PA of pigs and sheep, which are common animal models, were compared with humans. Retrospective computed tomography data of 41 domestic pigs (82.6 ± 18.8 kg), 14 sheep (49.1 ± 6.9 kg), and 49 patients (76.8 ± 18.2 kg) were used for reconstruction of the subject-specific PA anatomy. 3D surface geometries including main, left, and right PA as well as LPA and RPA side branches were manually reconstructed. Then, specific geometric parameters (length, diameters, taper, bifurcation angle, curvature, and cross-section enlargement) affecting device implantation and post-interventional device effect and efficacy were automatically calculated. For both animal models, significant differences to the human anatomy for most geometric parameters were found, even though the respective parameters' distributions also featured relevant overlap. Out of the two animal models, sheep seem to be better suitable for a preclinical study when considering only PA morphology. Reconstructed geometries are provided as open data for future studies. These findings support planning of preclinical studies and will help to evaluate the results of animal trials.
Collapse
Affiliation(s)
- Leonid Goubergrits
- Deutsches Herzzentrum Der Charité (DHZC), Institute of Computer-Assisted Cardiovascular Medicine, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Marie Schafstedde
- Deutsches Herzzentrum Der Charité (DHZC), Institute of Computer-Assisted Cardiovascular Medicine, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Nikola Cesarovic
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | | | - Boris Schmitt
- Deutsches Herzzentrum Der Charité (DHZC), Institute of Computer-Assisted Cardiovascular Medicine, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Moritz Wiegand
- Deutsches Herzzentrum Der Charité (DHZC), Institute of Computer-Assisted Cardiovascular Medicine, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | | | | | - Titus Kuehne
- Deutsches Herzzentrum Der Charité (DHZC), Institute of Computer-Assisted Cardiovascular Medicine, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Jan Brüning
- Deutsches Herzzentrum Der Charité (DHZC), Institute of Computer-Assisted Cardiovascular Medicine, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Clark AR, Burrowes KS, Tawhai MH. Integrative Computational Models of Lung Structure-Function Interactions. Compr Physiol 2021; 11:1501-1530. [PMID: 33577123 DOI: 10.1002/cphy.c200011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Anatomically based integrative models of the lung and their interaction with other key components of the respiratory system provide unique capabilities for investigating both normal and abnormal lung function. There is substantial regional variability in both structure and function within the normal lung, yet it remains capable of relatively efficient gas exchange by providing close matching of air delivery (ventilation) and blood delivery (perfusion) to regions of gas exchange tissue from the scale of the whole organ to the smallest continuous gas exchange units. This is despite remarkably different mechanisms of air and blood delivery, different fluid properties, and unique scale-dependent anatomical structures through which the blood and air are transported. This inherent heterogeneity can be exacerbated in the presence of disease or when the body is under stress. Current computational power and data availability allow for the construction of sophisticated data-driven integrative models that can mimic respiratory system structure, function, and response to intervention. Computational models do not have the same technical and ethical issues that can limit experimental studies and biomedical imaging, and if they are solidly grounded in physiology and physics they facilitate investigation of the underlying interaction between mechanisms that determine respiratory function and dysfunction, and to estimate otherwise difficult-to-access measures. © 2021 American Physiological Society. Compr Physiol 11:1501-1530, 2021.
Collapse
Affiliation(s)
- Alys R Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Kelly S Burrowes
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Merryn H Tawhai
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Clark AR, Burrowes KS, Tawhai MH. Ventilation/Perfusion Matching: Of Myths, Mice, and Men. Physiology (Bethesda) 2019; 34:419-429. [PMID: 31577170 PMCID: PMC7002871 DOI: 10.1152/physiol.00016.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 11/22/2022] Open
Abstract
Despite a huge range in lung size between species, there is little measured difference in the ability of the lung to provide a well-matched air flow (ventilation) to blood flow (perfusion) at the gas exchange tissue. Here, we consider the remarkable similarities in ventilation/perfusion matching between species through a biophysical lens and consider evidence that matching in large animals is dominated by gravity but in small animals by structure.
Collapse
Affiliation(s)
- Alys R Clark
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Kelly S Burrowes
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Merryn H Tawhai
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Abstract
The pulmonary circulation carries deoxygenated blood from the systemic veins through the pulmonary arteries to be oxygenated in the capillaries that line the walls of the pulmonary alveoli. The pulmonary circulation carries the cardiac output with a relatively low driving pressure, and so differs considerably in structure and function from the systemic circulation to maintain a low-resistance vascular system. The pulmonary circulation is often considered to be a quasi-static system in both experimental and computational studies of pulmonary perfusion and its matching to ventilation (air flow) for exchange. However, the system is highly dynamic, with cardiac output and regional perfusion changing with posture, exercise, and over time. Here we review this dynamic system, with a focus on understanding the physiology of pulmonary vascular dynamics across spatial and temporal scales, and the changes to these dynamics that are reflective of disease. © 2019 American Physiological Society. Compr Physiol 9:1081-1100, 2019.
Collapse
Affiliation(s)
- Alys Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Merryn Tawhai
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Abstract
Respiratory disease is a significant problem worldwide, and it is a problem with increasing prevalence. Pathology in the upper airways and lung is very difficult to diagnose and treat, as response to disease is often heterogeneous across patients. Computational models have long been used to help understand respiratory function, and these models have evolved alongside increases in the resolution of medical imaging and increased capability of functional imaging, advances in biological knowledge, mathematical techniques and computational power. The benefits of increasingly complex and realistic geometric and biophysical models of the respiratory system are that they are able to capture heterogeneity in patient response to disease and predict emergent function across spatial scales from the delicate alveolar structures to the whole organ level. However, with increasing complexity, models become harder to solve and in some cases harder to validate, which can reduce their impact clinically. Here, we review the evolution of complexity in computational models of the respiratory system, including successes in translation of models into the clinical arena. We also highlight major challenges in modelling the respiratory system, while making use of the evolving functional data that are available for model parameterisation and testing.
Collapse
Affiliation(s)
- Alys R Clark
- 1 Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Haribalan Kumar
- 1 Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Kelly Burrowes
- 2 Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Hedges KL, Clark AR, Tawhai MH. Comparison of generic and subject-specific models for simulation of pulmonary perfusion and forced expiration. Interface Focus 2015; 5:20140090. [PMID: 25844154 PMCID: PMC4342950 DOI: 10.1098/rsfs.2014.0090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The goal of translating multiscale model analysis of pulmonary function into population studies is challenging because of the need to derive a geometric model for each subject. This could be addressed by using a generic model with appropriate customization to subject-specific data. Here, we present a quantitative comparison of simulating two fundamental behaviours of the lung-its haemodynamic response to vascular occlusion, and the forced expiration in 1 s (FEV1) following bronchoconstriction-in subject-specific and generic models. When the subjects are considered as a group, there is no significant difference between predictions of mean pulmonary artery pressure (mPAP), pulmonary vascular resistance or forced expiration; however, significant differences are apparent in the prediction of arterial oxygen, for both baseline and post-occlusion. Despite the apparent consistency of the generic and subject-specific models, a third of subjects had generic model under-prediction of the increase in mPAP following occlusion, and half had the decrease in arterial oxygen over-predicted; two subjects had considerable differences in the percentage reduction of FEV1 following bronchoconstriction. The generic model approach can be useful for physiologically directed studies but is not appropriate for simulating pathophysiological function that is strongly dependent on interaction with lung structure.
Collapse
Affiliation(s)
| | | | - Merryn H. Tawhai
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
7
|
Lee YC, Clark AR, Fuld MK, Haynes S, Divekar AA, Hoffman EA, Tawhai MH. MDCT-based quantification of porcine pulmonary arterial morphometry and self-similarity of arterial branching geometry. J Appl Physiol (1985) 2013; 114:1191-201. [PMID: 23449941 DOI: 10.1152/japplphysiol.00868.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pig is frequently used as an experimental model for studies of the pulmonary circulation, yet the branching and dimensional geometry of the porcine pulmonary vasculature remains poorly defined. The purposes of this study are to improve the geometric definition of the porcine pulmonary arteries and to determine whether the arterial tree exhibits self-similarity in its branching geometry. Five animals were imaged using thin slice spiral computed tomography in the prone posture during airway inflation pressure at 25 cmH2O. The luminal diameter and distance from the inlet of the left and right pulmonary arteries were measured along the left and right main arterial pathway in each lung of each animal. A further six minor pathways were measured in a single animal. The similarity in the rate of reduction of diameter with distance of all minor pathways and the two main pathways, along with similarity in the number of branches arising along the pathways, supports self-similarity in the arterial tree. The rate of reduction in diameter with distance from the inlet was not significantly different among the five animals (P > 0.48) when normalized for main pulmonary artery diameter and total main artery pathlength, which supports intersubject similarity. Other metrics to quantify the tree geometry are strikingly similar to those from airways of other quadrupeds, with the exception of a significantly larger length to diameter ratio, which is more appropriate for the vascular tree. A simplifying self-similar model for the porcine pulmonary arteries is proposed to capture the important geometric features of the arterial tree.
Collapse
Affiliation(s)
- Yik Ching Lee
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|
8
|
Burrowes KS, Clark AR, Tawhai MH. Blood flow redistribution and ventilation-perfusion mismatch during embolic pulmonary arterial occlusion. Pulm Circ 2012; 1:365-76. [PMID: 22140626 PMCID: PMC3224428 DOI: 10.4103/2045-8932.87302] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Acute pulmonary embolism causes redistribution of blood in the lung, which impairs ventilation/perfusion matching and gas exchange and can elevate pulmonary arterial pressure (PAP) by increasing pulmonary vascular resistance (PVR). An anatomically-based multi-scale model of the human pulmonary circulation was used to simulate pre- and post-occlusion flow, to study blood flow redistribution in the presence of an embolus, and to evaluate whether reduction in perfused vascular bed is sufficient to increase PAP to hypertensive levels, or whether other vasoconstrictive mechanisms are necessary. A model of oxygen transfer from air to blood was included to assess the impact of vascular occlusion on oxygen exchange. Emboli of 5, 7, and 10 mm radius were introduced to occlude increasing proportions of the vasculature. Blood flow redistribution was calculated after arterial occlusion, giving predictions of PAP, PVR, flow redistribution, and micro-circulatory flow dynamics. Because of the large flow reserve capacity (via both capillary recruitment and distension), approximately 55% of the vasculature was occluded before PAP reached clinically significant levels indicative of hypertension. In contrast, model predictions showed that even relatively low levels of occlusion could cause localized oxygen deficit. Flow preferentially redistributed to gravitationally non-dependent regions regardless of occlusion location, due to the greater potential for capillary recruitment in this region. Red blood cell transit times decreased below the minimum time for oxygen saturation (<0.25 s) and capillary pressures became high enough to initiate cell damage (which may result in edema) only after ~80% of the lung was occluded.
Collapse
Affiliation(s)
- K S Burrowes
- Department of Computer Science, University of Oxford, United Kingdom
| | | | | |
Collapse
|
9
|
Hsia CCW, Tawhai MH. What can imaging tell us about physiology? Lung growth and regional mechanical strain. J Appl Physiol (1985) 2012; 113:937-46. [PMID: 22582216 DOI: 10.1152/japplphysiol.00289.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The interplay of mechanical forces transduces diverse physico-biochemical processes to influence lung morphogenesis, growth, maturation, remodeling and repair. Because tissue stress is difficult to measure in vivo, mechano-sensitive responses are commonly inferred from global changes in lung volume, shape, or compliance and correlated with structural changes in tissue blocks sampled from postmortem-fixed lungs. Recent advances in noninvasive volumetric imaging technology, nonrigid image registration, and deformation analysis provide valuable tools for the quantitative analysis of in vivo regional anatomy and air and tissue-blood distributions and when combined with transpulmonary pressure measurements, allow characterization of regional mechanical function, e.g., displacement, strain, shear, within and among intact lobes, as well as between the lung and the components of its container-rib cage, diaphragm, and mediastinum-thereby yielding new insights into the inter-related metrics of mechanical stress-strain and growth/remodeling. Here, we review the state-of-the-art imaging applications for mapping asymmetric heterogeneous physical interactions within the thorax and how these interactions permit as well as constrain lung growth, remodeling, and compensation during development and following pneumonectomy to illustrate how advanced imaging could facilitate the understanding of physiology and pathophysiology. Functional imaging promises to facilitate the formulation of realistic computational models of lung growth that integrate mechano-sensitive events over multiple spatial and temporal scales to accurately describe in vivo physiology and pathophysiology. Improved computational models in turn could enhance our ability to predict regional as well as global responses to experimental and therapeutic interventions.
Collapse
Affiliation(s)
- Connie C W Hsia
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9034, USA
| | | |
Collapse
|
10
|
Burrowes KS, Buxton RB, Prisk GK. Assessing potential errors of MRI-based measurements of pulmonary blood flow using a detailed network flow model. J Appl Physiol (1985) 2012; 113:130-41. [PMID: 22539167 DOI: 10.1152/japplphysiol.00894.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
MRI images of pulmonary blood flow using arterial spin labeling (ASL) measure the delivery of magnetically tagged blood to an image plane during one systolic ejection period. However, the method potentially suffers from two problems, each of which may depend on the imaging plane location: 1) the inversion plane is thicker than the imaging plane, resulting in a gap that blood must cross to be detected in the image; and 2) ASL includes signal contributions from tagged blood in conduit vessels (arterial and venous). By using an in silico model of the pulmonary circulation we found the gap reduced the ASL signal to 64-74% of that in the absence of a gap in the sagittal plane and 53-84% in the coronal. The contribution of the conduit vessels varied markedly as a function of image plane ranging from ∼90% of the overall signal in image planes that encompass the central hilar vessels to <20% in peripheral image planes. A threshold cutoff removing voxels with intensities >35% of maximum reduced the conduit vessel contribution to the total ASL signal to ∼20% on average; however, planes with large contributions from conduit vessels underestimate acinar flow due to a high proportion of in-plane flow, making ASL measurements of perfusion impractical. In other image planes, perfusion dominated the resulting ASL images with good agreement between ASL and acinar flow. Similarly, heterogeneity of the ASL signal as measured by relative dispersion is a reliable measure of heterogeneity of the acinar flow distribution in the same image planes.
Collapse
Affiliation(s)
- K S Burrowes
- Department of Computer Science, University of Oxford, United Kingdom.
| | | | | |
Collapse
|
11
|
Lee YC, Clark A, Fuld M, Haynes S, Divekar A, Hoffman E, Tawhai M. An in-vivo computed tomography approach for quantifying porcine pulmonary arterial morphometry. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2012:5400-5403. [PMID: 23367150 DOI: 10.1109/embc.2012.6347215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The objective of this study was to develop an in vivo CT imaging-based approach for pulmonary arterial morphometry measurement, and to improve the geometrical basis for studies of the porcine vasculature. The luminal diameter and distance from the inlet of left and right pulmonary arteries, and pulmonary arteries within the lungs of two porcine subjects were measured at inflation pressure of 25 cmH(2)O. The results suggest that the porcine pulmonary arteries have geometric self-similarity, and that this approach will have utility for systematically quantifying pulmonary arterial vessel dimensions in vivo in a larger group of animals.
Collapse
Affiliation(s)
- Yik Ching Lee
- 1Auckland Bioengineering Institute, The University of Auckland, 92019 Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|
12
|
Tawhai M, Clark A, Donovan G, Burrowes K. Computational modeling of airway and pulmonary vascular structure and function: development of a "lung physiome". Crit Rev Biomed Eng 2011; 39:319-36. [PMID: 22011236 DOI: 10.1615/critrevbiomedeng.v39.i4.50] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Computational models of lung structure and function necessarily span multiple spatial and temporal scales, i.e., dynamic molecular interactions give rise to whole organ function, and the link between these scales cannot be fully understood if only molecular or organ-level function is considered. Here, we review progress in constructing multiscale finite element models of lung structure and function that are aimed at providing a computational framework for bridging the spatial scales from molecular to whole organ. These include structural models of the intact lung, embedded models of the pulmonary airways that couple to model lung tissue, and models of the pulmonary vasculature that account for distinct structural differences at the extra- and intra-acinar levels. Biophysically based functional models for tissue deformation, pulmonary blood flow, and airway bronchoconstriction are also described. The development of these advanced multiscale models has led to a better understanding of complex physiological mechanisms that govern regional lung perfusion and emergent heterogeneity during bronchoconstriction.
Collapse
Affiliation(s)
- Merryn Tawhai
- Auckland Bioengineering Institute, The University of Auckland, New Zealand
| | | | | | | |
Collapse
|
13
|
Burrowes KS, Clark AR, Marcinkowski A, Wilsher ML, Milne DG, Tawhai MH. Pulmonary embolism: predicting disease severity. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:4255-4277. [PMID: 21969675 DOI: 10.1098/rsta.2011.0129] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Pulmonary embolism (PE) is the most common cause of acute pulmonary hypertension, yet it is commonly undiagnosed, with risk of death if not recognized promptly and managed accordingly. Patients typically present with hypoxemia and hypomania, although the presentation varies greatly, being confounded by co-morbidities such as pre-existing cardio-respiratory disease. Previous studies have demonstrated variable patient outcomes in spite of similar extent and distribution of pulmonary vascular occlusion, but the path physiological determinants of outcome remain unclear. Computational models enable exact control over many of the compounding factors leading to functional outcomes and therefore provide a useful tool to understand and assess these mechanisms. We review the current state of pulmonary blood flow models. We present a pilot study within 10 patients presenting with acute PE, where patient-derived vascular occlusions are imposed onto an existing model of the pulmonary circulation enabling predictions of resultant haemodynamic after embolus occlusion. Results show that mechanical obstruction alone is not sufficient to cause pulmonary arterial hypertension, even when up to 65 per cent of lung tissue is occluded. Blood flow is found to preferentially redistribute to the gravitationally non-dependent regions. The presence of an additional downstream occlusion is found to significantly increase pressures.
Collapse
Affiliation(s)
- K S Burrowes
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK.
| | | | | | | | | | | |
Collapse
|
14
|
Walters DK, Burgreen GW, Lavallee DM, Thompson DS, Hester RL. Efficient, physiologically realistic lung airflow simulations. IEEE Trans Biomed Eng 2011; 58:3016-9. [PMID: 21768041 DOI: 10.1109/tbme.2011.2161868] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
One of the key challenges for computational fluid dynamics (CFD) simulations of human lung airflow is the sheer size and complexity of the complete, multiscale geometry of the bronchopulmonary tree. Since 3-D CFD simulations of the full airway tree are currently intractable, researchers have proposed reduced geometry models in which multiple airway paths are truncated downstream of the first few generations. This paper investigates a recently proposed method for closing the CFD model by application of physiologically correct boundary conditions at truncated outlets. A realistic, reduced geometry model of the lung airway based on CT data has been constructed up to generation 18, including extrathoracic, bronchi, and bronchiole regions. Results indicate that the new method yields reasonable results for pressure drop through the airway, at a small fraction of the cost of fully resolved simulations.
Collapse
Affiliation(s)
- D Keith Walters
- Department of Mechanical Engineering, Mississippi State University, Mississippi State, MS 39762, USA.
| | | | | | | | | |
Collapse
|
15
|
Tawhai MH, Clark AR, Burrowes KS. Computational models of the pulmonary circulation: Insights and the move towards clinically directed studies. Pulm Circ 2011; 1:224-38. [PMID: 22034608 PMCID: PMC3198640 DOI: 10.4103/2045-8932.83452] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Biophysically-based computational models provide a tool for integrating and explaining experimental data, observations, and hypotheses. Computational models of the pulmonary circulation have evolved from minimal and efficient constructs that have been used to study individual mechanisms that contribute to lung perfusion, to sophisticated multi-scale and -physics structure-based models that predict integrated structure-function relationships within a heterogeneous organ. This review considers the utility of computational models in providing new insights into the function of the pulmonary circulation, and their application in clinically motivated studies. We review mathematical and computational models of the pulmonary circulation based on their application; we begin with models that seek to answer questions in basic science and physiology and progress to models that aim to have clinical application. In looking forward, we discuss the relative merits and clinical relevance of computational models: what important features are still lacking; and how these models may ultimately be applied to further increasing our understanding of the mechanisms occurring in disease of the pulmonary circulation.
Collapse
Affiliation(s)
- Merryn H. Tawhai
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Alys R. Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Kelly S. Burrowes
- Oxford University Computing Laboratory, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Clark AR, Tawhai MH, Hoffman EA, Burrowes KS. The interdependent contributions of gravitational and structural features to perfusion distribution in a multiscale model of the pulmonary circulation. J Appl Physiol (1985) 2011; 110:943-55. [PMID: 21292845 DOI: 10.1152/japplphysiol.00775.2010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent experimental and imaging studies suggest that the influence of gravity on the measured distribution of blood flow in the lung is largely through deformation of the parenchymal tissue. To study the contribution of hydrostatic effects to regional perfusion in the presence of tissue deformation, we have developed an anatomically structured computational model of the pulmonary circulation (arteries, capillaries, veins), coupled to a continuum model of tissue deformation, and including scale-appropriate fluid dynamics for blood flow in each vessel type. The model demonstrates that both structural and the multiple effects of gravity on the pulmonary circulation make a distinct contribution to the distribution of blood. It shows that postural differences in perfusion gradients can be explained by the combined effect of tissue deformation and extra-acinar blood vessel resistance to flow in the dependent tissue. However, gravitational perfusion gradients persist when the effect of tissue deformation is eliminated, highlighting the importance of the hydrostatic effects of gravity on blood distribution in the pulmonary circulation. Coupling of large- and small-scale models reveals variation in microcirculatory driving pressures within isogravitational planes due to extra-acinar vessel resistance. Variation in driving pressures is due to heterogeneous large-vessel resistance as a consequence of geometric asymmetry in the vascular trees and is amplified by the complex balance of pressures, distension, and flow at the microcirculatory level.
Collapse
Affiliation(s)
- A R Clark
- Auckland Bioengineering Institute, Univ. of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand.
| | | | | | | |
Collapse
|
17
|
Abstract
Multi-scale modeling of biological systems has recently become fashionable due to the growing power of digital computers as well as to the growing realization that integrative systems behavior is as important to life as is the genome. While it is true that the behavior of a living organism must ultimately be traceable to all its components and their myriad interactions, attempting to codify this in its entirety in a model misses the insights gained from understanding how collections of system components at one level of scale conspire to produce qualitatively different behavior at higher levels. The essence of multi-scale modeling thus lies not in the inclusion of every conceivable biological detail, but rather in the judicious selection of emergent phenomena appropriate to the level of scale being modeled. These principles are exemplified in recent computational models of the lung. Airways responsiveness, for example, is an organ-level manifestation of events that begin at the molecular level within airway smooth muscle cells, yet it is not necessary to invoke all these molecular events to accurately describe the contraction dynamics of a cell, nor is it necessary to invoke all phenomena observable at the level of the cell to account for the changes in overall lung function that occur following methacholine challenge. Similarly, the regulation of pulmonary vascular tone has complex origins within the individual smooth muscle cells that line the blood vessels but, again, many of the fine details of cell behavior average out at the level of the organ to produce an effect on pulmonary vascular pressure that can be described in much simpler terms. The art of multi-scale lung modeling thus reduces not to being limitlessly inclusive, but rather to knowing what biological details to leave out.
Collapse
Affiliation(s)
- Merryn H Tawhai
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
18
|
Ramírez-Restrepo C, Barry T, Marriner A, López-Villalobos N, McWilliam E, Lassey K, Clark H. Effects of grazing willow fodder blocks upon methane production and blood composition in young sheep. Anim Feed Sci Technol 2010. [DOI: 10.1016/j.anifeedsci.2009.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|