1
|
Li S, Liu H, Li M, Zhang C. Multiscale simulation of the effect of low-intensity pulsed ultrasound on the mechanical properties distribution of osteocytes. Comput Methods Biomech Biomed Engin 2024; 27:2058-2070. [PMID: 37842824 DOI: 10.1080/10255842.2023.2270103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
Low-intensity pulsed ultrasound (LIPUS) is a potential effective means for the prevention and treatment of disuse osteoporosis. In this paper, the effect of LIPUS exposure on the mechanical properties distribution of the osteocyte system (osteocyte body contains nucleus, osteocyte process, and primary cilia) is simulated. The results demonstrate that the mechanical micro-environment of the osteocyte is significantly improved by ultrasound exposure, and the mean von Mises stress of the osteocyte system increases linearly with the excitation sound pressure amplitude. The mechanical effect of LIPUS on osteocytes is enhanced by the stress amplification mechanism of the primary cilia and osteocyte processes.
Collapse
Affiliation(s)
- Shenggang Li
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, People's Republic of China
| | - Haiying Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, People's Republic of China
| | - Mingzhi Li
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, People's Republic of China
| | - Chunqiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, People's Republic of China
| |
Collapse
|
2
|
Dong J, Xiong D. Applications of Light Emitting Diodes in Health Care. Ann Biomed Eng 2017; 45:2509-2523. [PMID: 28948402 DOI: 10.1007/s10439-017-1930-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/16/2017] [Indexed: 12/28/2022]
Abstract
Light emitting diodes (LEDs) have become the main light sources for general lighting, due to their high lumen efficiency and long life time. Moreover, their high bandwidth and the availability of diverse wavelength contents ranging from ultraviolet to infrared empower them with great controllability in tuning brightness, pulse durations and spectra. These parameters are the essential ingredients of the applications in medical imaging and therapies. Despite the fast advances in both LED technologies and their applications, few reviews have been seen to link the controllable emission properties of LEDs to these applications. The objective of this paper is to bridge this gap by reviewing the main control techniques of LEDs that enable creating enhanced lighting patterns for imaging and generating effective photon doses for photobiomodulation. This paper also provides the basic mechanisms behind the effective LED therapies in treating cutaneous and neurological diseases. The emerging field of optogenetics is also discussed with a focus on the application of LEDs. The multidisciplinary topics reviewed in this paper can help the researchers in LEDs, imaging, light therapy and optogenetics better understand the basic principles in each other's field; and hence to stimulate the application of LEDs in health care.
Collapse
Affiliation(s)
- Jianfei Dong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Daxi Xiong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
3
|
Mansjur KQ, Kuroda S, Izawa T, Maeda Y, Sato M, Watanabe K, Horiuchi S, Tanaka E. The Effectiveness of Human Parathyroid Hormone and Low-Intensity Pulsed Ultrasound on the Fracture Healing in Osteoporotic Bones. Ann Biomed Eng 2016; 44:2480-2488. [PMID: 26795976 DOI: 10.1007/s10439-015-1533-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/04/2015] [Indexed: 12/12/2022]
Abstract
Osteoporotic fracture has become a major public health problem, and until today, the treatments available are not satisfactory. While there is growing evidence to support the individual treatment of parathyroid hormone (PTH) administration and low-intensity pulsed ultrasound (LIPUS) exposure as respectively systemic and local therapies during osteoporotic fracture healing, their effects have not yet been investigated when introduced concurrently. This study aimed to evaluate the effects of combined treatment with PTH (1-34) and LIPUS on fracture healing in ovariectomized (OVX) rats. Thirty-two, 12-week-old female Sprague-Dawley rats were OVX to induce osteoporosis. After 12 weeks, the rats underwent surgery to create bilateral mid-diaphyseal fractures of proximal tibiae. All animals were randomly divided into 4 groups (n = 8 for each): control group as placebo, PTH group, LIPUS group, and combined group. PTH group had PTH administration at a dose of 30 μg/kg/day for 3 days/week for 6 weeks. LIPUS group received ultrasound 5 days/week for 20 min/day for 6 weeks and combined group had both PTH administration and LIPUS exposure for 6 weeks. Fracture healing was observed weekly by anteroposterior radiography and micro-CT. Five weeks after the fracture, the tibia were harvested to permit histological assessments and at week 6, for mechanical property of the fracture callus. Micro-CT showed that the PTH and combined groups exhibited significantly higher BMD and trabecular bone integrity than control group at weeks 4-6. Radiography, fracture healing score and mean callus area indicated that the combined group revealed better healing processes than the individual groups. Mechanically, bending moment to failure was significantly higher in LIPUS, PTH and combined groups than in control group. These data suggest that the combined treatment of PTH and LIPUS have been shown to accelerate fracture bone healing and enhance bone properties rather than single agent therapy, and may be considered as a treatment remedy for fracture healing in postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Karima Q Mansjur
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Health Biosciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| | - Shingo Kuroda
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Health Biosciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| | - Takashi Izawa
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Health Biosciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| | - Yuichi Maeda
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Health Biosciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| | - Minami Sato
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Health Biosciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| | - Keiichiro Watanabe
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Health Biosciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| | - Shinya Horiuchi
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Health Biosciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Health Biosciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan.
- Department of Orthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
4
|
Borges C, Apolinário J, Florindo P, Louzada M. Contribuição da aplicação do ultrassom de baixa potência na prevenção de osteopenia em tíbias de ratos sob ausência de carga. ARQ BRAS MED VET ZOO 2014. [DOI: 10.1590/1678-41626025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Este trabalho objetivou verificar se o ultrassom de baixa potência (US) previne a ocorrência de osteopenia em tíbias de ratos sob ausência de carga. Foram utilizados 45 Rattus novergicus albinus, Wistar adultos, machos, distribuídos em cinco grupos iguais: C - animais-controle livres em gaiolas por 21 dias; S - animais suspensos pela cauda por 21 dias; ST - suspensos pela cauda por 21 dias e concomitantemente tratados com US; S→C - suspensos por 21 dias e depois permanecendo livres em gaiolas por mais 21 dias; S→CT - suspensos por 21 dias e depois permanecendo livres em gaiolas por mais 21 dias e concomitantemente tratados com US. O tratamento foi realizado com US de 1,5MHz, ciclo de trabalho 1:4, 30mW/cm², na tíbia direita, por 15 sessões de 20 minutos cada, cinco sessões por semana. Ainda vivos, os animais foram submetidos a exame de densitometria óssea para verificação da densidade mineral óssea (DMO) e do conteúdo mineral ósseo (CMO). Após a eutanásia dos animais, as tíbias foram desarticuladas, dissecadas e submetidas a ensaio mecânico destrutivo para análise da força máxima (Fmáx) e da rigidez (R). Foram avaliados também o comprimento (L) e o diâmetro (D) no ponto médio da tíbia. O grupo S apresentou valores de DMO, CMO, Fmáx, R, L e D menores em relação ao grupo C, demonstrando que a suspensão pela cauda é prejudicial a estas variáveis. O tratamento dos animais suspensos com o US, grupo ST, elevou os valores de CMO e DMO em relação aos do grupo S, igualando-os aos do grupo C. A Fmáx, R e L do grupo ST aumentou em relação ao grupo S e também em relação ao grupo C (p<0,05). Nenhuma diferença significativa foi encontrada entre as variáveis analisadas para os grupos S→CT e S→C (p>0,05). Os resultados obtidos neste estudo permitem concluir que o US de baixa potência contribuiu na prevenção e reversão da ocorrência da osteopenia nos animais submetidos à suspensão pela cauda, demonstrando que a ausência do estímulo mecânico causada pela impossibilidade da deambulação pode ser minimizada pela ação mecânica deste.
Collapse
|
5
|
Ko CY, Kang H, Ryu Y, Jung B, Kim H, Jeong D, Shin HI, Lim D, Kim HS. The effects of minimally invasive laser needle system on suppression of trabecular bone loss induced by skeletal unloading. Lasers Med Sci 2013; 28:1495-502. [PMID: 23324954 DOI: 10.1007/s10103-013-1265-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 01/02/2013] [Indexed: 10/27/2022]
Abstract
This study was aimed to evaluate the effects of low-level laser therapy (LLLT) in the treatment of trabecular bone loss induced by skeletal unloading. Twelve mice have taken denervation operation. At 2 weeks after denervation, LLLT (wavelength, 660 nm; energy, 3 J) was applied to the right tibiae of 6 mice (LASER) for 5 days/week over 2 weeks by using a minimally invasive laser needle system (MILNS) which consists of a 100 μm optical fiber in a fine needle (diameter, 130 μm) [corrected]. Structural parameters and histograms of bone mineralization density distribution (BMDD) were obtained before LLLT and at 2 weeks after LLLT. In addition, osteocyte, osteoblast, and osteoclast populations were counted. Two weeks after LLLT, bone volume fraction, trabeculae number, and trabeculae thickness were significantly increased and trabecular separations, trabecular bone pattern factor, and structure model index were significantly decreased in LASER than SHAM (p < 0.05). BMDD in LASER was maintained while that in SHAM was shifted to lower mineralization. Osteocyte and osteoblast populations were significantly increased but osteoclast population was significantly decreased in LASER when compared with those in SHAM (p < 0.05). The results indicate that LLLT with the MILNS may enhance bone quality and bone homeostasis associated with enhancement of bone formation and suppression of bone resorption.
Collapse
Affiliation(s)
- Chang-Yong Ko
- Research Team, Korea Orthopedics and Rehabilitation Engineering Center, Incheon, 403-712, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Cheung WH, Chow SKH, Sun MH, Qin L, Leung KS. Low-intensity pulsed ultrasound accelerated callus formation, angiogenesis and callus remodeling in osteoporotic fracture healing. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:231-238. [PMID: 21257088 DOI: 10.1016/j.ultrasmedbio.2010.11.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 11/10/2010] [Accepted: 11/24/2010] [Indexed: 05/30/2023]
Abstract
Osteoporotic fracture is a critical medico-social challenge leading to burdens in health care costs and hospital bed stays. Low-intensity pulsed ultrasound (LIPUS) was reported to accelerate normal fracture; however, its effect on osteoporotic fracture has not been previously addressed. We hypothesize that LIPUS can accelerate osteoporotic fracture healing and up-regulate the expression in the osteogenesis-, remodeling- and angiogenesis-related genes. Ovariectomy-induced osteoporotic fracture rat model was used to investigate the effects of LIPUS. Fractured rats were assigned to LIPUS or control group and healing was assessed by gene expression quantification, radiographic callus morphometry and histomorphometry. In the LIPUS group, Col-1 and bone morphogenetic protein-2 were up-regulated at earlier time points of week 2 to week 4 post-fracture; vascular endothelial growth factor was found to be up-regulated at week 4 to week 8; osteoprotegerin was up-regulated at week 2 post-fracture, followed by the surge of RANKL expression. Callus width and area measurements showed higher callus formation at weeks 2-4 in the LIPUS group and more rapid drop at weeks 6-8. Histomorphometry showed enhanced endochondral ossification in the callus at weeks 2-4, and lower at week 8. We conclude that LIPUS can accelerate osteoporotic fracture healing by enhancing callus formation, angiogenesis and callus remodeling.
Collapse
Affiliation(s)
- Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | | | | | | | | |
Collapse
|