1
|
Snoeijink TJ, van der Hoek JL, Mirgolbabaee H, Vlogman TG, Roosen J, Nijsen JFW, Groot Jebbink E. In Vitro Investigation of Microcatheter Behavior During Microsphere Injection in Transarterial Radioembolization. J Endovasc Ther 2025:15266028251318953. [PMID: 39989304 DOI: 10.1177/15266028251318953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
PURPOSE To experimentally investigate the behavior of a clinically used microcatheter during transarterial radioembolization (TARE) microsphere injection in a successively bifurcating in vitro model. MATERIALS AND METHODS A symmetrical phantom was developed which bifurcated 3 times into 8 outlets. A blood-mimicking fluid was pumped through the phantom using a physiological representative waveform. Holmium-165 microspheres were injected in a pulsed manner at 3 different locations using a standard microcatheter and a rigid counterpart with same dimensions as a control. Motion of the catheter was studied with a top- and side-view camera on the phantom. Microspheres were collected at each outlet and their distribution over the 8 outlets was analyzed. RESULTS Due to the pulsatile flow in the phantom, strengthened by the pulsatile microsphere injection, the clinical catheter showed maximum displacements of 0.87 mm within a vessel with a diameter of 3.6 mm. This motion resulted in a different microsphere distribution for the clinical catheter compared with the rigid counterpart (75.9% vs 49.4% of the microspheres went to outlet 1-4, respectively). CONCLUSION In this in vitro model, the motion of the clinical catheter affected distribution of microspheres. Since the pulsatile administration of microspheres resulted in increased motion of the clinical catheter, standardizing microsphere administration could be beneficial to reduce interprocedural differences in TARE. CLINICAL IMPACT Our study demonstrated that microsphere distribution during transarterial radioembolization (TARE) is affected by catheter motion. Furthermore, increased catheter motion was observed as a result of the injection profile. Predictive tools such as the contrast CBCT and scout dose use different injection profiles compared to therapeutic TARE injections, potentially altering catheter tip behaviour and microsphere distribution, which could compromise their predictive values. Additionally, current TARE microsphere injection guidelines provide limited details, which may lead to variability across institutes and interventional radiologists. Standardizing injection techniques could reduce catheter motion variability and may facilitate more consistent and predictable microsphere distribution patterns.
Collapse
Affiliation(s)
- Tess Josien Snoeijink
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Jan Lucas van der Hoek
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Hadi Mirgolbabaee
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands
- Physics of Fluids Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Tristan Gerard Vlogman
- Department of Thermal and Fluid Engineering, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands
| | - Joey Roosen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Erik Groot Jebbink
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
2
|
Accuracy and reproducibility of a cone beam CT-based virtual parenchymal perfusion algorithm in the prediction of SPECT/CT anatomical and volumetric results during the planification of radioembolization for HCC. Eur Radiol 2023; 33:3510-3520. [PMID: 36651956 DOI: 10.1007/s00330-023-09390-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/09/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To evaluate anatomical and volumetric predictability of a cone beam computed tomography (CBCT)-based virtual parenchymal perfusion (VPP) software for the single-photon-emission computed tomography (SPECT)/CT imaging results during the work-up for transarterial radioembolization (TARE) procedure in patients with hepatocellular carcinoma (HCC). METHODS VPP was evaluated retrospectively on CBCT data of patients treated by TARE for HCC. 99mTc macroaggregated albumin particles (99mTc-MAA) uptake territories on work-up SPECT/CT was used as ground truth for the evaluation. Semi-quantitative evaluation consisted of the ranking of visual consistency of the parenchymal enhancement and portal vein tumoral involvement on VPP and 99mTc-MAA SPECT/CT, using a three-rank scale and two-rank scale, respectively. Inter-reader agreement was evaluated using a kappa coefficient. Quantitative evaluation included absolute volume error calculation and Pearson correlation between volumes enhanced territories on VPP and 99mTc-MAA SPECT/CT. RESULTS Fifty-two CBCTs were performed in 33 included patients. Semi-quantitative evaluation showed a good concordance between actual 99mTc-MAA uptake and the virtual enhanced territories in 73% and 75% of cases; a mild concordance in 12% and 10% and a poor concordance in 15%, for the two readers. Kappa coefficient was 0.86. Portal vein involvement evaluation showed a good concordance in 58.3% and 66.7% for the two readers, respectively, with a kappa coefficient of 0.82. Quantitative evaluation showed a volume error of 0.46 ± 0.78 mL [0.01-3.55], and Pearson R2 factor at 0.75 with a p value < 0.01. CONCLUSION CBCT-based VPP software is accurate and reliable to predict 99mTc-MAA SPECT/CT anatomical and volumetric results in HCC patients during TARE. KEY POINTS • Virtual parenchymal perfusion (VPP) software is accurate and reliable in the prediction of 99mTc-MAA SPECT volumetric and targeting results in HCC patients during transarterial radioembolization (TARE). • VPP software may be used per-operatively to optimize the microcatheter position for 90Y infusion allowing precise tumor targeting while preserving non-tumoral parenchyma. • Post-operatively, VPP software may allow an accurate estimation of the perfused volume by each arterial branch and, thus, a precise 90Y dosimetry for TARE procedures.
Collapse
|
3
|
Zhang Q, Lee KS, Talenfeld AD, Spincemaille P, Prince MR, Wang Y. Prediction of Lung Shunt Fraction for Yttrium-90 Treatment of Hepatic Tumors Using Dynamic Contrast Enhanced MRI with Quantitative Perfusion Processing. Tomography 2022; 8:2687-2697. [PMID: 36412683 PMCID: PMC9680251 DOI: 10.3390/tomography8060224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
There is no noninvasive method to estimate lung shunting fraction (LSF) in patients with liver tumors undergoing Yttrium-90 (Y90) therapy. We propose to predict LSF from noninvasive dynamic contrast enhanced (DCE) MRI using perfusion quantification. Two perfusion quantification methods were used to process DCE MRI in 25 liver tumor patients: Kety's tracer kinetic modeling with a delay-fitted global arterial input function (AIF) and quantitative transport mapping (QTM) based on the inversion of transport equation using spatial deconvolution without AIF. LSF was measured on SPECT following Tc-99m macroaggregated albumin (MAA) administration via hepatic arterial catheter. The patient cohort was partitioned into a low-risk group (LSF ≤ 10%) and a high-risk group (LSF > 10%). Results: In this patient cohort, LSF was positively correlated with QTM velocity |u| (r = 0.61, F = 14.0363, p = 0.0021), and no significant correlation was observed with Kety's parameters, tumor volume, patient age and gender. Between the low LSF and high LSF groups, there was a significant difference for QTM |u| (0.0760 ± 0.0440 vs. 0.1822 ± 0.1225 mm/s, p = 0.0011), and Kety's Ktrans (0.0401 ± 0.0360 vs 0.1198 ± 0.3048, p = 0.0471) and Ve (0.0900 ± 0.0307 vs. 0.1495 ± 0.0485, p = 0.0114). The area under the curve (AUC) for distinguishing between low LSF and high LSF was 0.87 for |u|, 0.80 for Ve and 0.74 for Ktrans. Noninvasive prediction of LSF is feasible from DCE MRI with QTM velocity postprocessing.
Collapse
Affiliation(s)
- Qihao Zhang
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | - Yi Wang
- Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
4
|
Bomberna T, Vermijs S, Lejoly M, Verslype C, Bonne L, Maleux G, Debbaut C. A Hybrid Particle-Flow CFD Modeling Approach in Truncated Hepatic Arterial Trees for Liver Radioembolization: A Patient-specific Case Study. Front Bioeng Biotechnol 2022; 10:914979. [PMID: 35711632 PMCID: PMC9197434 DOI: 10.3389/fbioe.2022.914979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/11/2022] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer. At its intermediate, unresectable stage, HCC is typically treated by local injection of embolizing microspheres in the hepatic arteries to selectively damage tumor tissue. Interestingly, computational fluid dynamics (CFD) has been applied increasingly to elucidate the impact of clinically variable parameters, such as injection location, on the downstream particle distribution. This study aims to reduce the computational cost of such CFD approaches by introducing a novel truncation algorithm to simplify hepatic arterial trees, and a hybrid particle-flow modeling approach which only models particles in the first few bifurcations. A patient-specific hepatic arterial geometry was pruned at three different levels, resulting in three trees: Geometry 1 (48 outlets), Geometry 2 (38 outlets), and Geometry 3 (17 outlets). In each geometry, 1 planar injection and 3 catheter injections (each with different tip locations) were performed. For the truncated geometries, it was assumed that, downstream of the truncated outlets, particles distributed themselves proportional to the blood flow. This allowed to compare the particle distribution in all 48 "outlets" for each geometry. For the planar injections, the median difference in outlet-specific particle distribution between Geometry 1 and 3 was 0.21%; while the median difference between outlet-specific flow and particle distribution in Geometry 1 was 0.40%. Comparing catheter injections, the maximum median difference in particle distribution between Geometry 1 and 3 was 0.24%, while the maximum median difference between particle and flow distribution was 0.62%. The results suggest that the hepatic arterial tree might be reliably truncated to estimate the particle distribution in the full-complexity tree. In the resulting hybrid particle-flow model, explicit particle modeling was only deemed necessary in the first few bifurcations of the arterial tree. Interestingly, using flow distribution as a surrogate for particle distribution in the entire tree was considerably less accurate than using the hybrid model, although the difference was much higher for catheter injections than for planar injections. Future work should focus on replicating and experimentally validating these results in more patient-specific geometries.
Collapse
Affiliation(s)
- Tim Bomberna
- IBiTech-Biommeda, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Saar Vermijs
- IBiTech-Biommeda, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Maryse Lejoly
- Department of Radiology and Medical Imaging, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Chris Verslype
- Department of Clinical Digestive Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Lawrence Bonne
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Geert Maleux
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium.,Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Charlotte Debbaut
- IBiTech-Biommeda, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Taebi A, Janibek N, Goldman R, Pillai R, Vu CT, Roncali E. The Impact of Injection Distance to Bifurcations on Yttrium-90 Distribution in Liver Cancer Radioembolization. J Vasc Interv Radiol 2022; 33:668-677.e1. [PMID: 35301128 PMCID: PMC9156550 DOI: 10.1016/j.jvir.2022.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/22/2022] [Accepted: 03/06/2022] [Indexed: 01/26/2023] Open
Abstract
PURPOSE To model the effect of the injection location on the distribution of yttrium-90 (90Y) microspheres in the liver during radioembolization using computational simulation and to determine the potential effects of radial movements of the catheter tip. MATERIALS AND METHODS Numerical studies were conducted using images from a representative patient with hepatocellular carcinoma. The right hepatic artery (RHA) was segmented from contrast-enhanced cone-beam computed tomography scans. The blood flow was investigated in the trunk of the RHA using numerical simulations for 6 injection position scenarios at 2 sites located at a distance of approximately 5 and 20 mm upstream of the first bifurcation (RHA diameters of approximately 4.6 mm). The 90Y delivery to downstream vessels was calculated from the simulated hepatic artery hemodynamics. RESULTS Varying the injection location along the RHA and across the vessel cross-section resulted in different simulated microsphere distributions in the downstream vascular bed. When the catheter tip was 5 mm upstream of the bifurcation, 90Y distribution in the downstream branches varied by as much as 53% with a 1.5-mm radial movement of the tip. However, the catheter radial movement had a weaker effect on the microsphere distribution when the injection plane was farther from the first bifurcation (20 mm), with a maximum delivery variation of 9% to a downstream branch. CONCLUSIONS An injection location far from bifurcations is recommended to minimize the effect of radial movements of the catheter tip on the microsphere distribution.
Collapse
Affiliation(s)
- Amirtaha Taebi
- Department of Agricultural and Biological Engineering, Mississippi State University
| | - Nursultan Janibek
- Department of Mechanical and Aerospace Engineering, University of California Davis
| | - Roger Goldman
- Department of Radiology, University of California Davis
| | - Rex Pillai
- Department of Radiology, University of California Davis
| | | | - Emilie Roncali
- Department of Radiology, University of California Davis,Department of Biomedical Engineering, University of California Davis
| |
Collapse
|
6
|
Ortega J, Antón R, Ramos JC, Rivas A, S. Larraona G, Sangro B, Bilbao JI, Aramburu J. Computational study of a novel catheter for liver radioembolization. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3577. [PMID: 35094497 PMCID: PMC9286848 DOI: 10.1002/cnm.3577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/16/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Radioembolization (RE) is a medical treatment for primary and secondary liver cancer that involves the transcatheter intraarterial delivery of micron-sized and radiation-emitting microspheres, with the goal of improving microsphere deposition in the tumoral bed while sparing healthy tissue. An increasing number of in vitro and in silico studies on RE in the literature suggest that the particle injection velocity, spatial location of the catheter tip and catheter type are important parameters in particle distribution. The present in silico study assesses the performance of a novel catheter design that promotes particle dispersion near the injection point, with the goal of generating a particle distribution that mimics the flow split to facilitate tumour targeting. The design is based on two factors: the direction and the velocity at which particles are released from the catheter. A series of simulations was performed with the catheter inserted at an idealised hepatic artery tree with physiologically realistic boundary conditions. Two longitudinal microcatheter positions in the first generation of the tree were studied by analysing the performance of the catheter in terms of the outlet-to-outlet particle distribution and split flow matching. The results show that the catheter with the best performance is one with side holes on the catheter wall and a closed frontal tip. This catheter promotes a flow-split-matching particle distribution, which improves as the injection crossflow increases.
Collapse
Affiliation(s)
- Julio Ortega
- Escuela de Ingeniería MecánicaPontificia Universidad Católica de ValparaísoQuilpuéChile
- Universidad de NavarraTecnun ‐ Escuela de IngenieríaDonostia‐San SebastiánSpain
| | - Raúl Antón
- Universidad de NavarraTecnun ‐ Escuela de IngenieríaDonostia‐San SebastiánSpain
- Instituto de Investigación Sanitaria de NavarraIdiSNAPamplonaSpain
| | - Juan Carlos Ramos
- Universidad de NavarraTecnun ‐ Escuela de IngenieríaDonostia‐San SebastiánSpain
| | - Alejandro Rivas
- Universidad de NavarraTecnun ‐ Escuela de IngenieríaDonostia‐San SebastiánSpain
| | - Gorka S. Larraona
- Universidad de NavarraTecnun ‐ Escuela de IngenieríaDonostia‐San SebastiánSpain
| | - Bruno Sangro
- Instituto de Investigación Sanitaria de NavarraIdiSNAPamplonaSpain
| | - José Ignacio Bilbao
- Instituto de Investigación Sanitaria de NavarraIdiSNAPamplonaSpain
- Department of RadiologyClínica Universidad de NavarraPamplonaSpain
| | - Jorge Aramburu
- Universidad de NavarraTecnun ‐ Escuela de IngenieríaDonostia‐San SebastiánSpain
| |
Collapse
|
7
|
Gulec SA, McGoron AJ. Radiomicrosphere Dosimetry: Principles and Current State of the Art. Semin Nucl Med 2022; 52:215-228. [DOI: 10.1053/j.semnuclmed.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Aramburu J, Antón R, Rodríguez-Fraile M, Sangro B, Bilbao JI. Computational Fluid Dynamics Modeling of Liver Radioembolization: A Review. Cardiovasc Intervent Radiol 2021; 45:12-20. [PMID: 34518913 PMCID: PMC8716346 DOI: 10.1007/s00270-021-02956-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022]
Abstract
Yttrium-90 radioembolization (RE) is a widely used transcatheter intraarterial therapy for patients with unresectable liver cancer. In the last decade, computer simulations of hepatic artery hemodynamics during RE have been performed with the aim of better understanding and improving the therapy. In this review, we introduce the concept of computational fluid dynamics (CFD) modeling with a clinical perspective and we review the CFD models used to study RE from the fluid mechanics point of view. Finally, we show what CFD simulations have taught us about the hemodynamics during RE, the current capabilities of CFD simulations of RE, and we suggest some future perspectives.
Collapse
Affiliation(s)
- Jorge Aramburu
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain.
| | - Raúl Antón
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
| | - Macarena Rodríguez-Fraile
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain.,Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Bruno Sangro
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain.,Liver Unit, Clínica Universidad de Navarra and CIBEREHD, 31008, Pamplona, Spain
| | - José Ignacio Bilbao
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain.,Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| |
Collapse
|
9
|
Lin Z, Chen R, Gao B, Qin S, Wu B, Liu J, Cai XC. A highly parallel simulation of patient-specific hepatic flows. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3451. [PMID: 33609008 DOI: 10.1002/cnm.3451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/29/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
Computational hemodynamics is being developed as an alternative approach for assisting clinical diagnosis and treatment planning for liver diseases. The technology is non-invasive, but the computational time could be high when the full geometry of the blood vessels is taken into account. Existing approaches use either one-dimensional model of the artery or simplified three-dimensional tubular geometry in order to reduce the computational time, but the accuracy is sometime compromised, for example, when simulating blood flows in arteries with plaque. In this work, we study a highly parallel method for the transient incompressible Navier-Stokes equations for the simulation of the blood flows in the full three-dimensional patient-specific hepatic artery, portal vein and hepatic vein. As applications, we also simulate the flow in a patient with hepatectomy and calculate the S (PPG). One of the advantages of simulating blood flows in all hepatic vessels is that it provides a direct estimate of the PPG, which is a gold standard value to assess the portal hypertension. Moreover, the robustness and scalability of the algorithm are also investigated. A 83% parallel efficiency is achieved for solving a problem with 7 million elements on a supercomputer with more than 1000 processor cores.
Collapse
Affiliation(s)
- Zeng Lin
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Key Laboratory for Exascale Engineering and Scientific Computing, Shenzhen, China
| | - Rongliang Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Key Laboratory for Exascale Engineering and Scientific Computing, Shenzhen, China
| | - Beibei Gao
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanlin Qin
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bokai Wu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jia Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Key Laboratory for Exascale Engineering and Scientific Computing, Shenzhen, China
| | - Xiao-Chuan Cai
- Department of Mathematics, University of Macau, Macau, China
| |
Collapse
|
10
|
CFD Simulations of Radioembolization: A Proof-of-Concept Study on the Impact of the Hepatic Artery Tree Truncation. MATHEMATICS 2021. [DOI: 10.3390/math9080839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Radioembolization (RE) is a treatment for patients with liver cancer, one of the leading cause of cancer-related deaths worldwide. RE consists of the transcatheter intraarterial infusion of radioactive microspheres, which are injected at the hepatic artery level and are transported in the bloodstream, aiming to target tumors and spare healthy liver parenchyma. In paving the way towards a computer platform that allows for a treatment planning based on computational fluid dynamics (CFD) simulations, the current simulation (model preprocess, model solving, model postprocess) times (of the order of days) make the CFD-based assessment non-viable. One of the approaches to reduce the simulation time includes the reduction in size of the simulated truncated hepatic artery. In this study, we analyze for three patient-specific hepatic arteries the impact of reducing the geometry of the hepatic artery on the simulation time. Results show that geometries can be efficiently shortened without impacting greatly on the microsphere distribution.
Collapse
|
11
|
Enhanced Embolization Efficacy with the Embolic Microspheres Guided by the Aggregate Gradation Theory Through In Vitro and Simulation Evaluation. Cardiovasc Eng Technol 2021; 12:398-406. [PMID: 33844137 DOI: 10.1007/s13239-021-00534-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Size of the embolic microspheres is of critical importance in the transcatheter arterial chemoembolization (TACE) of hepatocellular carcinoma (HCC) to achieve the optimal embolization therapy. In this regard, to optimize the size distribution of the embolic microspheres and enhance the embolization efficacy, the aggregate gradation theory is used to formulate the microspheres. METHODS Finite element analysis (FEA) and in vitro experiments confirmed a better embolic efficacy for the poly(vinyl alcohol) (PVA) microspheres formulated according to the aggregate gradation theory. RESULTS The average volume flow of the graded group was 1.31 × 10-4 mL/s in vitro experiment, which was lowest among all the groups suggesting the graded group had the optimal embolic effect. The graded group has the largest pressure gradient of 314.22 Pa/μm in FEA among all the groups, which can be attributed to the highest packing density of the graded group compared with other groups. CONCLUSIONS The graded embolic microspheres have a larger drag coefficient compared with the narrow size distribution groups both in vitro experiment and FEA. These findings can be used to formulate the embolic agents with optimal size distributions and are significant for the improvement of clinical embolization therapy.
Collapse
|
12
|
Antón R, Antoñana J, Aramburu J, Ezponda A, Prieto E, Andonegui A, Ortega J, Vivas I, Sancho L, Sangro B, Bilbao JI, Rodríguez-Fraile M. A proof-of-concept study of the in-vivo validation of a computational fluid dynamics model of personalized radioembolization. Sci Rep 2021; 11:3895. [PMID: 33594143 PMCID: PMC7886872 DOI: 10.1038/s41598-021-83414-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
Radioembolization (RE) with yttrium-90 (90Y) microspheres, a transcatheter intraarterial therapy for patients with liver cancer, can be modeled computationally. The purpose of this work was to correlate the results obtained with this methodology using in vivo data, so that this computational tool could be used for the optimization of the RE procedure. The hepatic artery three-dimensional (3D) hemodynamics and microsphere distribution during RE were modeled for six 90Y-loaded microsphere infusions in three patients with hepatocellular carcinoma using a commercially available computational fluid dynamics (CFD) software package. The model was built based on in vivo data acquired during the pretreatment stage. The results of the simulations were compared with the in vivo distribution assessed by 90Y PET/CT. Specifically, the microsphere distribution predicted was compared with the actual 90Y activity per liver segment with a commercially available 3D-voxel dosimetry software (PLANET Dose, DOSIsoft). The average difference between the CFD-based and the PET/CT-based activity distribution was 2.36 percentage points for Patient 1, 3.51 percentage points for Patient 2 and 2.02 percentage points for Patient 3. These results suggest that CFD simulations may help to predict 90Y-microsphere distribution after RE and could be used to optimize the RE procedure on a patient-specific basis.
Collapse
Affiliation(s)
- Raúl Antón
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
| | - Javier Antoñana
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain
| | - Jorge Aramburu
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain
| | - Ana Ezponda
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Elena Prieto
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Asier Andonegui
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain
| | - Julio Ortega
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain
- Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Isabel Vivas
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Lidia Sancho
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Nuclear Medicine, Clínica Universidad de Navarra, 28027, Madrid, Spain
| | - Bruno Sangro
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Hepatology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
- CIBEREHD, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas, 28029, Madrid, Spain
| | - José Ignacio Bilbao
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Macarena Rodríguez-Fraile
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain.
- Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008, Pamplona, Spain.
| |
Collapse
|
13
|
Fuentes D, Thompson E, Jacobsen M, Crouch AC, Layman RR, Riviere B, Cressman E. Imaging-based characterization of convective tissue properties. Int J Hyperthermia 2021; 37:155-163. [PMID: 33426993 PMCID: PMC7983068 DOI: 10.1080/02656736.2020.1845403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Convective transport is an important phenomenon for nanomedicine delivery. We present an imaging-based approach to recover tissue properties that are significant in the accumulation of nanoparticles delivered via systemic methods. The classical pharmacokinetic analysis develops governing equations for the particle transport from a first principle mass balance. Fundamentally, the governing equations for compartmental mass balance represent a spatially invariant mass transport between compartments and do not capture spatially variant convection phenomena. Further, the parameters recovered from this approach do not necessarily have direct meaning with respect to the governing equations for convective transport. In our approach, a framework is presented for directly measuring permeability in the sense of Darcy flow through porous tissue. Measurements from our approach are compared to an extended Tofts model as a control. We demonstrate that a pixel-wise iterative clustering algorithm may be applied to reduce the parameter space of the measurements. We show that measurements obtained from our approach are correlated with measurements obtained from the extended Tofts model control. These correlations demonstrate that the proposed approach contains similar information to an established compartmental model and may be useful in providing an alternative theoretical framework for parameterizing mathematical models for treatment planning and diagnostic studies involving nanomedicine where convection dominated effects are important.
Collapse
Affiliation(s)
- D Fuentes
- Departments of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,Department of Computational and Applied Mathematics, Rice University, Houston, TX, USA
| | - E Thompson
- Departments of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - M Jacobsen
- Departments of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - A Colleen Crouch
- Interventional Radiology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - R R Layman
- Departments of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - B Riviere
- Department of Computational and Applied Mathematics, Rice University, Houston, TX, USA
| | - E Cressman
- Interventional Radiology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
14
|
Taebi A, Vu CT, Roncali E. Multiscale Computational Fluid Dynamics Modeling for Personalized Liver Cancer Radioembolization Dosimetry. J Biomech Eng 2021; 143:011002. [PMID: 32601676 PMCID: PMC7580665 DOI: 10.1115/1.4047656] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 06/17/2020] [Indexed: 12/13/2022]
Abstract
Yttrium-90 (90Y) radioembolization is a minimally invasive procedure increasingly used for advanced liver cancer treatment. In this method, radioactive microspheres are injected into the hepatic arterial bloodstream to target, irradiate, and kill cancer cells. Accurate and precise treatment planning can lead to more efficient and safer treatment by delivering a higher radiation dose to the tumor while minimizing the exposure of the surrounding liver parenchyma. Treatment planning primarily relies on the estimated radiation dose delivered to tissue. However, current methods used to estimate the dose are based on simplified assumptions that make the dosimetry results unreliable. In this work, we present a computational model to predict the radiation dose from the 90Y activity in different liver segments to provide a more realistic and personalized dosimetry. Computational fluid dynamics (CFD) simulations were performed in a 3D hepatic arterial tree model segmented from cone-beam CT angiographic data obtained from a patient with hepatocellular carcinoma (HCC). The microsphere trajectories were predicted from the velocity field. 90Y dose distribution was then calculated from the volumetric distribution of the microspheres. Two injection locations were considered for the microsphere administration, a lobar and a selective injection. Results showed that 22% and 82% of the microspheres were delivered to the tumor, after each injection, respectively, and the combination of both injections ultimately delivered 49% of the total administered 90Y microspheres to the tumor. Results also illustrated the nonhomogeneous distribution of microspheres between liver segments, indicating the importance of developing patient-specific dosimetry methods for effective radioembolization treatment.
Collapse
Affiliation(s)
- Amirtahà Taebi
- Department of Biomedical Engineering, University of California Davis, One Shields Avenue, Davis, CA 95616
| | - Catherine T. Vu
- Department of Radiology, University of California Davis, 4860 Y Street, Suite 3100, Sacramento, CA 95817
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California Davis, One Shields Avenue, Davis, CA 95616
| |
Collapse
|
15
|
Bomberna T, Koudehi GA, Claerebout C, Verslype C, Maleux G, Debbaut C. Transarterial drug delivery for liver cancer: numerical simulations and experimental validation of particle distribution in patient-specific livers. Expert Opin Drug Deliv 2020; 18:409-422. [PMID: 33210955 DOI: 10.1080/17425247.2021.1853702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: Transarterial therapies are routinely used for the locoregional treatment of unresectable hepatocellular carcinoma (HCC). However, the impact of clinical parameters (i.e. injection location, particle size, particle density etc.) and patient-specific conditions (i.e. hepatic geometry, cancer burden) on the intrahepatic particle distribution (PD) after transarterial injection of embolizing microparticles is still unclear. Computational fluid dynamics (CFD) may help to better understand this impact.Methods: Using CFD, both the blood flow and microparticle mass transport were modeled throughout the 3D-reconstructed arterial vasculature of a patient-specific healthy and cirrhotic liver. An experimental feasibility study was performed to simulate the PD in a 3D-printed phantom of the cirrhotic arterial network.Results: Axial and in-plane injection locations were shown to be effective parameters to steer particles toward tumor tissue in both geometries. Increasing particle size or density made it more difficult for particles to exit the domain. As cancer burden increased, the catheter tip location mattered less. The in vitro study and numerical results confirmed that PD largely mimics flow distribution, but that significant differences are still possible.Conclusions: Our findings highlight that optimal parameter choice can lead to selective targeting of tumor tissue, but that targeting potential highly depends on patient-specific conditions.
Collapse
Affiliation(s)
- Tim Bomberna
- IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Gent, Belgium
| | - Ghazal Adeli Koudehi
- IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium
| | - Charlotte Claerebout
- IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium
| | - Chris Verslype
- Department of Clinical Digestive Oncology, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Geert Maleux
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium.,Department of Imaging and Pathology, Leuven, Belgium
| | - Charlotte Debbaut
- IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Gent, Belgium
| |
Collapse
|
16
|
Taebi A, Vu CT, Roncali E. Estimation of Yttrium-90 Distribution in Liver Radioembolization using Computational Fluid Dynamics and Deep Neural Networks. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:4974-4977. [PMID: 33019103 DOI: 10.1109/embc44109.2020.9176328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Yttrium-90 (90Y) radioembolization is a liver cancer therapy based on 90Y microspheres injected into the hepatic artery. Current dosimetry methods used to estimate the absorbed dose in order to prescribe the 90Y activity to inject are not accurate, which can affect the treatment effectiveness. A new dosimetry based on the hemodynamics simulation of the hepatic arterial tree, CFDose, aimed at overcoming some of the limitations of the current methods. However, due to the expensive computational cost of computational fluid dynamics (CFD) simulations, this method needs to be accelerated before it can be used in real-time during treatment planning. In this paper, we introduce a convolutional neural network model trained with the CFD results of a patient with hepatocellular carcinoma to predict the 90Y distribution under different downstream vasculature resistance conditions. The model performance was evaluated using two metrics, the mean squared error and prediction accuracy. The prediction accuracy showed that the average difference between the actual and predicted data was less than 1%. The proposed model could estimate the 90Y distribution significantly faster than a CFD simulation.
Collapse
|
17
|
Taebi A, Pillai RM, S. Roudsari B, Vu CT, Roncali E. Computational Modeling of the Liver Arterial Blood Flow for Microsphere Therapy: Effect of Boundary Conditions. Bioengineering (Basel) 2020; 7:E64. [PMID: 32610459 PMCID: PMC7552664 DOI: 10.3390/bioengineering7030064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022] Open
Abstract
Transarterial embolization is a minimally invasive treatment for advanced liver cancer using microspheres loaded with a chemotherapeutic drug or radioactive yttrium-90 (90Y) that are injected into the hepatic arterial tree through a catheter. For personalized treatment, the microsphere distribution in the liver should be optimized through the injection volume and location. Computational fluid dynamics (CFD) simulations of the blood flow in the hepatic artery can help estimate this distribution if carefully parameterized. An important aspect is the choice of the boundary conditions imposed at the inlet and outlets of the computational domain. In this study, the effect of boundary conditions on the hepatic arterial tree hemodynamics was investigated. The outlet boundary conditions were modeled with three-element Windkessel circuits, representative of the downstream vasculature resistance. Results demonstrated that the downstream vasculature resistance affected the hepatic artery hemodynamics such as the velocity field, the pressure field and the blood flow streamline trajectories. Moreover, the number of microspheres received by the tumor significantly changed (more than 10% of the total injected microspheres) with downstream resistance variations. These findings suggest that patient-specific boundary conditions should be used in order to achieve a more accurate drug distribution estimation with CFD in transarterial embolization treatment planning.
Collapse
Affiliation(s)
- Amirtahà Taebi
- Department of Biomedical Engineering, University of California Davis, One Shields Ave., Davis, CA 95616, USA
| | - Rex M. Pillai
- Department of Radiology, University of California Davis, 4860 Y Street, Suite 3100, Sacramento, CA 95817, USA; (R.M.P.); (C.T.V.)
| | | | - Catherine T. Vu
- Department of Radiology, University of California Davis, 4860 Y Street, Suite 3100, Sacramento, CA 95817, USA; (R.M.P.); (C.T.V.)
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California Davis, One Shields Ave., Davis, CA 95616, USA
| |
Collapse
|
18
|
Jernigan SR, Osborne JA, Buckner GD. Gastric artery embolization: studying the effects of catheter type and injection method on microsphere distributions within a benchtop arterial model. Biomed Eng Online 2020; 19:54. [PMID: 32586335 PMCID: PMC7318750 DOI: 10.1186/s12938-020-00794-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/08/2020] [Indexed: 11/17/2022] Open
Abstract
Aims The objective of the study is to investigate the effect of catheter type and injection method on microsphere distributions, specifically vessel targeting accuracy. Materials and methods The study utilized three catheter types (a standard end-hole micro-catheter, a Surefire anti-reflux catheter, and an Endobar occlusion balloon catheter) and both manual and computer-controlled injection schemes. A closed-loop, dynamically pressurized surrogate arterial system was assembled to replicate arterial flow for bariatric embolization procedures. Four vessel branches immediately distal to the injection site were targeted for embolization. Embolic microspheres were injected into the model using these three catheter types and both manual and computer-controlled injections. Results Across all injection methods, the catheter effect on the proportion of microspheres to target vessels (vs. non-target vessels) was significant (p = 0.005). The catheter effect on the number of non-target vessels embolized was nearly significant (p = 0.059). Across all catheter types, the injection method effect was not statistically significant for either of two outcome measures (percent microspheres to target vessels: p = 0.265, number of non-target vessels embolized: p = 0.148). Conclusion Catheter type had a significant effect on targeting accuracy across all injection methods. The Endobar catheter exhibited a higher targeting accuracy in pairwise comparisons with the other two injection catheters across all injection schemes and when considering the Endobar catheter with the manifold injection method vs. each of the catheters with the manual injection method; the differences were significant in three of four analyses. The injection method effect was not statistically significant across all catheter types and when considering the Endobar catheter/Endobar manifold combination vs. Endobar catheter injections with manual and pressure-replicated methods.
Collapse
Affiliation(s)
- Shaphan R Jernigan
- Departments of Biomedical, Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jason A Osborne
- Department of Statistics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Gregory D Buckner
- Departments of Biomedical, Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
19
|
Ortega J, Antón R, Ramos JC, Rivas A, Larraona GS, Sangro B, Bilbao JI, Aramburu J. On the importance of spiral-flow inflow boundary conditions when using idealized artery geometries in the analysis of liver radioembolization: A parametric study. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3337. [PMID: 32212316 DOI: 10.1002/cnm.3337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/04/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
In the last decades, the numerical studies on hemodynamics have become a valuable explorative scientific tool. The very first studies were done over idealized geometries, but as numerical methods and the power of computers have become more affordable, the studies tend to be patient specific. We apply the study to the numerical analysis of tumor-targeting during liver radioembolization (RE). RE is a treatment for liver cancer, and is performed by injecting radiolabeled microspheres via a catheter placed in the hepatic artery. The objective of the procedure is to maximize the release of radiolabeled microspheres into the tumor and avoid a healthy tissue damage. Idealized virtual arteries can serve as a generalist approach that permits to separately analyze the effect of a variable in the microsphere distribution with respect to others. However, it is important to use proper physiological boundary conditions (BCs). It is not obvious, the need to account for the effect of tortuosity when using an idealized virtual artery. We study the use of idealized geometry of a hepatic artery as a valid research tool, exploring the importance of using realistic spiral-flow inflow BC. By using a literature-based cancer scenario, we vary two parameters to analyze the microsphere distribution through the outlets of the geometry. The parameters varied are the type of microspheres injected and the microsphere injection velocity. The results with realistic inlet velocity profile showed that the particle distribution in the liver segments is not affected by the analyzed injection velocity values neither by the particle density. NOVELTY STATEMENT: In this article, we assessed the use of idealized geometries as a valid research tool and applied the use of an idealized geometry to the case of an idealized hepatic artery to study the particle-hemodynamics during radioembolization (RE). We studied three different inflow boundary conditions (BCs) to assess the usefulness of the geometry, two types of particle injection velocities and two types of commercially available microspheres for RE treatment. In recent years, the advent in computational resources allowed for more detailed patient-specific geometry generation and discretization and hemodynamics simulations. However, general studies based on idealized geometries can be performed in order to provide medical doctors with some basic and general guidelines when using a given catheter for a given cancer scenario. Moreover, using an idealized geometry can be a reasonable approach which allows us to isolate a given parameter and control other parameters, so that parameters can be independently assessed. Even though an idealized geometry does not match any patient's geometry, the use of an idealized geometry can be valid when drawing general conclusions that may be useful in patient-specific cases. However, we believe that even if an idealized hepatic artery geometry is used for the study, it is necessary to account for the upstream and downstream tortuosity of vessels through the BCs. In this work, we highlighted the need of modeling the tortuosity of upstream and downstream vasculatures through the BCs.
Collapse
Affiliation(s)
- Julio Ortega
- Escuela de Ingeniería Mecánica, Pontificia Universidad Católica de Valparaíso, Quilpué, Chile
- Departamento de Ingeniería Mecánica y Materiales, niversidad de Navarra, TECNUN - Escuela de Ingenieros, San Sebastián, Spain
| | - Raul Antón
- Departamento de Ingeniería Mecánica y Materiales, niversidad de Navarra, TECNUN - Escuela de Ingenieros, San Sebastián, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Juan C Ramos
- Departamento de Ingeniería Mecánica y Materiales, niversidad de Navarra, TECNUN - Escuela de Ingenieros, San Sebastián, Spain
| | - Alejandro Rivas
- Departamento de Ingeniería Mecánica y Materiales, niversidad de Navarra, TECNUN - Escuela de Ingenieros, San Sebastián, Spain
| | - Gorka S Larraona
- Departamento de Ingeniería Mecánica y Materiales, niversidad de Navarra, TECNUN - Escuela de Ingenieros, San Sebastián, Spain
| | - Bruno Sangro
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
| | - Jose I Bilbao
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
| | - Jorge Aramburu
- Departamento de Ingeniería Mecánica y Materiales, niversidad de Navarra, TECNUN - Escuela de Ingenieros, San Sebastián, Spain
| |
Collapse
|
20
|
Roncali E, Taebi A, Foster C, Vu CT. Personalized Dosimetry for Liver Cancer Y-90 Radioembolization Using Computational Fluid Dynamics and Monte Carlo Simulation. Ann Biomed Eng 2020; 48:1499-1510. [PMID: 32006268 PMCID: PMC7160004 DOI: 10.1007/s10439-020-02469-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/25/2020] [Indexed: 12/14/2022]
Abstract
Yttrium-90 (Y-90) transarterial radioembolization uses radioactive microspheres injected into the hepatic artery to irradiate liver tumors internally. One of the major challenges is the lack of reliable dosimetry methods for dose prediction and dose verification. We present a patient-specific dosimetry approach for personalized treatment planning based on computational fluid dynamics (CFD) simulations of the microsphere transport combined with Y-90 physics modeling called CFDose. The ultimate goal is the development of a software to optimize the amount of activity and injection point for optimal tumor targeting. We present the proof-of-concept of a CFD dosimetry tool based on a patient's angiogram performed in standard-of-care planning. The hepatic arterial tree of the patient was segmented from the cone-beam CT (CBCT) to predict the microsphere transport using multiscale CFD modeling. To calculate the dose distribution, the predicted microsphere distribution was convolved with a Y-90 dose point kernel. Vessels as small as 0.45 mm were segmented, the microsphere distribution between the liver segments using flow analysis was predicted, the volumetric microsphere and resulting dose distribution in the liver volume were computed. The patient was imaged with positron emission tomography (PET) 2 h after radioembolization to evaluate the Y-90 distribution. The dose distribution was found to be consistent with the Y-90 PET images. These results demonstrate the feasibility of developing a complete framework for personalized Y-90 microsphere simulation and dosimetry using patient-specific input parameters.
Collapse
Affiliation(s)
- Emilie Roncali
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| | - Amirtahà Taebi
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Cameron Foster
- Department of Radiology, UC Davis Medical Center, Sacramento, CA, 95817, USA
| | - Catherine Tram Vu
- Department of Radiology, UC Davis Medical Center, Sacramento, CA, 95817, USA
| |
Collapse
|
21
|
Aramburu J, Antón R, Rivas A, Ramos JC, Sangro B, Bilbao JI. Liver Radioembolization: An Analysis of Parameters that Influence the Catheter-Based Particle-Delivery via CFD. Curr Med Chem 2020; 27:1600-1615. [DOI: 10.2174/0929867325666180622145647] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/18/2017] [Accepted: 05/25/2017] [Indexed: 12/13/2022]
Abstract
Radioembolization (RE) is a valuable treatment for liver cancer. It consists of administering
radioactive microspheres by an intra-arterially placed catheter with the aim of
lodging these microspheres, which are driven by the bloodstream, in the tumoral bed. Even
though it is a safe treatment, some radiation-induced complications may arise. In trying to
detect or solve the possible incidences that cause nontarget irradiation, simulating the particle-
hemodynamics in hepatic arteries during RE by computational fluid dynamics (CFD)
tools has become a valuable approach. This paper reviews the parameters that influence the
outcome of RE and that have been studied via numerical simulations. In this numerical approach,
the outcome of RE is regarded as successful if particles reach the artery branches that
feed tumor-bearing liver segments. Up to 10 parameters have been reviewed. The variation
of each parameter actually alters the hemodynamic pattern in the vicinities of the catheter tip
and locally alters the incorporation of the particles into the bloodstream. Therefore, in general,
the local influences of these parameters should result in global differences in terms of
particle distribution in the hepatic artery branches. However, it has been observed that under
some (qualitatively described) appropriate conditions where particles align with blood
streamlines, the local influence resulting from a variation of a given parameter vanishes and
no global differences are observed. Furthermore, the increasing number of CFD studies on
RE suggests that numerical simulations have become an invaluable research tool in the study
of RE.
Collapse
Affiliation(s)
- Jorge Aramburu
- Universidad de Navarra, TECNUN Escuela de Ingenieros, 20018 Donostia-San Sebastian, Spain
| | - Raúl Antón
- Universidad de Navarra, TECNUN Escuela de Ingenieros, 20018 Donostia-San Sebastian, Spain
| | - Alejandro Rivas
- Universidad de Navarra, TECNUN Escuela de Ingenieros, 20018 Donostia-San Sebastian, Spain
| | - Juan C. Ramos
- Universidad de Navarra, TECNUN Escuela de Ingenieros, 20018 Donostia-San Sebastian, Spain
| | - Bruno Sangro
- IdiSNA, Instituto de Investigacion Sanitaria de Navarra, 31008 Pamplona, Spain
| | - José I. Bilbao
- IdiSNA, Instituto de Investigacion Sanitaria de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
22
|
A large air gap magnetic levitator for intra-arterial positioning of a clinical microcatheter: design, fabrication, and preliminary experimental evaluation. INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS 2020. [DOI: 10.1007/s41315-020-00124-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
In Vitro Study of Particle Transport in Successively Bifurcating Vessels. Ann Biomed Eng 2019; 47:2271-2283. [PMID: 31165293 DOI: 10.1007/s10439-019-02293-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/20/2019] [Indexed: 12/24/2022]
Abstract
To reach a predictive understanding of how particles travel through bifurcating vessels is of paramount importance in many biomedical settings, including embolization, thromboembolism, and drug delivery. Here we utilize an in vitro model in which solid particles are injected through a rigid vessel that symmetrically bifurcates in successive branching generations. The geometric proportion and fluid dynamics parameters are relevant to the liver embolization. The volumetric flow field is reconstructed via phase-contrast magnetic resonance imaging, from which the particle trajectories are calculated for a range of size and density using the particle equation of motion. The method is validated by directly tracking the injected particles via optical imaging. The results indicate that, opposite to the common assumption, the particles distribution is fundamentally different from the volumetric flow partition. In fact, the amount of delivered particles vary substantially between adjacent branches even when the flow is uniformly distributed. This is not due to the inertia of the particles, nor to gravity. The particle distribution is rather rooted in their different pathways, which in turn are linked to their release origin along the main vessel cross-section. Therefore, the tree geometry and the associated flow streamlines are the prime determinant of the particle fate, while local changes of volumetric flow rate to selected branches do not generally produce proportional changes of particle delivery.
Collapse
|
24
|
Multi-Objective Design Optimization of a Shape Memory Alloy Flexural Actuator. ACTUATORS 2019. [DOI: 10.3390/act8010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper presents a computational model and design optimization strategy for shape memory alloy (SMA) flexural actuators. These actuators consist of curved SMA wires embedded within elastic structures; one potential application is positioning microcatheters inside blood vessels during clinical treatments. Each SMA wire is shape-set to an initial curvature and inserted along the neutral axis of a straight elastic member (cast polydimethylsiloxane, PDMS). The elastic structure preloads the SMA, reducing the equilibrium curvature of the composite actuator. Temperature-induced phase transformations in the SMA are achieved via Joule heating, enabling strain recovery and increased bending (increased curvature) in the actuator. Actuator behavior is modeled using the homogenized energy framework, and the effects of two critical design parameters (initial SMA curvature and flexural rigidity of the elastic sleeve) on activation curvature are investigated. Finally, a multi-objective genetic algorithm is utilized to optimize actuator performance and generate a Pareto frontier, which is subsequently experimentally validated.
Collapse
|
25
|
Aramburu J, Antón R, Rivas A, Ramos JC, Larraona GS, Sangro B, Bilbao JI. A methodology for numerically analysing the hepatic artery haemodynamics during B-TACE: a proof of concept. Comput Methods Biomech Biomed Engin 2019; 22:518-532. [PMID: 30732467 DOI: 10.1080/10255842.2019.1567720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Balloon-occluded transarterial chemoembolisation (B-TACE) is an intraarterial transcatheter treatment for liver cancer. In B-TACE, an artery-occluding microballoon catheter occludes an artery and promotes collateral circulation for drug delivery to tumours. This paper presents a methodology for analysing the haemodynamics during B-TACE, by combining zero-dimensional and three-dimensional modelling tools. As a proof of concept, we apply the methodology to a patient-specific hepatic artery geometry and analyse two catheter locations. Results show that the blood flow redistribution can be predicted in this proof-of-concept study, suggesting that this approach could potentially be used to optimise catheter location.
Collapse
Affiliation(s)
- Jorge Aramburu
- a Universidad de Navarra , TECNUN Escuela de Ingenieros , Donostia-San Sebastián , Spain
| | - Raúl Antón
- a Universidad de Navarra , TECNUN Escuela de Ingenieros , Donostia-San Sebastián , Spain.,b Instituto de Investigación Sanitaria de Navarra (IdiSNA) , Pamplona , Spain
| | - Alejandro Rivas
- a Universidad de Navarra , TECNUN Escuela de Ingenieros , Donostia-San Sebastián , Spain
| | - Juan Carlos Ramos
- a Universidad de Navarra , TECNUN Escuela de Ingenieros , Donostia-San Sebastián , Spain
| | - Gorka S Larraona
- a Universidad de Navarra , TECNUN Escuela de Ingenieros , Donostia-San Sebastián , Spain
| | - Bruno Sangro
- b Instituto de Investigación Sanitaria de Navarra (IdiSNA) , Pamplona , Spain.,c Clínica Universidad de Navarra , Pamplona , Spain.,d Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Pamplona , Spain
| | - José Ignacio Bilbao
- b Instituto de Investigación Sanitaria de Navarra (IdiSNA) , Pamplona , Spain.,c Clínica Universidad de Navarra , Pamplona , Spain
| |
Collapse
|
26
|
Kretz D, Hesser J, Glatting G, Diehl S, Wenz F, He W, Zheng L. Modeling sphere dynamics in blood vessels for SIRT pre-planning - To fathom the potential and limitations. Z Med Phys 2018; 29:5-15. [PMID: 30049550 DOI: 10.1016/j.zemedi.2018.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 05/26/2018] [Accepted: 05/27/2018] [Indexed: 11/26/2022]
Abstract
For selective internal radiation therapy (SIRT) the calculation of the 3D distribution of spheres based on individual blood flow properties is still an open and relevant research question. The purpose of this work is to develop and analyze a new treatment planning method for SIRT to calculate the absorbed dose distribution. For this intention, flow dynamics of the SIRT-spheres inside the blood vessels was simulated. The challenge is treatment planning solely using high-resolution imaging data available before treatment. The resolution required to reliably predict the sphere distribution and hence the dose was investigated. For this purpose, arteries of the liver were segmented from a contrast-enhanced angiographic CT. Due to the limited resolution of the given CT, smaller vessels were generated via a vessel model. A combined 1D/3D-flow simulation model was implemented to simulate the final 3D distribution of spheres and dose. Results were evaluated against experimental data from Y90-PET. Analysis showed that the resolution of the vessels within the angiographic CT of about 0.5mm should be improved to a limit of about 150μm to reach a reliable prediction.
Collapse
Affiliation(s)
- Dominik Kretz
- Experimental Radiation Oncology, Department of Radiation Oncology, University Medical Center Mannheim, Heidelberg University, Germany.
| | - Jürgen Hesser
- Experimental Radiation Oncology, Department of Radiation Oncology, University Medical Center Mannheim, Heidelberg University, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Germany; Central Institute of Mental Health (ZI), Mannheim, Germany
| | - Gerhard Glatting
- Medical Radiation Physics/Radiation Protection, Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Steffen Diehl
- Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Germany
| | - Frederik Wenz
- Department of Radiation Oncology, University Medical Center Mannheim, Heidelberg University, Germany
| | - Wanji He
- Experimental Radiation Oncology, Department of Radiation Oncology, University Medical Center Mannheim, Heidelberg University, Germany
| | - Lei Zheng
- Experimental Radiation Oncology, Department of Radiation Oncology, University Medical Center Mannheim, Heidelberg University, Germany
| |
Collapse
|
27
|
Xu Z, Kleinstreuer C. Direct nanodrug delivery for tumor targeting subject to shear-augmented diffusion in blood flow. Med Biol Eng Comput 2018; 56:1949-1958. [DOI: 10.1007/s11517-018-1818-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/15/2018] [Indexed: 12/15/2022]
|
28
|
Aramburu J, Antón R, Rivas A, Ramos JC, Sangro B, Bilbao JI. The role of angled-tip microcatheter and microsphere injection velocity in liver radioembolization: A computational particle-hemodynamics study. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33. [PMID: 28474382 DOI: 10.1002/cnm.2895] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Liver radioembolization is a promising treatment option for combating liver tumors. It is performed by placing a microcatheter in the hepatic artery and administering radiation-emitting microspheres through the arterial bloodstream so that they get lodged in the tumoral bed. In avoiding nontarget radiation, the standard practice is to conduct a pretreatment, in which the microcatheter location and injection velocity are decided. However, between pretreatment and actual treatment, some of the parameters that influence the particle distribution in the liver can vary, resulting in radiation-induced complications. The present study aims to analyze the influence of a commercially available microcatheter with an angled tip and particle injection velocity in terms of segment-to-segment particle distribution. Specifically, 4 tip orientations and 2 injection velocities are combined to yield a set of 8 numerical simulations of the particle-hemodynamics in a patient-specific truncated hepatic artery. For each simulation, 4 cardiac pulses are simulated. Particles are injected during the first cycle, and the remaining pulses enable the majority of the injected particles to exit the computational domain. Results indicate that, in terms of injection velocity, particles are more spread out in the cross-sectional lumen areas as the injection velocity increases. The tip's orientation also plays a role because it influences the near-tip hemodynamics, therefore altering the particle travel through the hepatic artery. However, results suggest that particle distribution tries to match the blood flow split, therefore particle injection velocity and microcatheter tip orientation playing a minor role in segment-to-segment particle distribution.
Collapse
Affiliation(s)
- Jorge Aramburu
- Universidad de Navarra, TECNUN Escuela de Ingenieros, 20018, San Sebastián, Spain
| | - Raúl Antón
- Universidad de Navarra, TECNUN Escuela de Ingenieros, 20018, San Sebastián, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Alejandro Rivas
- Universidad de Navarra, TECNUN Escuela de Ingenieros, 20018, San Sebastián, Spain
| | - Juan Carlos Ramos
- Universidad de Navarra, TECNUN Escuela de Ingenieros, 20018, San Sebastián, Spain
| | - Bruno Sangro
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
- Clínica Universidad de Navarra, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
| | - José Ignacio Bilbao
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
- Clínica Universidad de Navarra, 31008, Pamplona, Spain
| |
Collapse
|
29
|
Simoncini C, Rolland Y, Morgenthaler V, Jurczuk K, Saint-Jalmes H, Eliat PA, Kretowski M, Bezy-Wendling J. Blood Flow Simulation in Patient-Specific Segmented Hepatic Arterial Tree. Ing Rech Biomed 2017. [DOI: 10.1016/j.irbm.2017.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Caine M, Carugo D, Zhang X, Hill M, Dreher MR, Lewis AL. Review of the Development of Methods for Characterization of Microspheres for Use in Embolotherapy: Translating Bench to Cathlab. Adv Healthc Mater 2017; 6. [PMID: 28218823 DOI: 10.1002/adhm.201601291] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/04/2017] [Indexed: 12/25/2022]
Abstract
Therapeutic embolotherapy is the deliberate occlusion of a blood vessel within the body, which can be for the prevention of internal bleeding, stemming of flow through an arteriovenous malformation, or occlusion of blood vessels feeding a tumor. This is achieved using a wide selection of embolic devices such as balloons, coils, gels, glues, and particles. Particulate embolization is often favored for blocking smaller vessels, particularly within hypervascularized tumors, as they are available in calibrated sizes and can be delivered distally via microcatheters for precise occlusion with associated locoregional drug delivery. Embolic performance has been traditionally evaluated using animal models, but with increasing interest in the 3R's (replacement, reduction, refinement), manufacturers, regulators, and clinicians have shown interest in the development of more sophisticated in vitro methods for evaluation and prediction of in vivo performance. Herein the current progress in developing bespoke techniques incorporating physical handling, fluid dynamics, occlusive behavior, and sustained drug elution kinetics within vascular systems is reviewed. While it is necessary to continue to validate the safety of such devices in vivo, great strides have been made in the development of bench tests that better predict the behavior of these products aligned with the principles of the 3R's.
Collapse
Affiliation(s)
- Marcus Caine
- Faculty of Engineering and the Environment; University of Southampton; University Road Highfield Southampton SO17 1BJ UK
- Biocompatibles UK Ltd., Lakeview; Riverside Way, Watchmoor Park Camberley GU15 3YL UK
| | - Dario Carugo
- Faculty of Engineering and the Environment; University of Southampton; University Road Highfield Southampton SO17 1BJ UK
| | - Xunli Zhang
- Faculty of Engineering and the Environment; University of Southampton; University Road Highfield Southampton SO17 1BJ UK
| | - Martyn Hill
- Faculty of Engineering and the Environment; University of Southampton; University Road Highfield Southampton SO17 1BJ UK
| | - Matthew R. Dreher
- Biocompatibles UK Ltd., Lakeview; Riverside Way, Watchmoor Park Camberley GU15 3YL UK
| | - Andrew L. Lewis
- Biocompatibles UK Ltd., Lakeview; Riverside Way, Watchmoor Park Camberley GU15 3YL UK
| |
Collapse
|
31
|
Aramburu J, Antón R, Rivas A, Ramos JC, Sangro B, Bilbao JI. Computational particle-haemodynamics analysis of liver radioembolization pretreatment as an actual treatment surrogate. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33:e02791. [PMID: 27038438 DOI: 10.1002/cnm.2791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 06/05/2023]
Abstract
Liver radioembolization (RE) is a treatment option for patients with unresectable and chemorefractory primary and metastatic liver tumours. RE consists of intra-arterially administering via catheter radioactive microspheres that locally attack the tumours, sparing healthy tissue. Prior to RE, the standard practice is to conduct a treatment-mimicking pretreatment assessment via the infusion of 99m Tc-labelled macroaggregated albumin microparticles. The usefulness of this pretreatment has been debated in the literature, and thus, the aim of the present study is to shed light on this issue by numerically simulating the liver RE pretreatment and actual treatment particle-haemodynamics in a patient-specific hepatic artery under two different literature-based cancer scenarios and two different placements of a realistic end-hole microcatheter in the proper hepatic artery. The parameters that are analysed are the following: microagent quantity and size (accounting for RE pretreatment and treatment), catheter-tip position (near the proper hepatic artery bifurcation and away from it), and cancer burden (10% and 30% liver involvement). The conclusion that can be reached from the simulations is that when it comes to mimicking RE in terms of delivering particles to tumour-bearing segments, the catheter-tip position is much more important (because of the importance of local haemodynamic pattern alteration) than the infused microagents (i.e. quantity and size). Cancer burden is another important feature because the increase in blood flow rate to tumour-bearing segments increases the power to drag particles. These numerical simulation-based conclusions are in agreement with clinically observed events reported in the literature. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jorge Aramburu
- Thermal and Fluids Engineering Division, Mechanical Department, Tecnun-University of Navarra, P° Manuel Lardizabal 13, 20018, Donostia-San Sebastián, Spain
| | - Raúl Antón
- Thermal and Fluids Engineering Division, Mechanical Department, Tecnun-University of Navarra, P° Manuel Lardizabal 13, 20018, Donostia-San Sebastián, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Av. Pío XII 36, 31008, Pamplona, Spain
| | - Alejandro Rivas
- Thermal and Fluids Engineering Division, Mechanical Department, Tecnun-University of Navarra, P° Manuel Lardizabal 13, 20018, Donostia-San Sebastián, Spain
| | - Juan Carlos Ramos
- Thermal and Fluids Engineering Division, Mechanical Department, Tecnun-University of Navarra, P° Manuel Lardizabal 13, 20018, Donostia-San Sebastián, Spain
| | - Bruno Sangro
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Av. Pío XII 36, 31008, Pamplona, Spain
- Clínica Universidad de Navarra, Av. Pío XII 36, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Av. Pío XII 36, 31008, Pamplona, Spain
| | - José Ignacio Bilbao
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Av. Pío XII 36, 31008, Pamplona, Spain
- Clínica Universidad de Navarra, Av. Pío XII 36, 31008, Pamplona, Spain
| |
Collapse
|
32
|
Numerical investigation of liver radioembolization via computational particle–hemodynamics: The role of the microcatheter distal direction and microsphere injection point and velocity. J Biomech 2016; 49:3714-3721. [DOI: 10.1016/j.jbiomech.2016.09.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/15/2016] [Accepted: 09/30/2016] [Indexed: 11/18/2022]
|
33
|
Aramburu J, Antón R, Rivas A, Ramos JC, Sangro B, Bilbao JI. Liver cancer arterial perfusion modelling and CFD boundary conditions methodology: a case study of the haemodynamics of a patient-specific hepatic artery in literature-based healthy and tumour-bearing liver scenarios. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2016; 32:e02764. [PMID: 26727946 DOI: 10.1002/cnm.2764] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/14/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
Some of the latest treatments for unresectable liver malignancies (primary or metastatic tumours), which include bland embolisation, chemoembolisation, and radioembolisation, among others, take advantage of the increased arterial blood supply to the tumours to locally attack them. A better understanding of the factors that influence this transport may help improve the therapeutic procedures by taking advantage of flow patterns or by designing catheters and infusion systems that result in the injected beads having increased access to the tumour vasculature. Computational analyses may help understand the haemodynamic patterns and embolic-microsphere transport through the hepatic arteries. In addition, physiological inflow and outflow boundary conditions are essential in order to reliably represent the blood flow through arteries. This study presents a liver cancer arterial perfusion model based on a literature review and derives boundary conditions for tumour-bearing liver-feeding hepatic arteries based on the arterial perfusion characteristics of normal and tumorous liver segment tissue masses and the hepatic artery branching configuration. Literature-based healthy and tumour-bearing realistic scenarios are created and haemodynamically analysed for the same patient-specific hepatic artery. As a result, this study provides boundary conditions for computational fluid dynamics simulations that will allow researchers to numerically study, for example, various intravascular devices used for liver disease intra-arterial treatments with different cancer scenarios. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jorge Aramburu
- Thermal and Fluids Engineering Division, Mechanical Department, Tecnun-University of Navarra, Pº Manuel Lardizabal, 13, 20018, Donostia-San Sebastián, Spain
| | - Raúl Antón
- Thermal and Fluids Engineering Division, Mechanical Department, Tecnun-University of Navarra, Pº Manuel Lardizabal, 13, 20018, Donostia-San Sebastián, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Av. Pio XII, 36, 31008, Pamplona, Spain.
| | - Alejandro Rivas
- Thermal and Fluids Engineering Division, Mechanical Department, Tecnun-University of Navarra, Pº Manuel Lardizabal, 13, 20018, Donostia-San Sebastián, Spain
| | - Juan Carlos Ramos
- Thermal and Fluids Engineering Division, Mechanical Department, Tecnun-University of Navarra, Pº Manuel Lardizabal, 13, 20018, Donostia-San Sebastián, Spain
| | - Bruno Sangro
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Av. Pio XII, 36, 31008, Pamplona, Spain
- Clínica Universidad de Navarra, Av. Pio XII, 36, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Av. Pio XII, 36, 31008, Pamplona, Spain
| | - José Ignacio Bilbao
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Av. Pio XII, 36, 31008, Pamplona, Spain
- Clínica Universidad de Navarra, Av. Pio XII, 36, 31008, Pamplona, Spain
| |
Collapse
|
34
|
Computational assessment of the effects of the catheter type on particle–hemodynamics during liver radioembolization. J Biomech 2016; 49:3705-3713. [DOI: 10.1016/j.jbiomech.2016.09.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/19/2016] [Accepted: 09/30/2016] [Indexed: 01/04/2023]
|
35
|
Impact of Yttrium-90 Microsphere Density, Flow Dynamics, and Administration Technique on Spatial Distribution: Analysis Using an In Vitro Model. J Vasc Interv Radiol 2016; 28:260-268.e2. [PMID: 27641675 DOI: 10.1016/j.jvir.2016.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/01/2016] [Accepted: 07/01/2016] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To investigate material density, flow, and viscosity effects on microsphere distribution within an in vitro model designed to simulate hepatic arteries. MATERIALS AND METHODS A vascular flow model was used to compare distribution of glass and resin surrogates in a clinically derived flow range (60-120 mL/min). Blood-mimicking fluid (BMF) composed of glycerol and water (20%-50% vol/vol) was used to simulate a range of blood viscosities. Microsphere distribution was quantified gravimetrically, and injectate solution was dyed to enable quantification by UV spectrophotometry. Microsphere injection rate (5-30 mL/min) and the influence of contrast agent dilution of injection solution (0%-60% vol/vol) were also investigated. RESULTS No significant differences in behavior were observed between the glass and resin surrogate materials under any tested flow conditions (P = .182; n = 144 injections). Microspheres tend to align more consistently with the saline injection solution (r2 = 0.5712; n = 144) compared with total BMF flow distribution (r2 = 0.0104; n = 144). The most predictable injectate distribution (ie, greatest alignment with BMF flow, < 5% variation) was demonstrated with > 10-mL/min injection rates of pure saline solution, although < 20% variation with glass microsphere distribution was observed with injection solution containing as much as 30% contrast medium when injected at > 20 mL/min. CONCLUSIONS Glass and resin yttrium-90 surrogates demonstrated similar distribution in a range of clinically relevant flow conditions, suggesting that microsphere density does not have a significant influence on microsphere distribution. Injection parameters that enhanced the mixing of the spheres with the BMF resulted in the most predictable distribution.
Collapse
|
36
|
Affiliation(s)
- Dawn Bannerman
- Graduate Program in Biomedical Engineering, University of Western Ontario, London, Ontario, Canada
| | - Wankei Wan
- Graduate Program in Biomedical Engineering, University of Western Ontario, London, Ontario, Canada
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
37
|
Wang HL, Lee FC, Tang TY, Zhou C, Tsai DH. Assembly of functional gold nanoparticle on silica microsphere. J Colloid Interface Sci 2016; 469:99-108. [PMID: 26874272 DOI: 10.1016/j.jcis.2016.01.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/13/2016] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
Abstract
We demonstrate a controlled synthesis of silica microsphere with the surface-decorated functional gold nanoparticles. Surface of silica microsphere was modified by 3-aminopropypltriethoxysilane and 3-aminopropyldimethylethoxysilane to generate a positive electric field, by which the gold nanoparticles with the negative charges (unconjugated, thiolated polyethylene glycol functionalized with the traceable packing density and conformation) were able to be attracted to the silica microsphere. Results show that both the molecular conjugation on gold nanoparticle and the uniformity in the amino-silanization of silica microsphere influenced the loading and the homogeneity of gold nanoparticles on silica microsphere. The 3-aminopropyldimethylethoxysilane-functionalized silica microsphere provided an uniform field to attract gold nanoparticles. Increasing the ethanol content in aminosilane solution significantly improved the homogeneity and the loading of gold nanoparticles on the surface of silica microsphere. For the gold nanoparticle, increasing the molecular mass of polyethylene glycol yielded a greater homogeneity but a lower loading on silica microsphere. Bovine serum albumin induced the desorption of gold nanoparticles from silica microsphere, where the extent of desorption was suppressed by the presence of high-molecular mass polyethylene glycol on gold nanoparticles. This work provides the fundamental understanding for the synthesis of gold nanoparticle-silica microsphere constructs useful to the applications in chemo-radioactive therapeutics.
Collapse
Affiliation(s)
- Hsuan-Lan Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Fu-Cheng Lee
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Tse-Yu Tang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chenguang Zhou
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - De-Hao Tsai
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC.
| |
Collapse
|
38
|
Kim AY, Miller A. Evaluation of Surefire’s precision direct-to-tumor embolization device to augment therapeutic response to intra-arterial, liver-directed therapies for patients with primary and secondary liver cancers. Expert Rev Med Devices 2016; 13:435-43. [PMID: 26959530 DOI: 10.1586/17434440.2016.1164594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alexander Y Kim
- a Department of Radiology , Medstar Georgetown University Hospital , Washington , DC , USA
| | - Akemi Miller
- a Department of Radiology , Medstar Georgetown University Hospital , Washington , DC , USA
| |
Collapse
|
39
|
Khodaee F, Vahidi B, Fatouraee N. Analysis of mechanical parameters on the thromboembolism using a patient-specific computational model. Biomech Model Mechanobiol 2016; 15:1295-305. [DOI: 10.1007/s10237-016-0762-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/11/2016] [Indexed: 12/16/2022]
|
40
|
Xu Z, Jernigan S, Kleinstreuer C, Buckner GD. Solid Tumor Embolotherapy in Hepatic Arteries with an Anti-reflux Catheter System. Ann Biomed Eng 2015; 44:1036-46. [DOI: 10.1007/s10439-015-1411-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/24/2015] [Indexed: 12/30/2022]
|
41
|
van den Hoven AF, Lam MGEH, Jernigan S, van den Bosch MAAJ, Buckner GD. Innovation in catheter design for intra-arterial liver cancer treatments results in favorable particle-fluid dynamics. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:74. [PMID: 26231929 PMCID: PMC4522078 DOI: 10.1186/s13046-015-0188-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/06/2015] [Indexed: 12/30/2022]
Abstract
Background Liver tumors are increasingly treated with radioembolization. Here, we present first evidence of catheter design effect on particle-fluid dynamics and downstream branch targeting during microsphere administrations. Materials and methods A total of 7 experiments were performed in a bench-top model of the hepatic arterial vasculature with recreated hemodynamics. Fluorescent microspheres and clinically used holmium microspheres were administered with a standard microcatheter (SMC) and an anti-reflux catheter (ARC) positioned at the same level along the longitudinal vessel axis. Catheter-related particle flow dynamics were analyzed by reviewing video recordings of UV-light illuminated fluorescent microsphere administrations. Downstream branch distribution was analyzed by quantification of collected microspheres in separate filters for two first-order branches. Mean deviation from a perfectly homogenous distribution (DHD) was used to compare the distribution homogeneity between catheter types. Results The SMC administrations demonstrated a random off-centered catheter position (in 71 % of experiments), and a laminar particle flow pattern with an inhomogeneous downstream branch distribution, dependent on catheter position and injection force. The ARC administrations demonstrated a fixed centro-luminal catheter position, and a turbulent particle flow pattern with a more consistent and homogenous downstream branch distribution. Quantitative analyses confirmed a significantly more homogeneous distribution with the ARC; the mean DHD was 40.85 % (IQR 22.76 %) for the SMC and 15.54 % (IQR 6.46 %) for the ARC (p = 0.047). Conclusion Catheter type has a significant impact on microsphere administrations in an in-vitro hepatic arterial model. A within-patient randomized controlled trial has been initiated to investigate clinical catheter-related effects during radioembolization treatment. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0188-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andor F van den Hoven
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Room E.01.132, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Marnix G E H Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Room E.01.132, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Shaphan Jernigan
- Department of Mechanical and Aerospace Engineering, North Carolina State University, 911 Oval Drive, Raleigh, North Carolina, 27695, USA.
| | - Maurice A A J van den Bosch
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Room E.01.132, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Gregory D Buckner
- Department of Mechanical and Aerospace Engineering, North Carolina State University, 911 Oval Drive, Raleigh, North Carolina, 27695, USA.
| |
Collapse
|
42
|
Aramburu J, Antón R, Bernal N, Rivas A, Ramos JC, Sangro B, Bilbao JI. Physiological outflow boundary conditions methodology for small arteries with multiple outlets: A patient-specific hepatic artery haemodynamics case study. Proc Inst Mech Eng H 2015; 229:291-306. [DOI: 10.1177/0954411915578549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Physiological outflow boundary conditions are necessary to carry out computational fluid dynamics simulations that reliably represent the blood flow through arteries. When dealing with complex three-dimensional trees of small arteries, and therefore with multiple outlets, the robustness and speed of convergence are also important. This study derives physiological outflow boundary conditions for cases in which the physiological values at those outlets are not known (neither in vivo measurements nor literature-based values are available) and in which the tree exhibits symmetry to some extent. The inputs of the methodology are the three-dimensional domain and the flow rate waveform and the systolic and diastolic pressures at the inlet. The derived physiological outflow boundary conditions, which are a physiological pressure waveform for each outlet, are based on the results of a zero-dimensional model simulation. The methodology assumes symmetrical branching and is able to tackle the flow distribution problem when the domain outlets are at branches with a different number of upstream bifurcations. The methodology is applied to a group of patient-specific arteries in the liver. The methodology is considered to be valid because the pulsatile computational fluid dynamics simulation with the inflow flow rate waveform (input of the methodology) and the derived outflow boundary conditions lead to physiological results, that is, the resulting systolic and diastolic pressures at the inlet match the inputs of the methodology, and the flow split is also physiological.
Collapse
Affiliation(s)
- Jorge Aramburu
- Thermal and Fluids Engineering Division, Mechanical Engineering Department, Tecnun-University of Navarra, Donostia-San Sebastián, Spain
| | - Raúl Antón
- Thermal and Fluids Engineering Division, Mechanical Engineering Department, Tecnun-University of Navarra, Donostia-San Sebastián, Spain
| | - Nebai Bernal
- Thermal and Fluids Engineering Division, Mechanical Engineering Department, Tecnun-University of Navarra, Donostia-San Sebastián, Spain
| | - Alejandro Rivas
- Thermal and Fluids Engineering Division, Mechanical Engineering Department, Tecnun-University of Navarra, Donostia-San Sebastián, Spain
| | - Juan Carlos Ramos
- Thermal and Fluids Engineering Division, Mechanical Engineering Department, Tecnun-University of Navarra, Donostia-San Sebastián, Spain
| | - Bruno Sangro
- Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | | |
Collapse
|
43
|
Jernigan SR, Osborne JA, Mirek CJ, Buckner G. Selective internal radiation therapy: quantifying distal penetration and distribution of resin and glass microspheres in a surrogate arterial model. J Vasc Interv Radiol 2015; 26:897-904.e2. [PMID: 25891507 DOI: 10.1016/j.jvir.2015.02.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 02/16/2015] [Accepted: 02/20/2015] [Indexed: 01/10/2023] Open
Abstract
PURPOSE To experimentally investigate the effects of microsphere density and diameter on distal penetration. MATERIALS AND METHODS A surrogate hepatic arterial system was developed to replicate the hemodynamics (pressures, flow rates, pulsatile flow characteristics) and anatomic geometry (vessel diameters) proximal and distal to the microsphere injection point. A planar tumor model, placed distal to the injection point, allowed visualization of deposited microspheres. Bland resin and glass microspheres, with physical characteristics approximating the characteristics of commercially available products, were injected into the surrogate system. Microsphere type, injection rate, systemic flow rate, and tumor model inclination were varied among tests (glass, n = 7; resin, n = 6) with replicates for 2 conditions. After injection, 254 micrographs were obtained at previously defined locations throughout the tumor model to document microsphere distributions. Average microsphere distributions and mass measurements of microspheres collected at the tumor outlet were analyzed to quantify distal penetration for each case. RESULTS Across all test conditions, average penetration depths of resin microspheres were higher compared with glass microspheres (45.1 cm ± 11.8 vs 22.3 cm ± 9.9). The analysis of variance indicated that the observed difference between microsphere type (glass vs resin) was significant (P = .005, df = 1,2). The observed distance means did not differ significantly across flow rate or inclination angle. CONCLUSIONS Penetration depths of resin microspheres were significantly higher than penetration depths of glass microspheres in the surrogate hepatic arterial system.
Collapse
Affiliation(s)
- Shaphan R Jernigan
- Departments of Mechanical and Aerospace Engineering, North Carolina State University, Campus Box 7910, Raleigh NC 27695
| | - Jason A Osborne
- Statistics, North Carolina State University, Campus Box 7910, Raleigh NC 27695
| | - Christopher J Mirek
- Biomedical Engineering, North Carolina State University, Campus Box 7910, Raleigh NC 27695
| | - Gregory Buckner
- Departments of Mechanical and Aerospace Engineering, North Carolina State University, Campus Box 7910, Raleigh NC 27695.; Biomedical Engineering, North Carolina State University, Campus Box 7910, Raleigh NC 27695..
| |
Collapse
|
44
|
Zhu SJ, Poon EKW, Ooi ASH, Moore S. Enhanced Targeted Drug Delivery Through Controlled Release in a Three-Dimensional Vascular Tree. J Biomech Eng 2015; 137:1926224. [DOI: 10.1115/1.4028965] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Indexed: 01/01/2023]
Abstract
“Controlled particle release and targeting” is a technique using particle release score map (PRSM) and transient particle release score map (TPRSM) via backtracking to determine optimal drug injection locations for achieving an enhanced target efficiency (TE). This paper investigates the possibility of targeting desired locations through an idealized but complex three-dimensional (3D) vascular tree geometry under realistic hemodynamic conditions by imposing a Poiseuille velocity profile and a Womersley velocity profile derived from cine phase contrast magnetic resonance imaging (MRI) data for steady and pulsatile simulations, respectively. The shear thinning non-Newtonian behavior of blood was accounted for by the Carreau–Yasuda model. One-way coupled Eulerian–Lagrangian particle tracking method was used to record individual drug particle trajectories. Particle size and density showed negligible influence on the particle fates. With the proposed optimal release scoring algorithm, multiple optimal release locations were determined under steady flow conditions, whereas there was one unique optimal release location under pulsatile flow conditions. The initial in silico results appear promising, showing on average 66% TE in the pulsatile simulations, warranting further studies to improve the mathematical model and experimental validation.
Collapse
Affiliation(s)
- Shuang J. Zhu
- Mechanical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia e-mail:
| | - Eric K. W. Poon
- Mechanical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrew S. H. Ooi
- Mechanical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stephen Moore
- IBM Research Collaboratory, Victoria Life Sciences Computation Initiative, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
45
|
Radiation-Induced Cholecystitis after Hepatic Radioembolization: Do We Need to Take Precautionary Measures? J Vasc Interv Radiol 2014; 25:1717-23. [DOI: 10.1016/j.jvir.2014.06.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/16/2014] [Accepted: 06/24/2014] [Indexed: 11/15/2022] Open
|
46
|
Abstract
Unresectable primary and metastatic liver tumors are a leading cause of cancer mortality and morbidity. This remains a challenging and key task for every oncologist despite significant advances that have been made with selective targeted systemic agents and in technology advances with radiotherapy delivery. Radioembolization (RE) is a technique of permanently implanting microspheres containing Yttrium-90 ((90)Y), a beta-emitting isotope with a treatment range of 2 mm, into hepatic tumors. This form of brachytherapy utilizes the unique dual vascular anatomy of the liver to preferentially deliver radioactive particles via the hepatic artery to tumor, sparing normal liver parenchyma. The main treatment inclusion criteria are patients with solid tumors, compensated liver functions, life expectancy of at least three months, and ECOG performance status 0-2. Benefit of RE has been proven in patients that have low-to-moderate extrahepatic disease burden, prior liver radiotherapy, heavy prior chemotherapy and biologic agent exposure, and history of hepatic surgery or ablation. Most of the clinical evidence is reported in metastatic colorectal, and neuroendocrine tumors (NET), and primary hepatocellular cancer. A growing body of data supports the use of RE in hepatic metastatic breast cancer, intrahepatic cholangiocarinoma, and many other metastatic tumor types. Side effects are typically mild constitutional and GI issues limited to the first 7-14 days post treatment, with only 6% grade 3 toxicity reported in large series. Potentially serious or fatal radiation induced liver disease is extremely rare, reported in only 1% or fewer in major series of both metastatic and primary tumors treated with RE. Currently, high priority prospective clinical trials are testing RE combined with chemotherapy in first line therapy for colorectal hepatic metastases, and combined with sorafenib for hepatocellular carcinomas (HCCs). Fortunately, this beneficial and now widely available therapy is being increasingly incorporated into the standard therapy algorithms of multidisciplinary GI cancer teams worldwide. This form of radiotherapy differs significantly from daily external beam radiotherapy in many ways, particularly in dose rate, dosimetric coverage and duration of radiation delivery, side effects, and patient selection factors. A wealth of experience using RE in solid tumors exists and ongoing major prospective clinical trials will soon clarify the role of RE in the management of metastatic colorectal liver metastases.
Collapse
Affiliation(s)
- Andrew Kennedy
- Radiation Oncology Research, Sarah Cannon Research Institute, 3322 West End Ave., Suite 800 Nashville, TN 37203, USA
| |
Collapse
|
47
|
Fabbri D, Long Q, Das S, Pinelli M. Computational modelling of emboli travel trajectories in cerebral arteries: influence of microembolic particle size and density. Biomech Model Mechanobiol 2014; 13:289-302. [PMID: 24585077 PMCID: PMC3968521 DOI: 10.1007/s10237-014-0561-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 02/13/2014] [Indexed: 11/25/2022]
Abstract
Ischaemic stroke is responsible for up to 80 % of stroke cases. Prevention of the reoccurrence of ischaemic attack or stroke for patients who survived the first symptoms is the major treatment target. Accurate diagnosis of the emboli source for a specific infarction lesion is very important for a better treatment for the patient. However, due to the complex blood flow patterns in the cerebral arterial network, little is known so far of the embolic particle flow trajectory and its behaviour in such a complex flow field. The present study aims to study the trajectories of embolic particles released from carotid arteries and basilar artery in a cerebral arterial network and the influence of particle size, mass and release location to the particle distributions, by computational modelling. The cerebral arterial network model, which includes major arteries in the circle of Willis and several generations of branches from them, was generated from MRI images. Particles with diameters of 200, 500 and 800 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu \hbox {m}$$\end{document}μm and densities of 800, 1,030 and 1,300 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {kg/m}^{3}$$\end{document}kg/m3 were released in the vessel’s central and near-wall regions. A fully coupled scheme of particle and blood flow in a computational fluid dynamics software ANASYS CFX 13 was used in the simulations. The results show that heavy particles (density large than blood or a diameter larger than 500 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu \hbox {m}$$\end{document}μm) normally have small travel speeds in arteries; larger or lighter embolic particles are more likely to travel to large branches in cerebral arteries. In certain cases, all large particles go to the middle cerebral arteries; large particles with higher travel speeds in large arteries are likely to travel at more complex and tortuous trajectories; emboli raised from the basilar artery will only exit the model from branches of basilar artery and posterior cerebral arteries. A modified Circle of Willis configuration can have significant influence on particle distributions. The local branch patterns of internal carotid artery to middle cerebral artery and anterior communicating artery can have large impact on such distributions.
Collapse
Affiliation(s)
- Dario Fabbri
- Brunel Institute for Bioengineering, Brunel University, Uxbridge, Middlesex , UB8 3PH, UK
| | | | | | | |
Collapse
|
48
|
Therapeutic Magnetic Microcarriers Guided by Magnetic Resonance Navigation for Enhanced Liver Chemoembilization: A Design Review. Ann Biomed Eng 2014; 42:929-39. [DOI: 10.1007/s10439-014-0972-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/09/2014] [Indexed: 12/19/2022]
|
49
|
Childress EM, Kleinstreuer C. Computationally Efficient Particle Release Map Determination for Direct Tumor-Targeting in a Representative Hepatic Artery System. J Biomech Eng 2013; 136:011012. [DOI: 10.1115/1.4025881] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Indexed: 12/16/2022]
Abstract
Implementation of a novel direct tumor-targeting technique requires a computer modeling stage to generate particle release maps (PRMs) which allow for optimal catheter positioning and selection of best injection intervals for drug-particles. This simulation task for a patient-specific PRM may require excessive computational resources and a relatively long turn-around time for a fully transient analysis. Hence, steady-state conditions were sought which generates PRMs equivalent to the pulsatile arterial flow environment. Fluid-particle transport in a representative hepatic artery system was simulated under fully transient and steady-state flow conditions and their corresponding PRMs were analyzed and compared. Comparisons of the transient PRMs from ten equal intervals of the cardiac pulse revealed that the diastolic phase produced relatively constant PRMs due to its semisteady flow conditions. Furthermore, steady-state PRMs, which best matched the transient particle release maps, were found for each interval and over the entire cardiac pulse. From these comparisons, the flow rate and outlet pressure differences proved to be important parameters for estimating the PRMs. The computational times of the fully transient and steady simulations differed greatly, i.e., about 10 days versus 0.5 to 1 h, respectively. The time-averaged scenario may provide the best steady conditions for estimating the transient particle release maps. However, given the considerable changes in the PRMs due to the accelerating and decelerating phases of the cardiac cycle, it may be better to model several steady scenarios, which encompass the wide range of flows and pressures experienced by the arterial system in order to observe how the PRMs may change throughout the pulse. While adding more computation time, this method is still significantly faster than running the full transient case. Finally, while the best steady PRMs provide a qualitative guide for best catheter placement, the final injection position could be adjusted in vivo using biodegradable mock-spheres to ensure that patient-specific optimal tumor-targeting is achieved. In general, the methodology described could generate computationally very efficient and sufficiently accurate solutions for the transient fluid-particle dynamics problem. However, future work should test this methodology in patient-specific geometries subject to various flow waveforms.
Collapse
Affiliation(s)
- E. M. Childress
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695
| | - C. Kleinstreuer
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27514 e-mail:
| |
Collapse
|
50
|
Pouponneau P, Soulez G, Beaudoin G, Leroux JC, Martel S. MR imaging of therapeutic magnetic microcarriers guided by magnetic resonance navigation for targeted liver chemoembolization. Cardiovasc Intervent Radiol 2013; 37:784-90. [PMID: 24196271 DOI: 10.1007/s00270-013-0770-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/27/2013] [Indexed: 01/14/2023]
Abstract
PURPOSE Magnetic resonance navigation (MRN), achieved with an upgraded MRI scanner, aims to guide new therapeutic magnetic microcarriers (TMMC) from their release in the hepatic vascular network to liver tumor. In this technical note, in vitro and in vivo MRI properties of TMMC, loaded with iron-cobalt nanoparticles and doxorubicin, are reported by following three objectives: (1) to evaluate the lengthening of echo-time (TE) on nano/microparticle imaging; (2) to characterize by MRI TMMC distribution in the liver; and (3) to confirm the feasibility of monitoring particle distribution in real time. METHODS Phantom studies were conducted to analyze nano/microparticle signals on T 2*-weighted gradient-echo (GRE) MR images according to sample weight and TE. Twelve animal experiments were used to determine in vivo MRI parameters. TMMC tracking was evaluated by magnetic resonance imaging (MRI) in four rabbits, which underwent MRN in the hepatic artery, three without steering, two in real-time, and three as blank controls. TMMC distribution in the right and left liver lobes, determined by ex vivo MR image analysis, was compared to the one obtained by cobalt level analysis. RESULTS TMMC induced a hypointense signal that overran the physical size of the sample on MR images. This signal, due to the nanoparticles embedded into the microparticles, increased significantly with echo-time and sample amount (p < 0.05). In vivo, without steering, contrast-to-noise ratio (CNR) values for the right and left lobes were similar. With MRN, the CNR in the targeted lobe was different from that in the untargeted lobe (p = 0.003). Ex vivo, TMMC distribution, based on MRI signal loss volume measurement, was correlated with that quantified by Co level analysis (r = 0.92). TMMC accumulation was tracked in real time with an 8-s GRE sequence. CONCLUSIONS MRI signal loss induced by TMMC can serve to track particle accumulation and to assess MRN efficiency.
Collapse
Affiliation(s)
- Pierre Pouponneau
- NanoRobotics Laboratory, Department of Computer and Software Engineering and Institute of Biomedical Engineering, Ecole Polytechnique de Montréal (EPM), C.P. 6079, Succursale Centre-ville, Montreal, QC, H3C 3A7, Canada,
| | | | | | | | | |
Collapse
|