1
|
Zhang JS, Wang ZB, Lai ZZ, Yang JW, Song WJ, Wei YB, Mei J, Wang JG. Polyethylene glycol crosslinked decellularized single liver lobe scaffolds with vascular endothelial growth factor promotes angiogenesis in vivo. Hepatobiliary Pancreat Dis Int 2023; 22:622-631. [PMID: 36335030 DOI: 10.1016/j.hbpd.2022.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/14/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Improving the mechanical properties and angiogenesis of acellular scaffolds before transplantation is an important challenge facing the development of acellular liver grafts. The present study aimed to evaluate the cytotoxicity and angiogenesis of polyethylene glycol (PEG) crosslinked decellularized single liver lobe scaffolds (DLSs), and establish its suitability as a graft for long-term liver tissue engineering. METHODS Using mercaptoacrylate produced by the Michael addition reaction, DLSs were first modified using N-succinimidyl S-acetylthioacetate (SATA), followed by cross-linking with PEG as well as vascular endothelial growth factor (VEGF). The optimal concentration of agents and time of the individual steps were identified in this procedure through biomechanical testing and morphological analysis. Subsequently, human umbilical vein endothelial cells (HUVECs) were seeded on the PEG crosslinked scaffolds to detect the proliferation and viability of cells. The scaffolds were then transplanted into the subcutaneous tissue of Sprague-Dawley rats to evaluate angiogenesis. In addition, the average number of blood vessels was evaluated in the grafts with or without PEG at days 7, 14, and 21 after implantation. RESULTS The PEG crosslinked DLS maintained their three-dimensional structure and were more translucent after decellularization than native DLS, which presented a denser and more porous network structure. The results for Young's modulus proved that the mechanical properties of 0.5 PEG crosslinked DLS were the best and close to that of native livers. The PEG-VEGF-DLS could better promote cell proliferation and differentiation of HUVECs compared with the groups without PEG cross-linking. Importantly, the average density of blood vessels was higher in the PEG-VEGF-DLS than that in other groups at days 7, 14, and 21 after implantation in vivo. CONCLUSIONS The PEG crosslinked DLS with VEGF could improve the biomechanical properties of native DLS, and most importantly, their lack of cytotoxicity provides a new route to promote the proliferation of cells in vitro and angiogenesis in vivo in liver tissue engineering.
Collapse
Affiliation(s)
- Jian-Se Zhang
- Anatomy Department, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325000, China; Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou 325000, China; Institute of Hypoxic Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhi-Bin Wang
- Anatomy Department, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325000, China; Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou 325000, China; Institute of Hypoxic Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhi-Zhen Lai
- Intensive Care Unit, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Jing-Wen Yang
- Department of Geriatric Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Wen-Jing Song
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou 325000, China
| | - Yu-Bing Wei
- Anatomy Department, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Jin Mei
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou 325000, China; Medical Research Center, Ningbo City First Hospital, Ningbo 315000, China
| | - Jian-Guang Wang
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
2
|
Cheng C, Peng X, Qi H, Wang X, Yu X, Wang Y, Yu X. A promising potential candidate for vascular replacement materials with anti-inflammatory action, good hemocompatibility and endotheliocyte-cytocompatibility: phytic acid-fixed amniotic membrane. Biomed Mater 2021; 16. [PMID: 34492639 DOI: 10.1088/1748-605x/ac246d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/07/2021] [Indexed: 12/29/2022]
Abstract
Due to its excellent biocompatibility and anti-inflammatory activity, amniotic membrane (AM) has attracted much attention from scholars. However, its clinical application in vascular reconstruction was limited for poor processability, rapid biodegradation, and insufficient hemocompatibility. A naturally extracted substance with good cytocompatibility, phytic acid (PA), which can quickly form strong and stable hydrogen bonds on the tissue surface, was used to crosslink decellularized AM (DAM) to prepare a novel vascular replacement material. The results showed that PA-fixed AM had excellent mechanical strength and resistance to enzymatic degradation as well as appropriate surface hydrophilicity. Among all samples, 2% PA-fixed specimen showed excellent human umbilical vein endothelial cells (HUVECs)-cytocompatibility and hemocompatibility. It could also stimulate the secretion of vascular endothelial growth factor and endothelin-1 from seeded HUVECs, indicating that PA might promote neovascularization after implantation of PA-fixed specimens. Also, 2% PA-fixed specimen could inhibit the secretion of tumor necrosis factor-αfrom co-cultured macrophages, thus might reduce the inflammatory response after sample implantation. Finally, the results ofex vivoblood test andin vivoexperiments confirmed our deduction that PA might promote neovascularization after implantation. All the results indicated that prepared PA-fixed DAM could be considered as a promising small-diameter vascular replacement material.
Collapse
Affiliation(s)
- Can Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xu Peng
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, People's Republic of China
| | - Hao Qi
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xu Wang
- Chengdu University of TCM, College of Acupuncture and Massage College, No. 37, Twelve Bridge Road, Chengdu, Sichuan Province 610075, People's Republic of China
| | - Xiaoshuang Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yuhang Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
3
|
A Dual-Mode Bioreactor System for Tissue Engineered Vascular Models. Ann Biomed Eng 2017; 45:1496-1510. [DOI: 10.1007/s10439-017-1813-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/11/2017] [Indexed: 12/13/2022]
|
4
|
Full Mimicking of Coronary Hemodynamics for Ex-Vivo Stimulation of Human Saphenous Veins. Ann Biomed Eng 2016; 45:884-897. [PMID: 27752921 DOI: 10.1007/s10439-016-1747-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/05/2016] [Indexed: 01/25/2023]
Abstract
After coronary artery bypass grafting, structural modifications of the saphenous vein wall lead to lumen narrowing in response to the altered hemodynamic conditions. Here we present the design of a novel ex vivo culture system conceived for mimicking central coronary artery hemodynamics, and we report the results of biomechanical stimulation experiments using human saphenous vein samples. The novel pulsatile system used an aortic-like pressure for forcing a time-dependent coronary-like resistance to obtain the corresponding coronary-like flow rate. The obtained pulsatile pressures and flow rates (diastolic/systolic: 80/120 mmHg and 200/100 mL/min, respectively) showed a reliable mimicking of the complex coronary hemodynamic environment. Saphenous vein segments from patients undergoing coronary artery bypass grafting (n = 12) were subjected to stimulation in our bioreactor with coronary pulsatile pressure/flow patterns or with venous-like perfusion. After 7-day stimulation, SVs were fixed and stained for morphometric evaluation and immunofluorescence. Results were compared with untreated segments of the same veins. Morphometric and immunofluorescence analysis revealed that 7 days of pulsatile stimulation: (i) did not affect integrity of the vessel wall and lumen perimeter, (ii) significantly decreased both intima and media thickness, (iii) led to partial endothelial denudation, and (iv) induced apoptosis in the vessel wall. These data are consistent with the early vessel remodeling events involved in venous bypass adaptation to arterial flow/pressure patterns. The pulsatile system proved to be a suitable device to identify ex vivo mechanical cues leading to graft adaptation.
Collapse
|
5
|
Schuerlein S, Schwarz T, Krziminski S, Gätzner S, Hoppensack A, Schwedhelm I, Schweinlin M, Walles H, Hansmann J. A versatile modular bioreactor platform for Tissue Engineering. Biotechnol J 2016; 12. [PMID: 27492568 PMCID: PMC5333457 DOI: 10.1002/biot.201600326] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 12/24/2022]
Abstract
Tissue Engineering (TE) bears potential to overcome the persistent shortage of donor organs in transplantation medicine. Additionally, TE products are applied as human test systems in pharmaceutical research to close the gap between animal testing and the administration of drugs to human subjects in clinical trials. However, generating a tissue requires complex culture conditions provided by bioreactors. Currently, the translation of TE technologies into clinical and industrial applications is limited due to a wide range of different tissue‐specific, non‐disposable bioreactor systems. To ensure a high level of standardization, a suitable cost‐effectiveness, and a safe graft production, a generic modular bioreactor platform was developed. Functional modules provide robust control of culture processes, e.g. medium transport, gas exchange, heating, or trapping of floating air bubbles. Characterization revealed improved performance of the modules in comparison to traditional cell culture equipment such as incubators, or peristaltic pumps. By combining the modules, a broad range of culture conditions can be achieved. The novel bioreactor platform allows using disposable components and facilitates tissue culture in closed fluidic systems. By sustaining native carotid arteries, engineering a blood vessel, and generating intestinal tissue models according to a previously published protocol the feasibility and performance of the bioreactor platform was demonstrated.
Collapse
Affiliation(s)
- Sebastian Schuerlein
- University Hospital Wuerzburg; Department Tissue Engineering and Regenerative Medicine (TERM); Wuerzburg Germany
| | - Thomas Schwarz
- Translational Center Wuerzburg of the Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB); Wuerzburg Germany
| | - Steffan Krziminski
- Translational Center Wuerzburg of the Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB); Wuerzburg Germany
| | - Sabine Gätzner
- University Hospital Wuerzburg; Department Tissue Engineering and Regenerative Medicine (TERM); Wuerzburg Germany
| | - Anke Hoppensack
- University Hospital Wuerzburg; Department Tissue Engineering and Regenerative Medicine (TERM); Wuerzburg Germany
| | - Ivo Schwedhelm
- University Hospital Wuerzburg; Department Tissue Engineering and Regenerative Medicine (TERM); Wuerzburg Germany
| | - Matthias Schweinlin
- University Hospital Wuerzburg; Department Tissue Engineering and Regenerative Medicine (TERM); Wuerzburg Germany
| | - Heike Walles
- University Hospital Wuerzburg; Department Tissue Engineering and Regenerative Medicine (TERM); Wuerzburg Germany
- Translational Center Wuerzburg of the Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB); Wuerzburg Germany
| | - Jan Hansmann
- University Hospital Wuerzburg; Department Tissue Engineering and Regenerative Medicine (TERM); Wuerzburg Germany
- Translational Center Wuerzburg of the Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB); Wuerzburg Germany
| |
Collapse
|
6
|
Hoenicka M, Kaspar M, Schmid C, Liebold A, Schrammel S. Contact-free monitoring of vessel graft stiffness - proof of concept as a tool for vascular tissue engineering. J Tissue Eng Regen Med 2016; 11:2828-2835. [PMID: 27257044 DOI: 10.1002/term.2186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 03/04/2016] [Accepted: 03/14/2016] [Indexed: 01/03/2023]
Abstract
Tissue-engineered vessel grafts have to mimic the biomechanical properties of native blood vessels. Manufacturing processes often condition grafts to adapt them to the target flow conditions. Graft stiffness is influenced by material properties and dimensions and determines graft compliance. This proof-of-concept study evaluated a contact-free method to monitor biomechanical properties without compromising sterility. Forced vibration response analysis was performed on human umbilical vein (HUV) segments mounted in a buffer-filled tubing system. A linear motor and a dynamic signal analyser were used to excite the fluid by white noise (0-200 Hz). Vein responses were read out by laser triangulation and analysed by fast Fourier transformation. Modal analysis was performed by monitoring multiple positions of the vessel surface. As an inverse model of graft stiffening during conditioning, HUV were digested proteolytically, and the course of natural frequencies (NFs) was monitored over 120 min. Human umbilical vein showed up to five modes with NFs in the range of 5-100 Hz. The first natural frequencies of HUV did not alter over time while incubated in buffer (p = 0.555), whereas both collagenase (-35%, p = 0.0061) and elastase (-45%, p < 0.001) treatments caused significant decreases of NF within 120 min. Decellularized HUV showed similar results, indicating that changes of the extracellular matrix were responsible for the observed shift in NF. Performing vibration response analysis on vessel grafts is feasible without compromising sterility or integrity of the samples. This technique allows direct measurement of stiffness as an important biomechanical property, obviating the need to monitor surrogate parameters. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Markus Hoenicka
- Department of Cardiothoracic and Vascular Surgery, University of Ulm Medical Centre, Ulm, Germany.,Department of Cardiothoracic Surgery, University of Regensburg Medical Centre, Regensburg, Germany
| | - Marcel Kaspar
- Ostbayerische Technische Hochschule (OTH) Regensburg, FB Maschinenbau, Regensburg, Germany
| | - Christof Schmid
- Department of Cardiothoracic Surgery, University of Regensburg Medical Centre, Regensburg, Germany
| | - Andreas Liebold
- Department of Cardiothoracic and Vascular Surgery, University of Ulm Medical Centre, Ulm, Germany
| | - Siegfried Schrammel
- Ostbayerische Technische Hochschule (OTH) Regensburg, FB Maschinenbau, Regensburg, Germany
| |
Collapse
|
7
|
Parvin Nejad S, Blaser MC, Santerre JP, Caldarone CA, Simmons CA. Biomechanical conditioning of tissue engineered heart valves: Too much of a good thing? Adv Drug Deliv Rev 2016; 96:161-75. [PMID: 26555371 DOI: 10.1016/j.addr.2015.11.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/23/2015] [Accepted: 11/02/2015] [Indexed: 12/13/2022]
Abstract
Surgical replacement of dysfunctional valves is the primary option for the treatment of valvular disease and congenital defects. Existing mechanical and bioprosthetic replacement valves are far from ideal, requiring concomitant anticoagulation therapy or having limited durability, thus necessitating further surgical intervention. Heart valve tissue engineering (HVTE) is a promising alternative to existing replacement options, with the potential to synthesize mechanically robust tissue capable of growth, repair, and remodeling. The clinical realization of a bioengineered valve relies on the appropriate combination of cells, biomaterials, and/or bioreactor conditioning. Biomechanical conditioning of valves in vitro promotes differentiation of progenitor cells to tissue-synthesizing myofibroblasts and prepares the construct to withstand the complex hemodynamic environment of the native valve. While this is a crucial step in most HVTE strategies, it also may contribute to fibrosis, the primary limitation of engineered valves, through sustained myofibrogenesis. In this review, we examine the progress of HVTE and the role of mechanical conditioning in the synthesis of mechanically robust tissue, and suggest approaches to achieve myofibroblast quiescence and prevent fibrosis.
Collapse
|
8
|
Zhou J, Hu S, Ding J, Xu J, Shi J, Dong N. Tissue engineering of heart valves: PEGylation of decellularized porcine aortic valve as a scaffold for in vitro recellularization. Biomed Eng Online 2013; 12:87. [PMID: 24006837 PMCID: PMC3774219 DOI: 10.1186/1475-925x-12-87] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/04/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Poly (ethylene glycol) (PEG) has attracted broad interest for tissue engineering applications. The aim of this study was to synthesize 4-arm -PEG-20kDa with the terminal group of diacrylate (4-arm-PEG-DA) and evaluate its dual functionality for decellularized porcine aortic valve (DAV) based on its mechanical and biological properties. METHODS 4-arm-PEG-DA was synthesized by graft copolymerization of linear PEG 20,000 monomers, and characterized by IR1H NMR and 13C NMR; PEGylation of DAV was achieved by the Michael addition reaction between propylene acyl and thiol, its effect was tested by uniaxial planar tensile testing, hematoxylin and eosin (HE) and scanning electron microscopy (SEM). Gly-Arg-Gly-Asp-Ser-Pro-Cys (GRGDSPC) peptides and vascular endothelial growth factor-165 (VEGF165) were conjugated onto DAV by branched PEG-DA (GRGDSPC-PEG-DAV-PEG-VEGF165). RESULTS Mechanical testing confirmed that PEG-cross-linking significantly enhanced the tensile strength of DAV. Immunofluoresce confirmed the GRGDSPC peptides and VEGF165 were conjugated effectively onto DAV; the quantification of conjunction was completed roughly using spectrophotometry and ELISA. The human umbilical vein endothelial cells (HUVECs) grew and spread well on the GRGDSPC-PEG-DAV-PEG-VEGF165. CONCLUSIONS Therefore, PEGylation of DAV not only can improve the tensile strength of DAV, and can also mediate the conjugation of bioactive molecule (VEGF165 and GRGDSPC peptides) on DAV, which might be suitable for further development of tissue engineered heart valve.
Collapse
Affiliation(s)
- Jianliang Zhou
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shidong Hu
- Medical College of Nanchang University, Nanchang 330006, China
| | - Jingli Ding
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jianjun Xu
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, the Union Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, the Union Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
9
|
Converse GL, Buse EE, Hopkins RA. Bioreactors and operating room centric protocols for clinical heart valve tissue engineering. PROGRESS IN PEDIATRIC CARDIOLOGY 2013. [DOI: 10.1016/j.ppedcard.2013.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Piola M, Prandi F, Bono N, Soncini M, Penza E, Agrifoglio M, Polvani G, Pesce M, Fiore GB. A compact and automated ex vivo vessel culture system for the pulsatile pressure conditioning of human saphenous veins. J Tissue Eng Regen Med 2013; 10:E204-15. [PMID: 23897837 DOI: 10.1002/term.1798] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/29/2013] [Accepted: 07/08/2013] [Indexed: 11/05/2022]
Abstract
Saphenous vein (SV) graft disease represents an unresolved problem in coronary artery bypass grafting (CABG). After CABG, a progressive remodelling of the SV wall occurs, possibly leading to occlusion of the lumen, a process termed 'intima hyperplasia' (IH). The investigation of cellular and molecular aspects of IH progression is a primary end-point toward the generation of occlusion-free vessels that may be used as 'life-long' grafts. While animal transplantation models have clarified some of the remodelling factors, the pathology of human SV is far from being understood. This is also due to the lack of devices able to reproduce the altered mechanical load encountered by the SV after CABG. This article describes the design of a novel ex vivo vein culture system (EVCS) capable of replicating the altered pressure pattern experienced by SV after CABG, and reports the results of a preliminary biomechanical conditioning experimental campaign on SV segments. The EVCS applied a CAGB-like pressure (80-120 mmHg) or a venous-like perfusion (3 ml/min, 5 mmHg) conditioning to the SVs, keeping the segments viable in a sterile environment during 7 day culture experiments. After CABG-like pressure conditioning, SVs exhibited a decay of the wall thickness, an enlargement of the luminal perimeter, a rearrangement of the muscle fibres and partial denudation of the endothelium. Considering these preliminary results, the EVCS is a suitable system to study the mechanical attributes of SV graft disease, and its use, combined with a well-designed biological protocol, may be of help in elucidating the cellular and molecular mechanisms involved in SV graft disease.
Collapse
Affiliation(s)
- Marco Piola
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milan, Italy
| | - Francesca Prandi
- Laboratorio di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Nina Bono
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milan, Italy
| | - Monica Soncini
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milan, Italy
| | - Eleonora Penza
- II Divisione di Cardiochirurgia, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Marco Agrifoglio
- Dipartimento di Scienze Cliniche e di Comunità, Università di Milano, Milan, Italy
| | - Gianluca Polvani
- Dipartimento di Scienze Cliniche e di Comunità, Università di Milano, Milan, Italy
| | - Maurizio Pesce
- Laboratorio di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | | |
Collapse
|
11
|
Abstract
The surgical repair of complex congenital heart defects frequently requires additional tissue in various forms, such as patches, conduits, and valves. These devices often require replacement over a patient's lifetime because of degeneration, calcification, or lack of growth. The main new technologies in congenital cardiac surgery aim at, on the one hand, avoiding such reoperations and, on the other hand, improving long-term outcomes of devices used to repair or replace diseased structural malformations. These technologies are: 1) new patches: CorMatrix® patches made of decellularized porcine small intestinal submucosa extracellular matrix; 2) new devices: the Melody® valve (for percutaneous pulmonary valve implantation) and tissue-engineered valved conduits (either decellularized scaffolds or polymeric scaffolds); and 3) new emerging fields, such as antenatal corrective cardiac surgery or robotically assisted congenital cardiac surgical procedures. These new technologies for structural malformation surgery are still in their infancy but certainly present great promise for the future. But the translation of these emerging technologies to routine health care and public health policy will also largely depend on economic considerations, value judgments, and political factors.
Collapse
Affiliation(s)
- David Kalfa
- Pediatric Cardiac Surgery, Columbia University, Morgan Stanley Children's Hospital of New York-Presbyterian, New York, USA
| | | |
Collapse
|
12
|
Spoon DB, Tefft BJ, Lerman A, Simari RD. Challenges of biological valve development. Interv Cardiol 2013. [DOI: 10.2217/ica.13.21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Diamantouros SE, Hurtado-Aguilar LG, Schmitz-Rode T, Mela P, Jockenhoevel S. Pulsatile perfusion bioreactor system for durability testing and compliance estimation of tissue engineered vascular grafts. Ann Biomed Eng 2013; 41:1979-89. [PMID: 23681651 DOI: 10.1007/s10439-013-0823-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/02/2013] [Indexed: 10/26/2022]
Abstract
The aim of the study was to design, construct, and test a bioreactor for the conditioning of tissue-engineered vascular grafts under physiological pressure, flow, and environmental conditions and up to supra-physiological pulse frequencies (5 Hz) as the first step towards durability testing. The system also allows the calculation of the compliance of vascular grafts as an indicator of tissue development. The system relies on the combination of a pulse-free pump and a linear magnetic actuator applying pressure pulses with controllable profile and frequency. The compliance estimation is based on the accurate measurement of the vessel's diameter by means of an optical micrometre. Software-based interface enables the control of a magnetic actuator and data acquisition to monitor the conditions of the system. Porcine carotid arteries were tested in the bioreactor for up to 4 weeks at different pulse frequencies. The tissue was analysed by means of histology and immunohistochemistry. Physiological pressures (~80 and 120 mmHg for diastolic and systolic phase, respectively) were generated in the system at frequencies between 1 and 5 Hz. The environmental conditions within the bioreactor were monitored and online determination of the compliance of the arteries was achieved under sterile conditions. Conditioning of the grafts resulted in the abundant production of ECM proteins. In conclusion, we developed a bioreactor for the conditioning of tissue engineered vascular grafts under controlled pressure conditions. The system is suitable to perform durability tests at supra-physiological pulse rates and physiological pressure levels under continuous monitoring of environmental variables (pH, pO2, pCO2, and temperature) and compliance.
Collapse
Affiliation(s)
- Stefanos E Diamantouros
- Department of Tissue Engineering & Textile Implants, AME-Helmholtz Institute for Biomedical Engineering, Aachen University, Pauwelsstrasse 20, 52074, Aachen, Germany
| | | | | | | | | |
Collapse
|
14
|
König F, Hollweck T, Pfeifer S, Reichart B, Wintermantel E, Hagl C, Akra B. A Pulsatile Bioreactor for Conditioning of Tissue-Engineered Cardiovascular Constructs under Endoscopic Visualization. J Funct Biomater 2012; 3:480-96. [PMID: 24955628 PMCID: PMC4031004 DOI: 10.3390/jfb3030480] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/27/2012] [Accepted: 07/09/2012] [Indexed: 12/28/2022] Open
Abstract
Heart valve disease (HVD) is a globally increasing problem and accounts for thousands of deaths yearly. Currently end-stage HVD can only be treated by total valve replacement, however with major drawbacks. To overcome the limitations of conventional substitutes, a new clinical approach based on cell colonization of artificially manufactured heart valves has been developed. Even though this attempt seems promising, a confluent and stable cell layer has not yet been achieved due to the high stresses present in this area of the human heart. This study describes a bioreactor with a new approach to cell conditioning of tissue engineered heart valves. The bioreactor provides a low pulsatile flow that grants the correct opening and closing of the valve without high shear stresses. The flow rate can be regulated allowing a steady and sensitive conditioning process. Furthermore, the correct functioning of the valve can be monitored by endoscope surveillance in real-time. The tubeless and modular design allows an accurate, simple and faultless assembly of the reactor in a laminar flow chamber. It can be concluded that the bioreactor provides a strong tool for dynamic pre-conditioning and monitoring of colonized heart valve prostheses physiologically exposed to shear stress.
Collapse
Affiliation(s)
- Fabian König
- Chair of Medical Engineering, Technical University Munich, Boltzmannstrasse 15, Garching 85748, Germany.
| | - Trixi Hollweck
- Department of Cardiac Surgery, Medical Center Munich University, Marchioninistr. 15, Munich 81377, Germany.
| | - Stefan Pfeifer
- Chair of Medical Engineering, Technical University Munich, Boltzmannstrasse 15, Garching 85748, Germany.
| | - Bruno Reichart
- Department of Cardiac Surgery, Medical Center Munich University, Marchioninistr. 15, Munich 81377, Germany.
| | - Erich Wintermantel
- Chair of Medical Engineering, Technical University Munich, Boltzmannstrasse 15, Garching 85748, Germany.
| | - Christian Hagl
- Department of Cardiac Surgery, Medical Center Munich University, Marchioninistr. 15, Munich 81377, Germany.
| | - Bassil Akra
- Department of Cardiac Surgery, Medical Center Munich University, Marchioninistr. 15, Munich 81377, Germany.
| |
Collapse
|
15
|
Leopaldi AM, Vismara R, Lemma M, Valerio L, Cervo M, Mangini A, Contino M, Redaelli A, Antona C, Fiore GB. In vitro hemodynamics and valve imaging in passive beating hearts. J Biomech 2012; 45:1133-9. [PMID: 22387122 DOI: 10.1016/j.jbiomech.2012.02.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 02/03/2012] [Accepted: 02/08/2012] [Indexed: 10/28/2022]
Abstract
Due to their high complexity, surgical approaches to valve repair may benefit from the use of in vitro simulators both for training and for the investigation of those measures which can lead to better clinical results. In vitro tests are intrinsically more effective when all the anatomical substructures of the valvular complexes are preserved. In this work, a mock apparatus able to house an entire explanted porcine heart and subject it to pulsatile fluid-dynamic conditions was developed, in order to enable the hemodynamic analysis of simulated surgical procedures and the imaging of the valvular structures. The mock loop's hydrodynamic design was based on an ad-hoc defined lumped-parameter model. The left ventricle of an entire swine heart was dynamically pressurized by an external computer-controlled pulse duplicator. The ascending aorta was connected to a hydraulic circuit which simulated the input impedance of the systemic circulation; a reservoir passively filled the left atrium. Accesses for endoscopic imaging were located in the apex of the left ventricle and in the aortic root. The experimental pressure and flow tracings were comparable with the typical in vivo curves; a mean flow of 3.5±0.1l pm and a mean arterial pressure of 101±2 mmHg was obtained. High-quality echographic and endoscopic video recordings demonstrated the system's excellent potential in the observation of the cardiac structures dynamics. The proposed mock loop represents a suitable in vitro system for the testing of minimally-invasive cardiovascular devices and surgical procedures for heart valve repair.
Collapse
Affiliation(s)
- A M Leopaldi
- ForCardio.Lab, Università di Milano, Politecnico di Milano, Milano, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kreitz S, Dohmen G, Hasken S, Schmitz-Rode T, Mela P, Jockenhoevel S. Nondestructive Method to Evaluate the Collagen Content of Fibrin-Based Tissue Engineered Structures Via Ultrasound. Tissue Eng Part C Methods 2011; 17:1021-6. [DOI: 10.1089/ten.tec.2010.0669] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Sebastian Kreitz
- Department of Tissue Engineering and Biomaterials, Institute of Applied Medical Engineering, Helmholtz Institute of the RWTH Aachen University, Aachen, Germany
| | - Guido Dohmen
- Department of Thoracic and Cardiovascular Surgery, University Hospital Aachen, Aachen, Germany
| | - Stefan Hasken
- Department of Tissue Engineering and Biomaterials, Institute of Applied Medical Engineering, Helmholtz Institute of the RWTH Aachen University, Aachen, Germany
| | - Thomas Schmitz-Rode
- Department of Tissue Engineering and Biomaterials, Institute of Applied Medical Engineering, Helmholtz Institute of the RWTH Aachen University, Aachen, Germany
| | - Petra Mela
- Department of Tissue Engineering and Biomaterials, Institute of Applied Medical Engineering, Helmholtz Institute of the RWTH Aachen University, Aachen, Germany
| | - Stefan Jockenhoevel
- Department of Tissue Engineering and Biomaterials, Institute of Applied Medical Engineering, Helmholtz Institute of the RWTH Aachen University, Aachen, Germany
| |
Collapse
|
17
|
Heart valve tissue engineering: quo vadis? Curr Opin Biotechnol 2011; 22:698-705. [PMID: 21315575 DOI: 10.1016/j.copbio.2011.01.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 01/18/2011] [Indexed: 01/08/2023]
Abstract
Surgical replacement of diseased heart valves by mechanical and tissue valve substitutes is now commonplace and generally enhances survival and quality of life. However, a fundamental problem inherent to the use of existing mechanical and biological prostheses in the pediatric population is their failure to grow, repair, and remodel. A tissue engineered heart valve could, in principle, accommodate these requirements, especially somatic growth. This review provides a brief overview of the field of heart valve tissue engineering, with emphasis on recent studies and evolving concepts, especially those that establish design criteria and key hurdles that must be surmounted before clinical implementation.
Collapse
|