1
|
Blackstone BN, Malara MM, Baumann ME, McFarland KL, Supp DM, Powell HM. Laser Micropatterning Promotes Rete Ridge Formation and Enhanced Engineered Skin Strength without Increased Inflammation. Bioengineering (Basel) 2023; 10:861. [PMID: 37508888 PMCID: PMC10376754 DOI: 10.3390/bioengineering10070861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Rete ridges play multiple important roles in native skin tissue function, including enhancing skin strength, but they are largely absent from engineered tissue models and skin substitutes. Laser micropatterning of fibroblast-containing dermal templates prior to seeding of keratinocytes was shown to facilitate rete ridge development in engineered skin (ES) both in vitro and in vivo. However, it is unknown whether rete ridge development results exclusively from the microarchitectural features formed by ablative processing or whether laser treatment causes an inflammatory response that contributes to rete ridge formation. In this study, laser-micropatterned and non-laser- treated ES grafts were developed and assessed during culture and for four weeks post grafting onto full-thickness wounds in immunodeficient mice. Decreases in inflammatory cytokine secretion were initially observed in vitro in laser-treated grafts compared to non-treated controls, although cytokine levels were similar in both groups five days after laser treatment. Post grafting, rete ridge-containing ES showed a significant increase in vascularization at week 2, and in collagen deposition and biomechanics at weeks 2 and 4, compared with controls. No differences in inflammatory cytokine expression after grafting were observed between groups. The results suggest that laser micropatterning of ES to create rete ridges improves the mechanical properties of healed skin grafts without increasing inflammation.
Collapse
Affiliation(s)
- Britani N Blackstone
- Department of Materials Science and Engineering, The Ohio State University, 140 W 19th Avenue, Columbus, OH 43210, USA
| | - Megan M Malara
- Department of Materials Science and Engineering, The Ohio State University, 140 W 19th Avenue, Columbus, OH 43210, USA
| | - Molly E Baumann
- Department of Biomedical Engineering, The Ohio State University, 140 W 19th Avenue, Columbus, OH 43210, USA
| | - Kevin L McFarland
- Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Dorothy M Supp
- Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
- Shriners Children's Ohio, 1 Children's Plaza, Dayton, OH 45404, USA
| | - Heather M Powell
- Department of Materials Science and Engineering, The Ohio State University, 140 W 19th Avenue, Columbus, OH 43210, USA
- Department of Biomedical Engineering, The Ohio State University, 140 W 19th Avenue, Columbus, OH 43210, USA
- Shriners Children's Ohio, 1 Children's Plaza, Dayton, OH 45404, USA
| |
Collapse
|
2
|
Liu YX, Chaparro FJ, Tian Z, Jia Y, Gosser J, Gaumer J, Ross L, Tafreshi H, Lannutti JJ. Visualization of porosity and pore size gradients in electrospun scaffolds using laser metrology. PLoS One 2023; 18:e0282903. [PMID: 36893193 PMCID: PMC9997878 DOI: 10.1371/journal.pone.0282903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/24/2023] [Indexed: 03/10/2023] Open
Abstract
We applied a recently developed method, laser metrology, to characterize the influence of collector rotation on porosity gradients of electrospun polycaprolactone (PCL) widely investigated for use in tissue engineering. The prior- and post-sintering dimensions of PCL scaffolds were compared to derive quantitative, spatially-resolved porosity 'maps' from net shrinkage. Deposited on a rotating mandrel (200 RPM), the central region of deposition reaches the highest porosity, ~92%, surrounded by approximately symmetrical decreases to ~89% at the edges. At 1100 RPM, a uniform porosity of ~88-89% is observed. At 2000 RPM, the lowest porosity, ~87%, is found in the middle of the deposition, rebounding to ~89% at the edges. Using a statistical model of random fiber network, we demonstrated that these relatively small changes in porosity values produce disproportionately large variations in pore size. The model predicts an exponential dependence of pore size on porosity when the scaffold is highly porous (e.g., >80%) and, accordingly, the observed porosity variation is associated with dramatic changes in pore size and ability to accommodate cell infiltration. Within the thickest regions most likely to 'bottleneck' cell infiltration, pore size decreases from ~37 to 23 μm (38%) when rotational speeds increased from 200 to 2000 RPM. This trend is corroborated by electron microscopy. While faster rotational speeds ultimately overcome axial alignment induced by cylindrical electric fields associated with the collector geometry, it does so at the cost of eliminating larger pores favoring cell infiltration. This puts the bio-mechanical advantages associated with collector rotation-induced alignment at odds with biological goals. A more significant decrease in pore size from ~54 to ~19 μm (65%), well below the minimum associated with cellular infiltration, is observed from enhanced collector biases. Finally, similar predictions show that sacrificial fiber approaches are inefficient in achieving cell-permissive pore sizes.
Collapse
Affiliation(s)
- Yi-xiao Liu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, United States of America
- * E-mail:
| | | | - Ziting Tian
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Yizhen Jia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, United States of America
| | - John Gosser
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Jeremy Gaumer
- Tosoh SMD, Inc., Grove City, OH, United States of America
| | - Liam Ross
- Columbus Academy, Gahanna, OH, United States of America
| | - Hooman Tafreshi
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States of America
| | - John J. Lannutti
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, United States of America
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States of America
- Center for Chronic Brain Injury Program, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
3
|
Angelova L, Daskalova A, Filipov E, Vila XM, Tomasch J, Avdeev G, Teuschl-Woller AH, Buchvarov I. Optimizing the Surface Structural and Morphological Properties of Silk Thin Films via Ultra-Short Laser Texturing for Creation of Muscle Cell Matrix Model. Polymers (Basel) 2022; 14:polym14132584. [PMID: 35808630 PMCID: PMC9269134 DOI: 10.3390/polym14132584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
Temporary scaffolds that mimic the extracellular matrix’s structure and provide a stable substratum for the natural growth of cells are an innovative trend in the field of tissue engineering. The aim of this study is to obtain and design porous 2D fibroin-based cell matrices by femtosecond laser-induced microstructuring for future applications in muscle tissue engineering. Ultra-fast laser treatment is a non-contact method, which generates controlled porosity—the creation of micro/nanostructures on the surface of the biopolymer that can strongly affect cell behavior, while the control over its surface characteristics has the potential of directing the growth of future muscle tissue in the desired direction. The laser structured 2D thin film matrices from silk were characterized by means of SEM, EDX, AFM, FTIR, Micro-Raman, XRD, and 3D-roughness analyses. A WCA evaluation and initial experiments with murine C2C12 myoblasts cells were also performed. The results show that by varying the laser parameters, a different structuring degree can be achieved through the initial lifting and ejection of the material around the area of laser interaction to generate porous channels with varying widths and depths. The proper optimization of the applied laser parameters can significantly improve the bioactive properties of the investigated 2D model of a muscle cell matrix.
Collapse
Affiliation(s)
- Liliya Angelova
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shousse Blvd., 1784 Sofia, Bulgaria; (A.D.); (E.F.)
- Correspondence:
| | - Albena Daskalova
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shousse Blvd., 1784 Sofia, Bulgaria; (A.D.); (E.F.)
| | - Emil Filipov
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shousse Blvd., 1784 Sofia, Bulgaria; (A.D.); (E.F.)
| | - Xavier Monforte Vila
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Höchstädtplatz 6, 1200 Vienna, Austria; (X.M.V.); (J.T.); (A.H.T.-W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Janine Tomasch
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Höchstädtplatz 6, 1200 Vienna, Austria; (X.M.V.); (J.T.); (A.H.T.-W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Georgi Avdeev
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, Akad. G. Bonchev Str., 1113 Sofia, Bulgaria;
| | - Andreas H. Teuschl-Woller
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Höchstädtplatz 6, 1200 Vienna, Austria; (X.M.V.); (J.T.); (A.H.T.-W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Ivan Buchvarov
- Faculty of Physics, St. Kliment Ohridski University of Sofia, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria;
| |
Collapse
|
4
|
Filipov E, Angelova L, Vig S, Fernandes MH, Moreau G, Lasgorceix M, Buchvarov I, Daskalova A. Investigating Potential Effects of Ultra-Short Laser-Textured Porous Poly-ε-Caprolactone Scaffolds on Bacterial Adhesion and Bone Cell Metabolism. Polymers (Basel) 2022; 14:polym14122382. [PMID: 35745958 PMCID: PMC9227156 DOI: 10.3390/polym14122382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/04/2022] [Accepted: 06/10/2022] [Indexed: 12/01/2022] Open
Abstract
Developing antimicrobial surfaces that combat implant-associated infections while promoting host cell response is a key strategy for improving current therapies for orthopaedic injuries. In this paper, we present the application of ultra-short laser irradiation for patterning the surface of a 3D biodegradable synthetic polymer in order to affect the adhesion and proliferation of bone cells and reject bacterial cells. The surfaces of 3D-printed polycaprolactone (PCL) scaffolds were processed with a femtosecond laser (λ = 800 nm; τ = 130 fs) for the production of patterns resembling microchannels or microprotrusions. MG63 osteoblastic cells, as well as S. aureus and E. coli, were cultured on fs-laser-treated samples. Their attachment, proliferation, and metabolic activity were monitored via colorimetric assays and scanning electron microscopy. The microchannels improved the wettability, stimulating the attachment, spreading, and proliferation of osteoblastic cells. The same topography induced cell-pattern orientation and promoted the expression of alkaline phosphatase in cells growing in an osteogenic medium. The microchannels exerted an inhibitory effect on S. aureus as after 48 h cells appeared shrunk and disrupted. In comparison, E. coli formed an abundant biofilm over both the laser-treated and control samples; however, the film was dense and adhesive on the control PCL but unattached over the microchannels.
Collapse
Affiliation(s)
- Emil Filipov
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shousse Blvd., 1784 Sofia, Bulgaria; (L.A.); (A.D.)
- Correspondence:
| | - Liliya Angelova
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shousse Blvd., 1784 Sofia, Bulgaria; (L.A.); (A.D.)
| | - Sanjana Vig
- Faculdade de Medicina Dentaria, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; (S.V.); (M.H.F.)
- LAQV/REQUIMTE, University of Porto, 4160-007 Porto, Portugal
| | - Maria Helena Fernandes
- Faculdade de Medicina Dentaria, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; (S.V.); (M.H.F.)
- LAQV/REQUIMTE, University of Porto, 4160-007 Porto, Portugal
| | - Gerard Moreau
- Laboratoire des Matériaux Céramiques et Procédés Associés, Université Polytechnique Hauts-de-France, INSA Hauts-de-France, CERAMATHS, F-59313 Valenciennes, France; (G.M.); (M.L.)
| | - Marie Lasgorceix
- Laboratoire des Matériaux Céramiques et Procédés Associés, Université Polytechnique Hauts-de-France, INSA Hauts-de-France, CERAMATHS, F-59313 Valenciennes, France; (G.M.); (M.L.)
| | - Ivan Buchvarov
- Faculty of Physics, St. Kliment Ohridski University of Sofia, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Albena Daskalova
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shousse Blvd., 1784 Sofia, Bulgaria; (L.A.); (A.D.)
| |
Collapse
|
5
|
3D reconstruction of bias effects on porosity, alignment and mesoscale structure in electrospun tubular polycaprolactone. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Kristen M, Ainsworth MJ. Fiber Scaffold Patterning for Mending Hearts: 3D Organization Bringing the Next Step. Adv Healthc Mater 2020; 9:e1900775. [PMID: 31603288 PMCID: PMC7116178 DOI: 10.1002/adhm.201900775] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/14/2019] [Indexed: 12/14/2022]
Abstract
Heart failure (HF) is a leading cause of death worldwide. The most common conditions that lead to HF are coronary artery disease, myocardial infarction, valve disorders, high blood pressure, and cardiomyopathy. Due to the limited regenerative capacity of the heart, the only curative therapy currently available is heart transplantation. Therefore, there is a great need for the development of novel regenerative strategies to repair the injured myocardium, replace damaged valves, and treat occluded coronary arteries. Recent advances in manufacturing technologies have resulted in the precise fabrication of 3D fiber scaffolds with high architectural control that can support and guide new tissue growth, opening exciting new avenues for repair of the human heart. This review discusses the recent advancements in the novel research field of fiber patterning manufacturing technologies for cardiac tissue engineering (cTE) and to what extent these technologies could meet the requirements of the highly organized and structured cardiac tissues. Additionally, future directions of these novel fiber patterning technologies, designs, and applicability to advance cTE are presented.
Collapse
Affiliation(s)
- Marleen Kristen
- Regenerative Medicine Center, University Medical Center Utrecht,
Utrecht 3584 CT, The Netherlands; Department of Orthopedics, University Medical
Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Madison J. Ainsworth
- Regenerative Medicine Center, University Medical Center Utrecht,
Utrecht 3584 CT, The Netherlands; Department of Orthopedics, University Medical
Center Utrecht, Utrecht 3584 CX, The Netherlands
| |
Collapse
|
7
|
Ding J, Zhang J, Li J, Li D, Xiao C, Xiao H, Yang H, Zhuang X, Chen X. Electrospun polymer biomaterials. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.01.002] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
8
|
Ortiz R, Aurrekoetxea-Rodríguez I, Rommel M, Quintana I, Vivanco MDM, Toca-Herrera JL. Laser Surface Microstructuring of a Bio-Resorbable Polymer to Anchor Stem Cells, Control Adipocyte Morphology, and Promote Osteogenesis. Polymers (Basel) 2018; 10:polym10121337. [PMID: 30961262 PMCID: PMC6401824 DOI: 10.3390/polym10121337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 11/16/2022] Open
Abstract
New strategies in regenerative medicine include the implantation of stem cells cultured in bio-resorbable polymeric scaffolds to restore the tissue function and be absorbed by the body after wound healing. This requires the development of appropriate micro-technologies for manufacturing of functional scaffolds with controlled surface properties to induce a specific cell behavior. The present report focuses on the effect of substrate topography on the behavior of human mesenchymal stem cells (MSCs) before and after co-differentiation into adipocytes and osteoblasts. Picosecond laser micromachining technology (PLM) was applied on poly (L-lactide) (PLLA), to generate different microstructures (microgrooves and microcavities) for investigating cell shape, orientation, and MSCs co-differentiation. Under certain surface topographical conditions, MSCs modify their shape to anchor at specific groove locations. Upon MSCs differentiation, adipocytes respond to changes in substrate height and depth by adapting the intracellular distribution of their lipid vacuoles to the imposed physical constraints. In addition, topography alone seems to produce a modest, but significant, increase of stem cell differentiation to osteoblasts. These findings show that PLM can be applied as a high-efficient technology to directly and precisely manufacture 3D microstructures that guide cell shape, control adipocyte morphology, and induce osteogenesis without the need of specific biochemical functionalization.
Collapse
Affiliation(s)
- Rocio Ortiz
- Ultraprecision Processes Unit, IK4-TEKNIKER, C/Iñaki Goenaga 5, 20600 Eibar, Spain.
| | | | - Mathias Rommel
- Fraunhofer Institute for Integrated Systems and Device Technology IISB, Schottkystrasse 10, 91058 Erlangen, Germany.
| | - Iban Quintana
- Ultraprecision Processes Unit, IK4-TEKNIKER, C/Iñaki Goenaga 5, 20600 Eibar, Spain.
| | - Maria dM Vivanco
- CIC bioGUNE, Technology Park of Bizkaia, Ed. 801A, 48160 Derio, Spain.
| | - Jose Luis Toca-Herrera
- Institute for Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 11, 1190 Vienna, Austria.
| |
Collapse
|
9
|
|
10
|
Jahnavi S, Arthi N, Pallavi S, Selvaraju C, Bhuvaneshwar GS, Kumary TV, Verma RS. Nanosecond laser ablation enhances cellular infiltration in a hybrid tissue scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:190-201. [PMID: 28532021 DOI: 10.1016/j.msec.2017.03.159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 01/21/2023]
Abstract
Hybrid tissue engineered (HTE) scaffolds constituting polymeric nanofibers and biological tissues have attractive bio-mechanical properties. However, they suffer from small pore size due to dense overlapping nanofibers resulting in poor cellular infiltration. In this study, using nanosecond (ns) laser, we fabricated micro-scale features on Polycaprolactone (PCL)-Chitosan (CH) nanofiber layered bovine pericardium based Bio-Hybrid scaffold to achieve enhanced cellular adhesion and infiltration. The laser energy parameters such as fluence of 25J/cm2, 0.1mm instep and 15 mark time were optimized to get structured microchannels on the Bio-Hybrid scaffolds. Laser irradiation time of 40μs along with these parameters resulted in microchannel width of ~50μm and spacing of ~35μm between adjacent lines. The biochemical, thermal, hydrophilic and uniaxial mechanical properties of the Bio-Hybrid scaffolds remained comparable after laser ablation reflecting extracellular matrix (ECM) stability. Human umbilical cord mesenchymal stem cells and mouse cardiac fibroblasts seeded on these laser-ablated Bio-Hybrid scaffolds exhibited biocompatibility and increased cellular adhesion in microchannels when compared to non-ablated Bio-Hybrid scaffolds. These findings suggest the feasibility to selectively ablate polymer layer in the HTE scaffolds without affecting their bio-mechanical properties and also describe a new approach to enhance cellular infiltration in the HTE scaffolds.
Collapse
Affiliation(s)
- S Jahnavi
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, TN, India; Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, TN, India
| | - N Arthi
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, TN, India
| | - S Pallavi
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, TN, India
| | - C Selvaraju
- National Centre for Ultrafast Processes, Sekkizhar Campus, University of Madras, Taramani, Chennai 600113, India
| | - G S Bhuvaneshwar
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, TN, India
| | - T V Kumary
- Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012, India
| | - R S Verma
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, TN, India.
| |
Collapse
|
11
|
Kitsara M, Agbulut O, Kontziampasis D, Chen Y, Menasché P. Fibers for hearts: A critical review on electrospinning for cardiac tissue engineering. Acta Biomater 2017; 48:20-40. [PMID: 27826001 DOI: 10.1016/j.actbio.2016.11.014] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022]
Abstract
Cardiac cell therapy holds a real promise for improving heart function and especially of the chronically failing myocardium. Embedding cells into 3D biodegradable scaffolds may better preserve cell survival and enhance cell engraftment after transplantation, consequently improving cardiac cell therapy compared with direct intramyocardial injection of isolated cells. The primary objective of a scaffold used in tissue engineering is the recreation of the natural 3D environment most suitable for an adequate tissue growth. An important aspect of this commitment is to mimic the fibrillar structure of the extracellular matrix, which provides essential guidance for cell organization, survival, and function. Recent advances in nanotechnology have significantly improved our capacities to mimic the extracellular matrix. Among them, electrospinning is well known for being easy to process and cost effective. Consequently, it is becoming increasingly popular for biomedical applications and it is most definitely the cutting edge technique to make scaffolds that mimic the extracellular matrix for industrial applications. Here, the desirable physico-chemical properties of the electrospun scaffolds for cardiac therapy are described, and polymers are categorized to natural and synthetic.Moreover, the methods used for improving functionalities by providing cells with the necessary chemical cues and a more in vivo-like environment are reported.
Collapse
|
12
|
|
13
|
Laser Processing of Electrospun PCL Fiber Mats for Tissue Engineering. Int J Artif Organs 2015; 38:607-14. [DOI: 10.5301/ijao.5000455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2015] [Indexed: 11/20/2022]
Abstract
Purpose Processing technologies for cutting and joining electrospun fiber mats are required to produce complex three-dimensional (3D) structures, like a scaffold for heart valve tissue engineering. The ability to bond very thin porous sheets, thus forming a stable 3D geometry, offers completely new design strategies such as organ-shaped scaffolds with void chambers inside. In this study, solvent, glue and laser bonding are compared with regard to their retention force and practicability. Methods For this purpose, samples were prepared by applying each bonding technique. In addition, two different ways of preparing the bonding site were investigated: a portion of mats were bonded by an L-joint and the others by a T-joint; then tensile testing was performed until tearing of the bonding occurred. Additionally, the edges of laser cut fiber mats were investigated in order to evaluate the influence of thermal effects of the laser beam and ongoing changes in pore structure. Results It was found that laser cut fiber mats were slightly deformed due to thermal effects, but still had an open, porous structure at the site of the cut. Results also show that joining of fiber mats by laser led to the best bonding result with highest retention force. Application of solvent and glue led to a nonuniform and noncontinuous bonding with lower retention forces. Conclusions A first proof of concept for a heart valve-shaped scaffold was created by laser bonding. Thus, the laser is an advantageous tool for post-processing fiber mats and produce complex 3D structures for different applications.
Collapse
|
14
|
Grodecki J, Short AR, Winter JO, Rao SS, Winter JO, Otero JJ, Lannutti JJ, Sarkar A. Glioma-astrocyte interactions on white matter tract-mimetic aligned electrospun nanofibers. Biotechnol Prog 2015; 31:1406-15. [PMID: 26081199 DOI: 10.1002/btpr.2123] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 05/29/2015] [Indexed: 12/11/2022]
Abstract
Gliomas are highly invasive forms of brain cancer comprising more than 50% of brain tumor cases in adults, and astrocytomas account for ∼60-70% of all gliomas. As a result of multiple factors, including enhanced migratory properties and extracellular matrix remodeling, even with current standards of care, mean survival time for patients is only ∼12 months. Because glioblastoma multiforme (GBM) cells arise from astrocytes, there is great interest in elucidating the interactions of these two cell types in vivo. Previous work performed on two-dimensional assays (i.e., tissue culture plastic and Boyden chamber assays) utilizes substrates that lack the complexities of the natural microenvironment. Here, we employed a three-dimensional, electrospun poly-(caprolactone) (PCL) nanofiber system (NFS) to mimic some features of topographical properties evidenced in vivo. Co-cultures of human GBM cells and rat astrocytes, as performed on the NFS, showed a significant increase in astrocyte GFAP expression, particularly in the presence of extracellular matrix (ECM) deposited by GBM cells. In addition, GBM migration increased in the presence of astrocytes or soluble factors (i.e., conditioned media). However, the presence of fixed astrocytes acted as an antagonist, lowering GBM migration rates. This data suggests that astrocytes and GBM cells interact through a multitude of pathways, including soluble factors and direct contact. This work demonstrates the potential of the NFS to duplicate some topographical features of the GBM tumor microenvironment, permitting analysis of topographical effects in GBM migration.
Collapse
Affiliation(s)
- Joseph Grodecki
- Dept. of Biomedical Engineering, The Ohio State University, Columbus, OH
| | - Aaron R Short
- Dept. of Biomedical Engineering, The Ohio State University, Columbus, OH
| | - Jessica O Winter
- Dept. of Biomedical Engineering, The Ohio State University, Columbus, OH
| | - Shreyas S Rao
- William G. Lowrie Dept. of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH
| | - Jessica O Winter
- William G. Lowrie Dept. of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH
| | - José Javier Otero
- Dept. of Pathology, Division of Neuropathology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - John J Lannutti
- Dept. of Materials Science and Engineering, The Ohio State University, Columbus, OH
| | - Atom Sarkar
- Dept. of Neurosurgery and Laboratory for Nanomedicine, Geisinger Health System, Danville, PA
| |
Collapse
|
15
|
Ortiz R, Moreno-Flores S, Quintana I, Vivanco M, Sarasua J, Toca-Herrera J. Ultra-fast laser microprocessing of medical polymers for cell engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 37:241-50. [DOI: 10.1016/j.msec.2013.12.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/11/2013] [Accepted: 12/27/2013] [Indexed: 01/20/2023]
|
16
|
Wray LS, Tsioris K, Gi ES, Omenetto FG, Kaplan DL. Slowly degradable porous silk microfabricated scaffolds for vascularized tissue formation. ADVANCED FUNCTIONAL MATERIALS 2013; 23:3404-3412. [PMID: 24058328 PMCID: PMC3775390 DOI: 10.1002/adfm.201202926] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
There is critical clinical demand for tissue-engineered (TE), three-dimensional (3D) constructs for tissue repair and organ replacements. Current efforts toward this goal are prone to necrosis at the core of larger constructs because of limited oxygen and nutrient diffusion. Therefore, critically sized 3D TE constructs demand an immediate vascular system for sustained tissue function upon implantation. To address this challenge the goal of this project was to develop a strategy to incorporate microchannels into a porous silk TE scaffold that could be fabricated reproducibly using microfabrication and soft lithography. Silk is a suitable biopolymer material for this application because it is mechanically robust, biocompatible, slowly degrades in vivo, and has been used in a variety of TE constructs. We report the fabrication of a silk-based TE scaffold that contains an embedded network of porous microchannels. Enclosed porous microchannels support endothelial lumen formation, a critical step toward development of the vascular niche, while the porous scaffold surrounding the microchannels supports tissue formation, demonstrated using human mesenchymal stem cells. This approach for fabricating vascularized TE constructs is advantageous compared to previous systems, which lack porosity and biodegradability or degrade too rapidly to sustain tissue structure and function. The broader impact of this research will enable the systemic study and development of complex, critically-sized engineered tissues, from regenerative medicine to in vitro tissue models of disease states.
Collapse
|
17
|
Mun CH, Jung Y, Kim SH, Kim HC, Kim SH. Effects of pulsatile bioreactor culture on vascular smooth muscle cells seeded on electrospun poly (lactide-co-ε-caprolactone) scaffold. Artif Organs 2013; 37:E168-78. [PMID: 23834728 DOI: 10.1111/aor.12108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Electrospun nanofibrous scaffolds have several advantages, such as an extremely high surface-to-volume ratio, tunable porosity, and malleability to conform over a wide variety of sizes and shapes. However, there are limitations to culturing the cells on the scaffold, including the inability of the cells to infiltrate because of the scaffold's nano-sized pores. To overcome the limitations, we developed a controlled pulsatile bioreactor that produces static and dynamic flow, which improves transfer of such nutrients and oxygen, and a tubular-shaped vascular graft using cell matrix engineering. Electrospun scaffolds were seeded with smooth muscle cells (SMCs), cultured under dynamic or static conditions for 14 days, and analyzed. Mechanical examination revealed higher burst strength in the vascular grafts cultured under dynamic conditions than under static conditions. Also, immunohistology stain for alpa smooth muscle actin showed the difference of SMC distribution and existence on the scaffold between the static and dynamic culture conditions. The higher proliferation rate of SMCs in dynamic culture rather than static culture could be explained by the design of the bioreactor which mimics the physical environment such as media flow and pressure through the lumen of the construct. This supports regulation of collagen and leads to a significant increase in tensile strength of the engineered tissues. These results showed that the SMCs/electrospinning poly (lactide-co-ε-caprolactone) scaffold constructs formed tubular-shaped vascular grafts and could be useful in vascular tissue engineering.
Collapse
Affiliation(s)
- Cho Hay Mun
- Biomaterials Research Center, Division of Life & Health Sciences, Korea Institute of Science and Technology, Seoul, Korea; Department of Biomedical Engineering, Seoul National University, Seoul, Korea
| | | | | | | | | |
Collapse
|
18
|
Xue R, Behera P, Viapiano MS, Lannutti JJ. Rapid response oxygen-sensing nanofibers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3450-7. [PMID: 23706233 DOI: 10.1016/j.msec.2013.04.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 04/15/2013] [Indexed: 12/25/2022]
Abstract
Molecular oxygen has profound effects on cell and tissue viability. Relevant sensor forms that can rapidly determine dissolved oxygen levels under biologically relevant conditions provide critical metabolic information. Using 0.5 μm diameter electrospun polycaprolactone (PCL) fiber containing an oxygen-sensitive probe, tris (4,7-diphenyl-1,10-phenanthroline) ruthenium(II) dichloride, we observed a response time of 0.9±0.12 s while the t95 for the corresponding film was more than two orders of magnitude greater. Interestingly, the response and recovery times of slightly larger diameter PCL fibers were 1.79±0.23 s and 2.29±0.13 s, respectively, while the recovery time was not statistically different likely due to the more limited interactions of nitrogen with the polymer matrix. A more than 10-fold increase in PCL fiber diameter reduces oxygen sensitivity while having minor effects on response time; conversely, decreases in fiber diameter to less than 0.5 μm would likely decrease response times even further. In addition, a 50°C heat treatment of the electrospun fiber resulted in both increased Stern-Volmer slope and linearity likely due to secondary recrystallization that further homogenized the probe microenvironment. At exposure times up to 3600 s in length, photobleaching was observed but was largely eliminated by the use of either polyethersulfone (PES) or a PES-PCL core-shell composition. However, this resulted in 2- and 3-fold slower response times. Finally, even the non-core shell compositions containing the Ru oxygen probe result in no apparent cytotoxicity in representative glioblastoma cell populations.
Collapse
Affiliation(s)
- Ruipeng Xue
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
19
|
Gayoso MJ. MRT letter: A fast and easy method for general fluorescent staining of cultured cells on transparent or opaque supports. Microsc Res Tech 2012; 75:849-51. [DOI: 10.1002/jemt.22068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/09/2012] [Indexed: 01/07/2023]
|
20
|
Electrospun nanofibers in drug delivery: recent developments and perspectives. Ther Deliv 2012; 3:515-33. [DOI: 10.4155/tde.12.17] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this review article, some key challenges in drug delivery are first introduced and methods that have been applied in attempts to solve them enumerated. Particularly intractable problems are highlighted: these include issues of solubility, targeting and drug degradation. The technique of electrospinning is subsequently introduced, and the influence of processing parameters on the fibers produced discussed. The potential of electrospun nanofibers in drug delivery is then explored, with examples given from the recent literature to illustrate how fibers can be used to overcome hurdles in drug solubility, degradation and targeting. Future perspectives and challenges are also considered.
Collapse
|
21
|
Nam J, Huang Y, Agarwal S, Lannutti J. Improved cellular infiltration in electrospun fiber via engineered porosity. TISSUE ENGINEERING 2007; 13:2249-57. [PMID: 17536926 PMCID: PMC4948987 DOI: 10.1089/ten.2006.0306] [Citation(s) in RCA: 282] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Small pore sizes inherent to electrospun matrices can hinder efficient cellular ingrowth. To facilitate infiltration while retaining its extracellular matrix-like character, electrospinning was combined with salt leaching to produce a scaffold having deliberate, engineered delaminations. We made elegant use of a specific randomizing component of the electrospinning process, the Taylor Cone and the falling fiber beneath it, to produce a uniform, well-spread distribution of salt particles. After 3 weeks of culture, up to 4 mm of cellular infiltration was observed, along with cellular coverage of up to 70% within the delaminations. To our knowledge, this represents the first observation of extensive cellular infiltration of electrospun matrices. Infiltration appears to be driven primarily by localized proliferation rather than coordinated cellular locomotion. Cells also moved from the salt-generated porosity into the surrounding electrospun fiber matrix. Given that the details of salt deposition (amount, size, and number density) are far from optimized, the result provides a convincing illustration of the ability of mammalian cells to interact with appropriately tailored electrospun matrices. These layered structures can be precisely fabricated by varying the deposition interval and particle size conceivably to produce in vivo-like gradients in porosity such that the resulting scaffolds better resemble the desired final structure.
Collapse
Affiliation(s)
- Jin Nam
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|