1
|
Cakiroglu H, Deveci Ozkan A, Erman G, Bozkurt MF, Yanar S, Kale Bakir E, Yuzugullu Karakus Y. Comparative analysis of IscM and IscQu in feline oral squamous cell carcinoma treatment: cytotoxic and apoptotic insights. Front Vet Sci 2025; 12:1549550. [PMID: 40575584 PMCID: PMC12199264 DOI: 10.3389/fvets.2025.1549550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 05/08/2025] [Indexed: 06/29/2025] Open
Abstract
Backround Feline oral squamous cell carcinoma (FOSCC) is the most common malignant oral tumor in cats, characterized by invasive and aggressive behavior regardless of its location. Conventional treatments, including surgery, radiation therapy, and chemotherapy, often yield unsatisfactory outcomes, with tumor progression and tissue destruction frequently leading to euthanasia. In anthroposophical medicine, extracts of Viscum album have been developed as complementary cancer treatments, with Iscador, the oldest and most widely used oncological drug, showing promising anticancer potential. This study investigated, for the first time, the cytotoxic and apoptotic effects of IscM and IscQu, two Viscum album extracts, on FOSCC cells. Methods Using primary cultures of three FOSCC cell lines, cell viability assays were performed to assess cytotoxicity, and the effects on apoptotic cell death, cell cycle arrest, and cellular and nuclear morphology were evaluated. Additionally, mRNA expression levels of Cyclin D, Cdk4, Bcl-2, Bax, and p53 were analyzed. Results The results revealed that both IscM and IscQu induced apoptotic cell death and promoted cell cycle arrest in all three FOSCC cell lines tested. IscQu exhibited relatively stronger pro-apoptotic effects compared to IscM, although no significant differences were observed among the cell lines. Conclusion These findings suggest that Viscum album extracts, particularly IscQu, may exert anti-tumor effects on feline oral squamous cell carcinoma cells in vitro.
Collapse
Affiliation(s)
- Huseyin Cakiroglu
- Experimental Medicine Research and Application Centre, Sakarya University, Sakarya, Türkiye
| | - Asuman Deveci Ozkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Türkiye
| | - Gulay Erman
- Health Services Education Research and Application Centre, Sakarya University, Sakarya, Türkiye
- Department of Medical Biochemistry, Institute of Health Science, Sakarya University, Sakarya, Türkiye
| | - Mehmet Fatih Bozkurt
- Department of Pathology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyon, Türkiye
| | - Sevinc Yanar
- Department of Histology and Embryology, Faculty of Medicine, Sakarya University, Sakarya, Türkiye
| | - Elif Kale Bakir
- Department of Biology, Institute of Science, Kocaeli University, Kocaeli, Türkiye
| | | |
Collapse
|
2
|
Liu L, Wang H, Chen R, Song Y, Wei W, Baek D, Gillin M, Kurabayashi K, Chen W. Cancer-on-a-chip for precision cancer medicine. LAB ON A CHIP 2025. [PMID: 40376718 DOI: 10.1039/d4lc01043d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Many cancer therapies fail in clinical trials despite showing potent efficacy in preclinical studies. One of the key reasons is the adopted preclinical models cannot recapitulate the complex tumor microenvironment (TME) and reflect the heterogeneity and patient specificity in human cancer. Cancer-on-a-chip (CoC) microphysiological systems can closely mimic the complex anatomical features and microenvironment interactions in an actual tumor, enabling more accurate disease modeling and therapy testing. This review article concisely summarizes and highlights the state-of-the-art progresses in CoC development for modeling critical TME compartments including the tumor vasculature, stromal and immune niche, as well as its applications in therapying screening. Current dilemma in cancer therapy development demonstrates that future preclinical models should reflect patient specific pathophysiology and heterogeneity with high accuracy and enable high-throughput screening for anticancer drug discovery and development. Therefore, CoC should be evolved as well. We explore future directions and discuss the pathway to develop the next generation of CoC models for precision cancer medicine, such as patient-derived chip, organoids-on-a-chip, and multi-organs-on-a-chip with high fidelity. We also discuss how the integration of sensors and microenvironmental control modules can provide a more comprehensive investigation of disease mechanisms and therapies. Next, we outline the roadmap of future standardization and translation of CoC technology toward real-world applications in pharmaceutical development and clinical settings for precision cancer medicine and the practical challenges and ethical concerns. Finally, we overview how applying advanced artificial intelligence tools and computational models could exploit CoC-derived data and augment the analytical ability of CoC.
Collapse
Affiliation(s)
- Lunan Liu
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
| | - Huishu Wang
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
| | - Ruiqi Chen
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Yujing Song
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
| | - William Wei
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - David Baek
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Mahan Gillin
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Katsuo Kurabayashi
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
3
|
Amiri M, Tabatabai TS, Seifi Z, Rostaminasab G, Mikaeili A, Hosseini F, Rezakhani L. Three-dimensional in vitro models in head and neck cancer: current trends and applications. Med Oncol 2025; 42:194. [PMID: 40320444 DOI: 10.1007/s12032-025-02737-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/18/2025] [Indexed: 06/01/2025]
Abstract
Head and neck cancer (HNC) is the sixth most prevalent malignancy worldwide and includes a variety of upper gastrointestinal abnormalities. HNC includes oral, throat, voice box, nasal cavity, paranasal sinuses, and salivary gland cancers. Squamous cells in the mouth, nose, and throat cause HNC. Drugs, alcohol, poor diets, smoking, and genetics all contribute to this condition. Cancer research has focused on three-dimensional (3D) models in HNC biology in recent decades. An adequate microenvironmental system and cancer cell culture are the initial steps to understanding cancer cells' complicated interactions with their surroundings. New 3D models claim to bridge in vivo and in vitro investigations and erase the gap. Interdisciplinary cell biology and tissue engineering researchers are creating 3D cancer tissue models to better understand the illness and develop more accurate cancer medicines. Tissue engineering researchers, who are always exploring novel approaches to treat cancer, have been able to include the third dimension into laboratory settings and mimic cell-to-cell and cell-to-matrix interactions by recreating the tumor microenvironment using 3D models and so make research on cancer easier. This review addresses recent developments in tissue engineering with an emphasis on 3D models in HNC.
Collapse
Affiliation(s)
- Masoumeh Amiri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tayebeh Sadat Tabatabai
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Zahra Seifi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abdolhamid Mikaeili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Hosseini
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
4
|
Hu W, Bei HP, Jiang H, Wu D, Yu X, Zhou X, Sun Q, Lu Q, Du Q, Wang L, Luo Z, Wu G, Zhao X, Wang S. DLM-GelMA/tumor slice sandwich structured tumor on a chip for drug efficacy testing. LAB ON A CHIP 2024; 24:3718-3727. [PMID: 38953554 DOI: 10.1039/d4lc00278d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The in vitro recapitulation of tumor microenvironment is of great interest to preclinical screening of drugs. Compared with culture of cell lines, tumor organ slices can better preserve the complex tumor architecture and phenotypic activity of native cells, but are limited by their exposure to fluid shear and gradual degradation under perfusion culture. Here, we established a decellularized liver matrix (DLM)-GelMA "sandwich" structure and a perfusion-based microfluidic platform to support long-term culture of tumor slices with excellent structural integrity and cell viability over 7 days. The DLM-GelMA was able to secrete cytokines and growth factors while providing shear protection to the tumor slice via the sandwich structure, leading to the preservation of the tumor microenvironment where immune cells (CD3, CD8, CD68), tumor-associated fibroblasts (α-SMA), and extracellular matrix components (collagen I, fibronectin) were well maintained. Furthermore, this chip presented anti-tumor efficacy at cisplatin (20 μM) on tumor patients, demonstrating our platform's efficacy to design patient-specific treatment regimens. Taken together, the successful development of this DLM-GelMA sandwich structure on the chip could faithfully reflect the tumor microenvironment and immune response, accelerating the screening process of drug molecules and providing insights for practical medicine.
Collapse
Affiliation(s)
- Wenqi Hu
- Department of Respiratory and Critical Care Medicine, Provincial Clinical Research Center for Respiratory Diseases, West China Hospital, Sichuan University, Chengdu, 610065, People's Republic of China.
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China
| | - Ho-Pan Bei
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China.
| | - Hongwei Jiang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| | - Di Wu
- Department of Respiratory and Critical Care Medicine, Provincial Clinical Research Center for Respiratory Diseases, West China Hospital, Sichuan University, Chengdu, 610065, People's Republic of China.
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China
| | - Xiaorui Yu
- Department of Respiratory and Critical Care Medicine, Provincial Clinical Research Center for Respiratory Diseases, West China Hospital, Sichuan University, Chengdu, 610065, People's Republic of China.
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China
| | - Xintong Zhou
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China.
| | - Qiuwan Sun
- Sichuan Diya BioTechnology Group Company, Chengdu, 641400, China
| | - Qinrui Lu
- Sichuan Diya BioTechnology Group Company, Chengdu, 641400, China
| | - Qijun Du
- Department of Respiratory and Critical Care Medicine, Provincial Clinical Research Center for Respiratory Diseases, West China Hospital, Sichuan University, Chengdu, 610065, People's Republic of China.
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China
| | - Liangwen Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhi Luo
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Guohua Wu
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| | - Xin Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China.
- Research Institute for Intelligent Wearable Systems, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Shuqi Wang
- Department of Respiratory and Critical Care Medicine, Provincial Clinical Research Center for Respiratory Diseases, West China Hospital, Sichuan University, Chengdu, 610065, People's Republic of China.
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China
| |
Collapse
|
5
|
Li C, He W, Song Y, Zhang X, Sun J, Zhou Z. Advances of 3D Cell Co-Culture Technology Based on Microfluidic Chips. BIOSENSORS 2024; 14:336. [PMID: 39056612 PMCID: PMC11274478 DOI: 10.3390/bios14070336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Cell co-culture technology aims to study the communication mechanism between cells and to better reveal the interactions and regulatory mechanisms involved in processes such as cell growth, differentiation, apoptosis, and other cellular activities. This is achieved by simulating the complex organismic environment. Such studies are of great significance for understanding the physiological and pathological processes of multicellular organisms. As an emerging cell cultivation technology, 3D cell co-culture technology, based on microfluidic chips, can efficiently, rapidly, and accurately achieve cell co-culture. This is accomplished by leveraging the unique microchannel structures and flow characteristics of microfluidic chips. The technology can simulate the native microenvironment of cell growth, providing a new technical platform for studying intercellular communication. It has been widely used in the research of oncology, immunology, neuroscience, and other fields. In this review, we summarize and provide insights into the design of cell co-culture systems on microfluidic chips, the detection methods employed in co-culture systems, and the applications of these models.
Collapse
Affiliation(s)
- Can Li
- Engineering Research Center of TCM Intelligence Health Service, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (C.L.); (Y.S.); (X.Z.)
| | - Wei He
- Department of Clinical Medical Engineering, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;
| | - Yihua Song
- Engineering Research Center of TCM Intelligence Health Service, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (C.L.); (Y.S.); (X.Z.)
| | - Xia Zhang
- Engineering Research Center of TCM Intelligence Health Service, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (C.L.); (Y.S.); (X.Z.)
| | - Jianfei Sun
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210009, China
| | - Zuojian Zhou
- Engineering Research Center of TCM Intelligence Health Service, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (C.L.); (Y.S.); (X.Z.)
| |
Collapse
|
6
|
Li X, González-Maroto C, Tavassoli M. Crosstalk between CAFs and tumour cells in head and neck cancer. Cell Death Discov 2024; 10:303. [PMID: 38926351 PMCID: PMC11208506 DOI: 10.1038/s41420-024-02053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are amongst the most aggressive, complex, and heterogeneous malignancies. The standard of care treatments for HNC patients include surgery, radiotherapy, chemotherapy, or their combination. However, around 50% do not benefit while suffering severe toxic side effects, costing the individuals and society. Decades have been spent to improve HNSCC treatment outcomes with only limited success. Much of the research in HNSCC treatment has focused on understanding the genetics of the HNSCC malignant cells, but it has become clear that tumour microenvironment (TME) plays an important role in the progression as well as treatment response in HNSCC. Understanding the crosstalk between cancer cells and TME is crucial for inhibiting progression and treatment resistance. Cancer-associated fibroblasts (CAFs), the predominant component of stroma in HNSCC, serve as the primary source of extra-cellular matrix (ECM) and various pro-tumoral composites in TME. The activation of CAFs in HNSCC is primarily driven by cancer cell-secreted molecules, which in turn induce phenotypic changes, elevated secretive status, and altered ECM production profile. Concurrently, CAFs play a pivotal role in modulating the cell cycle, stemness, epithelial-mesenchymal transition (EMT), and resistance to targeted and chemoradiotherapy in HNSCC cells. This modulation occurs through interactions with secreted molecules or direct contact with the ECM or CAF. Co-culture and 3D models of tumour cells and other TME cell types allows to mimic the HNSCC tumour milieu and enable modulating tumour hypoxia and reprograming cancer stem cells (CSC). This review aims to provide an update on the development of HNSCC tumour models comprising CAFs to obtain better understanding of the interaction between CAFs and tumour cells, and for providing preclinical testing platforms of current and combination with emerging therapeutics.
Collapse
Affiliation(s)
- Xinyang Li
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
| | - Celia González-Maroto
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mahvash Tavassoli
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK.
| |
Collapse
|
7
|
Mehta V, Vilikkathala Sudhakaran S, Nellore V, Madduri S, Rath SN. 3D stem-like spheroids-on-a-chip for personalized combinatorial drug testing in oral cancer. J Nanobiotechnology 2024; 22:344. [PMID: 38890730 PMCID: PMC11186147 DOI: 10.1186/s12951-024-02625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Functional drug testing (FDT) with patient-derived tumor cells in microfluidic devices is gaining popularity. However, the majority of previously reported microfluidic devices for FDT were limited by at least one of these factors: lengthy fabrication procedures, absence of tumor progenitor cells, lack of clinical correlation, and mono-drug therapy testing. Furthermore, personalized microfluidic models based on spheroids derived from oral cancer patients remain to be thoroughly validated. Overcoming the limitations, we develop 3D printed mold-based, dynamic, and personalized oral stem-like spheroids-on-a-chip, featuring unique serpentine loops and flat-bottom microwells arrangement. RESULTS This unique arrangement enables the screening of seven combinations of three drugs on chemoresistive cancer stem-like cells. Oral cancer patients-derived stem-like spheroids (CD 44+) remains highly viable (> 90%) for 5 days. Treatment with a well-known oral cancer chemotherapy regimen (paclitaxel, 5 fluorouracil, and cisplatin) at clinically relevant dosages results in heterogeneous drug responses in spheroids. These spheroids are derived from three oral cancer patients, each diagnosed with either well-differentiated or moderately-differentiated squamous cell carcinoma. Oral spheroids exhibit dissimilar morphology, size, and oral tumor-relevant oxygen levels (< 5% O2). These features correlate with the drug responses and clinical diagnosis from each patient's histopathological report. CONCLUSIONS Overall, we demonstrate the influence of tumor differentiation status on treatment responses, which has been rarely carried out in the previous reports. To the best of our knowledge, this is the first report demonstrating extensive work on development of microfluidic based oral cancer spheroid model for personalized combinatorial drug screening. Furthermore, the obtained clinical correlation of drug screening data represents a significant advancement over previously reported personalized spheroid-based microfluidic devices. Finally, the maintenance of patient-derived spheroids with high viability under oral cancer relevant oxygen levels of less than 5% O2 is a more realistic representation of solid tumor microenvironment in our developed device.
Collapse
Affiliation(s)
- Viraj Mehta
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, 502285, Telangana, India
| | - Sukanya Vilikkathala Sudhakaran
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, 502285, Telangana, India
| | - Vijaykumar Nellore
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, 502285, Telangana, India
| | - Srinivas Madduri
- Department of Surgery, University of Geneva, 1205, Geneva, Switzerland
| | - Subha Narayan Rath
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, 502285, Telangana, India.
| |
Collapse
|
8
|
Zhai J, Liu Y, Ji W, Huang X, Wang P, Li Y, Li H, Wong AHH, Zhou X, Chen P, Wang L, Yang N, Chen C, Chen H, Mak PI, Deng CX, Martins R, Yang M, Ho TY, Yi S, Yao H, Jia Y. Drug screening on digital microfluidics for cancer precision medicine. Nat Commun 2024; 15:4363. [PMID: 38778087 PMCID: PMC11111680 DOI: 10.1038/s41467-024-48616-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Drug screening based on in-vitro primary tumor cell culture has demonstrated potential in personalized cancer diagnosis. However, the limited number of tumor cells, especially from patients with early stage cancer, has hindered the widespread application of this technique. Hence, we developed a digital microfluidic system for drug screening using primary tumor cells and established a working protocol for precision medicine. Smart control logic was developed to increase the throughput of the system and decrease its footprint to parallelly screen three drugs on a 4 × 4 cm2 chip in a device measuring 23 × 16 × 3.5 cm3. We validated this method in an MDA-MB-231 breast cancer xenograft mouse model and liver cancer specimens from patients, demonstrating tumor suppression in mice/patients treated with drugs that were screened to be effective on individual primary tumor cells. Mice treated with drugs screened on-chip as ineffective exhibited similar results to those in the control groups. The effective drug identified through on-chip screening demonstrated consistency with the absence of mutations in their related genes determined via exome sequencing of individual tumors, further validating this protocol. Therefore, this technique and system may promote advances in precision medicine for cancer treatment and, eventually, for any disease.
Collapse
Affiliation(s)
- Jiao Zhai
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Yingying Liu
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Weiqing Ji
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xinru Huang
- Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ping Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunyi Li
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
| | - Haoran Li
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Ada Hang-Heng Wong
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Xiong Zhou
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- College of electrical and information engineering, Hunan University, Changsha, China
| | - Ping Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lianhong Wang
- College of electrical and information engineering, Hunan University, Changsha, China
| | - Ning Yang
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- Department of Electronic Information Engineering, Jiangsu University, Zhenjiang, China
| | - Chi Chen
- Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Haitian Chen
- Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Pui-In Mak
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Chu-Xia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Rui Martins
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- Faculty of Science and Technology, University of Macau, Macau SAR, China
- On leave from Instituto Superior Tecnico, Universidade de Lisboa, Lisboa, Portugal
| | - Mengsu Yang
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Tsung-Yi Ho
- Department of Compute Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuhong Yi
- Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Hailong Yao
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China.
| | - Yanwei Jia
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China.
- Faculty of Science and Technology, University of Macau, Macau SAR, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| |
Collapse
|
9
|
Arutyunyan I, Jumaniyazova E, Makarov A, Fatkhudinov T. In Vitro Models of Head and Neck Cancer: From Primitive to Most Advanced. J Pers Med 2023; 13:1575. [PMID: 38003890 PMCID: PMC10672510 DOI: 10.3390/jpm13111575] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
For several decades now, researchers have been trying to answer the demand of clinical oncologists to create an ideal preclinical model of head and neck squamous cell carcinoma (HNSCC) that is accessible, reproducible, and relevant. Over the past years, the development of cellular technologies has naturally allowed us to move from primitive short-lived primary 2D cell cultures to complex patient-derived 3D models that reproduce the cellular composition, architecture, mutational, or viral load of native tumor tissue. Depending on the tasks and capabilities, a scientific laboratory can choose from several types of models: primary cell cultures, immortalized cell lines, spheroids or heterospheroids, tissue engineering models, bioprinted models, organoids, tumor explants, and histocultures. HNSCC in vitro models make it possible to screen agents with potential antitumor activity, study the contribution of the tumor microenvironment to its progression and metastasis, determine the prognostic significance of individual biomarkers (including using genetic engineering methods), study the effect of viral infection on the pathogenesis of the disease, and adjust treatment tactics for a specific patient or groups of patients. Promising experimental results have created a scientific basis for the registration of several clinical studies using HNSCC in vitro models.
Collapse
Affiliation(s)
- Irina Arutyunyan
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (I.A.); (A.M.); (T.F.)
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| | - Enar Jumaniyazova
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (I.A.); (A.M.); (T.F.)
| | - Andrey Makarov
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (I.A.); (A.M.); (T.F.)
- Histology Department, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 117997 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (I.A.); (A.M.); (T.F.)
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| |
Collapse
|
10
|
Bouquerel C, Dubrova A, Hofer I, Phan DTT, Bernheim M, Ladaigue S, Cavaniol C, Maddalo D, Cabel L, Mechta-Grigoriou F, Wilhelm C, Zalcman G, Parrini MC, Descroix S. Bridging the gap between tumor-on-chip and clinics: a systematic review of 15 years of studies. LAB ON A CHIP 2023; 23:3906-3935. [PMID: 37592893 DOI: 10.1039/d3lc00531c] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Over the past 15 years, the field of oncology research has witnessed significant progress in the development of new cell culture models, such as tumor-on-chip (ToC) systems. In this comprehensive overview, we present a multidisciplinary perspective by bringing together physicists, biologists, clinicians, and experts from pharmaceutical companies to highlight the current state of ToC research, its unique features, and the challenges it faces. To offer readers a clear and quantitative understanding of the ToC field, we conducted an extensive systematic analysis of more than 300 publications related to ToC from 2005 to 2022. ToC offer key advantages over other in vitro models by enabling precise control over various parameters. These parameters include the properties of the extracellular matrix, mechanical forces exerted on cells, the physico-chemical environment, cell composition, and the architecture of the tumor microenvironment. Such fine control allows ToC to closely replicate the complex microenvironment and interactions within tumors, facilitating the study of cancer progression and therapeutic responses in a highly representative manner. Importantly, by incorporating patient-derived cells or tumor xenografts, ToC models have demonstrated promising results in terms of clinical validation. We also examined the potential of ToC for pharmaceutical industries in which ToC adoption is expected to occur gradually. Looking ahead, given the high failure rate of clinical trials and the increasing emphasis on the 3Rs principles (replacement, reduction, refinement of animal experimentation), ToC models hold immense potential for cancer research. In the next decade, data generated from ToC models could potentially be employed for discovering new therapeutic targets, contributing to regulatory purposes, refining preclinical drug testing and reducing reliance on animal models.
Collapse
Affiliation(s)
- Charlotte Bouquerel
- Macromolécules et Microsystèmes en Biologie et Médecine, UMR 168, Institut Curie, Institut Pierre Gilles de Gennes, 6 rue Jean Calvin, 75005, Paris, France
- Stress and Cancer Laboratory, Inserm, U830, Institut Curie, PSL Research University, 26 rue d'Ulm, 75005, Paris, France
- Fluigent, 67 avenue de Fontainebleau, 94270, Le Kremlin-Bicêtre, France
| | - Anastasiia Dubrova
- Macromolécules et Microsystèmes en Biologie et Médecine, UMR 168, Institut Curie, Institut Pierre Gilles de Gennes, 6 rue Jean Calvin, 75005, Paris, France
| | - Isabella Hofer
- Stress and Cancer Laboratory, Inserm, U830, Institut Curie, PSL Research University, 26 rue d'Ulm, 75005, Paris, France
| | - Duc T T Phan
- Biomedicine Design, Pfizer Inc., San Diego, CA, USA
| | - Moencopi Bernheim
- Macromolécules et Microsystèmes en Biologie et Médecine, UMR 168, Institut Curie, Institut Pierre Gilles de Gennes, 6 rue Jean Calvin, 75005, Paris, France
| | - Ségolène Ladaigue
- Stress and Cancer Laboratory, Inserm, U830, Institut Curie, PSL Research University, 26 rue d'Ulm, 75005, Paris, France
| | - Charles Cavaniol
- Macromolécules et Microsystèmes en Biologie et Médecine, UMR 168, Institut Curie, Institut Pierre Gilles de Gennes, 6 rue Jean Calvin, 75005, Paris, France
| | - Danilo Maddalo
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Luc Cabel
- Institut Curie, Department of Medical Oncology, 26 rue d'Ulm, 75005, Paris, France
| | - Fatima Mechta-Grigoriou
- Stress and Cancer Laboratory, Inserm, U830, Institut Curie, PSL Research University, 26 rue d'Ulm, 75005, Paris, France
| | - Claire Wilhelm
- Macromolécules et Microsystèmes en Biologie et Médecine, UMR 168, Institut Curie, Institut Pierre Gilles de Gennes, 6 rue Jean Calvin, 75005, Paris, France
| | - Gérard Zalcman
- Stress and Cancer Laboratory, Inserm, U830, Institut Curie, PSL Research University, 26 rue d'Ulm, 75005, Paris, France
- Université Paris Cité, Thoracic Oncology Department, INSERM CIC1425, Bichat Hospital, Cancer Institute AP-HP. Nord, Paris, France.
| | - Maria Carla Parrini
- Stress and Cancer Laboratory, Inserm, U830, Institut Curie, PSL Research University, 26 rue d'Ulm, 75005, Paris, France
| | - Stéphanie Descroix
- Macromolécules et Microsystèmes en Biologie et Médecine, UMR 168, Institut Curie, Institut Pierre Gilles de Gennes, 6 rue Jean Calvin, 75005, Paris, France
| |
Collapse
|
11
|
Dalir Abdolahinia E, Han X. The Three-Dimensional In Vitro Cell Culture Models in the Study of Oral Cancer Immune Microenvironment. Cancers (Basel) 2023; 15:4266. [PMID: 37686542 PMCID: PMC10487272 DOI: 10.3390/cancers15174266] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The onset and progression of oral cancer are accompanied by a dynamic interaction with the host immune system, and the immune cells within the tumor microenvironment play a pivotal role in the development of the tumor. By exploring the cellular immunity of oral cancer, we can gain insight into the contribution of both tumor cells and immune cells to tumorigenesis. This understanding is crucial for developing effective immunotherapeutic strategies to combat oral cancer. Studies of cancer immunology present unique challenges in terms of modeling due to the extraordinary complexity of the immune system. With its multitude of cellular components, each with distinct subtypes and various activation states, the immune system interacts with cancer cells and other components of the tumor, ultimately shaping the course of the disease. Conventional two-dimensional (2D) culture methods fall short of capturing these intricate cellular interactions. Mouse models enable us to learn about tumor biology in complicated and dynamic physiological systems but have limitations as the murine immune system differs significantly from that of humans. In light of these challenges, three-dimensional (3D) culture systems offer an alternative approach to studying cancer immunology and filling the existing gaps in available models. These 3D culture models provide a means to investigate complex cellular interactions that are difficult to replicate in 2D cultures. The direct study of the interaction between immune cells and cancer cells of human origin offers a more relevant and representative platform compared to mouse models, enabling advancements in our understanding of cancer immunology. This review explores commonly used 3D culture models and highlights their significant contributions to expanding our knowledge of cancer immunology. By harnessing the power of 3D culture systems, we can unlock new insights that pave the way for improved strategies in the battle against oral cancer.
Collapse
Affiliation(s)
| | - Xiaozhe Han
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
12
|
Pillai S, Kwan JC, Yaziji F, Yu H, Tran SD. Mapping the Potential of Microfluidics in Early Diagnosis and Personalized Treatment of Head and Neck Cancers. Cancers (Basel) 2023; 15:3894. [PMID: 37568710 PMCID: PMC10417175 DOI: 10.3390/cancers15153894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Head and neck cancers (HNCs) account for ~4% of all cancers in North America and encompass cancers affecting the oral cavity, pharynx, larynx, sinuses, nasal cavity, and salivary glands. The anatomical complexity of the head and neck region, characterized by highly perfused and innervated structures, presents challenges in the early diagnosis and treatment of these cancers. The utilization of sub-microliter volumes and the unique phenomenon associated with microscale fluid dynamics have facilitated the development of microfluidic platforms for studying complex biological systems. The advent of on-chip microfluidics has significantly impacted the diagnosis and treatment strategies of HNC. Sensor-based microfluidics and point-of-care devices have improved the detection and monitoring of cancer biomarkers using biological specimens like saliva, urine, blood, and serum. Additionally, tumor-on-a-chip platforms have allowed the creation of patient-specific cancer models on a chip, enabling the development of personalized treatments through high-throughput screening of drugs. In this review, we first focus on how microfluidics enable the development of an enhanced, functional drug screening process for targeted treatment in HNCs. We then discuss current advances in microfluidic platforms for biomarker sensing and early detection, followed by on-chip modeling of HNC to evaluate treatment response. Finally, we address the practical challenges that hinder the clinical translation of these microfluidic advances.
Collapse
Affiliation(s)
| | | | | | | | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cell Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada; (S.P.); (J.C.K.); (F.Y.); (H.Y.)
| |
Collapse
|
13
|
Engrácia DM, Pinto CIG, Mendes F. Cancer 3D Models for Metallodrug Preclinical Testing. Int J Mol Sci 2023; 24:11915. [PMID: 37569291 PMCID: PMC10418685 DOI: 10.3390/ijms241511915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Despite being standard tools in research, the application of cellular and animal models in drug development is hindered by several limitations, such as limited translational significance, animal ethics, and inter-species physiological differences. In this regard, 3D cellular models can be presented as a step forward in biomedical research, allowing for mimicking tissue complexity more accurately than traditional 2D models, while also contributing to reducing the use of animal models. In cancer research, 3D models have the potential to replicate the tumor microenvironment, which is a key modulator of cancer cell behavior and drug response. These features make cancer 3D models prime tools for the preclinical study of anti-tumoral drugs, especially considering that there is still a need to develop effective anti-cancer drugs with high selectivity, minimal toxicity, and reduced side effects. Metallodrugs, especially transition-metal-based complexes, have been extensively studied for their therapeutic potential in cancer therapy due to their distinctive properties; however, despite the benefits of 3D models, their application in metallodrug testing is currently limited. Thus, this article reviews some of the most common types of 3D models in cancer research, as well as the application of 3D models in metallodrug preclinical studies.
Collapse
Affiliation(s)
- Diogo M. Engrácia
- Center for Nuclear Sciences and Technologies, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal; (D.M.E.); (C.I.G.P.)
| | - Catarina I. G. Pinto
- Center for Nuclear Sciences and Technologies, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal; (D.M.E.); (C.I.G.P.)
| | - Filipa Mendes
- Center for Nuclear Sciences and Technologies, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal; (D.M.E.); (C.I.G.P.)
- Department of Nuclear Sciences and Engineering, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
14
|
Barry A, Samuel SF, Hosni I, Moursi A, Feugere L, Sennett CJ, Deepak S, Achawal S, Rajaraman C, Iles A, Wollenberg Valero KC, Scott IS, Green V, Stead LF, Greenman J, Wade MA, Beltran-Alvarez P. Investigating the effects of arginine methylation inhibitors on microdissected brain tumour biopsies maintained in a miniaturised perfusion system. LAB ON A CHIP 2023; 23:2664-2682. [PMID: 37191188 DOI: 10.1039/d3lc00204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Arginine methylation is a post-translational modification that consists of the transfer of one or two methyl (CH3) groups to arginine residues in proteins. Several types of arginine methylation occur, namely monomethylation, symmetric dimethylation and asymmetric dimethylation, which are catalysed by different protein arginine methyltransferases (PRMTs). Inhibitors of PRMTs have recently entered clinical trials to target several types of cancer, including gliomas (NCT04089449). People with glioblastoma (GBM), the most aggressive form of brain tumour, are among those with the poorest quality of life and likelihood of survival of anyone diagnosed with cancer. There is currently a lack of (pre)clinical research on the possible application of PRMT inhibitors to target brain tumours. Here, we set out to investigate the effects of clinically-relevant PRMT inhibitors on GBM biopsies. We present a new, low-cost, easy to fabricate perfusion device that can maintain GBM tissue in a viable condition for at least eight days post-surgical resection. The miniaturised perfusion device enables the treatment of GBM tissue with PRMT inhibitors ex vivo, and we observed a two-fold increase in apoptosis in treated samples compared to parallel control experiments. Mechanistically, we show thousands of differentially expressed genes after treatment, and changes in the type of arginine methylation of the RNA binding protein FUS that are consistent with hundreds of differential gene splicing events. This is the first time that cross-talk between different types of arginine methylation has been observed in clinical samples after treatment with PRMT inhibitors.
Collapse
Affiliation(s)
- Antonia Barry
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | - Sabrina F Samuel
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | - Ines Hosni
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | - Amr Moursi
- Department of Neurosurgery, Hull University Teaching Hospitals NHS Trust, Hull Royal Infirmary, Hull, UK
| | - Lauric Feugere
- Department of Biological and Marine Sciences, University of Hull, Hull, UK
| | | | - Srihari Deepak
- Department of Neurosurgery, Hull University Teaching Hospitals NHS Trust, Hull Royal Infirmary, Hull, UK
| | - Shailendra Achawal
- Department of Neurosurgery, Hull University Teaching Hospitals NHS Trust, Hull Royal Infirmary, Hull, UK
| | - Chittoor Rajaraman
- Department of Neurosurgery, Hull University Teaching Hospitals NHS Trust, Hull Royal Infirmary, Hull, UK
| | | | | | - Ian S Scott
- Neuroscience Laboratories, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Vicky Green
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | - Lucy F Stead
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - John Greenman
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | - Mark A Wade
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | | |
Collapse
|
15
|
Preclinical models in head and neck squamous cell carcinoma. Br J Cancer 2023; 128:1819-1827. [PMID: 36765175 PMCID: PMC10147614 DOI: 10.1038/s41416-023-02186-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Head and neck cancer is the sixth most frequent cancer type. Drug resistance and toxicity are common challenges of the existing therapies, making the development of reliable preclinical models essential for the study of the involved molecular mechanisms as well as for eventual intervention approaches that improve the clinical outcome. Preclinical models of head and neck squamous cell carcinoma have been traditionally based on cell lines and murine models. In this review, we will go over the most frequently used preclinical models, from immortalised-cell and primary tumour cultures in monolayer or 3D, to the currently available animal models. We will scrutinise their efficiency in mimicking the molecular and cellular complexity of head and neck squamous cell carcinoma. Finally, the challenges and the opportunities of other envisaged putative approaches, as well as the potential of the preclinical models to further develop personalised therapies will be discussed.
Collapse
|
16
|
Patient-derived head and neck tumor slice cultures: a versatile tool to study oncolytic virus action. Sci Rep 2022; 12:15334. [PMID: 36097280 PMCID: PMC9467994 DOI: 10.1038/s41598-022-19555-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
Head and neck cancer etiology and architecture is quite diverse and complex, impeding the prediction whether a patient could respond to a particular cancer immunotherapy or combination treatment. A concomitantly arising caveat is obviously the translation from pre-clinical, cell based in vitro systems as well as syngeneic murine tumor models towards the heterogeneous architecture of the human tumor ecosystems. To bridge this gap, we have established and employed a patient-derived HNSCC (head and neck squamous cell carcinoma) slice culturing system to assess immunomodulatory effects as well as permissivity and oncolytic virus (OV) action. The heterogeneous contexture of the human tumor ecosystem including tumor cells, cancer-associated fibroblasts and immune cells was preserved in our HNSCC slice culturing approach. Importantly, the immune cell compartment remained to be functional and cytotoxic T-cells could be activated by immunostimulatory antibodies. In addition, we uncovered that a high proportion of the patient-derived HNSCC slice cultures were susceptible to the OV VSV-GP. More specifically, VSV-GP infects a broad spectrum of tumor-associated lineages including epithelial and stromal cells and can induce apoptosis. In sum, this human tumor ex vivo platform might complement pre-clinical studies to eventually propel cancer immune-related drug discovery and ease the translation to the clinics.
Collapse
|
17
|
Moya-Garcia CR, Okuyama H, Sadeghi N, Li J, Tabrizian M, Li-Jessen NYK. In vitro models for head and neck cancer: Current status and future perspective. Front Oncol 2022; 12:960340. [PMID: 35992863 PMCID: PMC9381731 DOI: 10.3389/fonc.2022.960340] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/29/2022] [Indexed: 12/12/2022] Open
Abstract
The 5-year overall survival rate remains approximately 50% for head and neck (H&N) cancer patients, even though new cancer drugs have been approved for clinical use since 2016. Cancer drug studies are now moving toward the use of three-dimensional culture models for better emulating the unique tumor microenvironment (TME) and better predicting in vivo response to cancer treatments. Distinctive TME features, such as tumor geometry, heterogenous cellularity, and hypoxic cues, notably affect tissue aggressiveness and drug resistance. However, these features have not been fully incorporated into in vitro H&N cancer models. This review paper aims to provide a scholarly assessment of the designs, contributions, and limitations of in vitro models in H&N cancer drug research. We first review the TME features of H&N cancer that are most relevant to in vitro drug evaluation. We then evaluate a selection of advanced culture models, namely, spheroids, organotypic models, and microfluidic chips, in their applications for H&N cancer drug research. Lastly, we propose future opportunities of in vitro H&N cancer research in the prospects of high-throughput drug screening and patient-specific drug evaluation.
Collapse
Affiliation(s)
| | - Hideaki Okuyama
- School of Communication Sciences and Disorders, McGill University, Montreal, QC, Canada
- Department of Otolaryngology – Head & Neck Surgery, Kyoto University, Kyoto, Japan
| | - Nader Sadeghi
- Department of Otolaryngology – Head and Neck Surgery, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Jianyu Li
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- Department of Mechanical Engineering, McGill University, Montreal, QC, Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- *Correspondence: Maryam Tabrizian, ; Nicole Y. K. Li-Jessen,
| | - Nicole Y. K. Li-Jessen
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- School of Communication Sciences and Disorders, McGill University, Montreal, QC, Canada
- Department of Otolaryngology – Head and Neck Surgery, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Center, McGill University, Montreal, QC, Canada
- *Correspondence: Maryam Tabrizian, ; Nicole Y. K. Li-Jessen,
| |
Collapse
|
18
|
Dsouza VL, Kuthethur R, Kabekkodu SP, Chakrabarty S. Organ-on-Chip platforms to study tumor evolution and chemosensitivity. Biochim Biophys Acta Rev Cancer 2022; 1877:188717. [PMID: 35304293 DOI: 10.1016/j.bbcan.2022.188717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
Abstract
Despite tremendous advancements in oncology research and therapeutics, cancer remains a primary cause of death worldwide. One of the significant factors in this critical challenge is a precise diagnosis and limited knowledge on how the tumor microenvironment (TME) behaves to the treatment and its role in chemo-resistance. Therefore, it is critical to understand the contribution of a heterogeneous TME in cancer drug response in individual patients for effective therapy management. Micro-physiological systems along with tissue engineering have facilitated the development of more physiologically relevant platforms, known as Organ-on-Chips (OoC). OoC platforms recapitulate the critical hallmarks of the TME in vitro and subsequently abet in sensitivity and efficacy testing of anti-cancer drugs before clinical trials. The OoC platforms incorporating conventional in vitro models enable researchers to control the cellular, molecular, chemical, and biophysical parameters of the TME in precise combinations while analyzing how they contribute to tumor progression and therapy response. This review discusses the application of OoC platforms integrated with conventional 2D cell lines, 3D organoids and spheroid models, and the organotypic tissue slices, including patient-derived and xenograft tumor slice cultures in cancer treatment responses. We summarize the relevance and drawbacks of conventional in vitro models in assessing cancer treatment response, challenges and limitations associated with OoC models, and future opportunities enabled by the OoC technologies towards developing personalized cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Venzil Lavie Dsouza
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Raviprasad Kuthethur
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
19
|
Chakrabarty S, Quiros-Solano WF, Kuijten MM, Haspels B, Mallya S, Lo CSY, Othman A, Silvestri C, van de Stolpe A, Gaio N, Odijk H, van de Ven M, de Ridder CM, van Weerden WM, Jonkers J, Dekker R, Taneja N, Kanaar R, van Gent DC. A Microfluidic Cancer-on-Chip Platform Predicts Drug Response Using Organotypic Tumor Slice Culture. Cancer Res 2022; 82:510-520. [PMID: 34872965 PMCID: PMC9397621 DOI: 10.1158/0008-5472.can-21-0799] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/31/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023]
Abstract
Optimal treatment of cancer requires diagnostic methods to facilitate therapy choice and prevent ineffective treatments. Direct assessment of therapy response in viable tumor specimens could fill this diagnostic gap. Therefore, we designed a microfluidic platform for assessment of patient treatment response using tumor tissue slices under precisely controlled growth conditions. The optimized Cancer-on-Chip (CoC) platform maintained viability and sustained proliferation of breast and prostate tumor slices for 7 days. No major changes in tissue morphology or gene expression patterns were observed within this time frame, suggesting that the CoC system provides a reliable and effective way to probe intrinsic chemotherapeutic sensitivity of tumors. The customized CoC platform accurately predicted cisplatin and apalutamide treatment response in breast and prostate tumor xenograft models, respectively. The culture period for breast cancer could be extended up to 14 days without major changes in tissue morphology and viability. These culture characteristics enable assessment of treatment outcomes and open possibilities for detailed mechanistic studies. SIGNIFICANCE: The Cancer-on-Chip platform with a 6-well plate design incorporating silicon-based microfluidics can enable optimal patient-specific treatment strategies through parallel culture of multiple tumor slices and diagnostic assays using primary tumor material.
Collapse
Affiliation(s)
- Sanjiban Chakrabarty
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - William F. Quiros-Solano
- Department of Microelectronics, Electronic Components, Technology and Materials, Delft University of Technology, Delft, the Netherlands.,BIOND Solutions B.V., Delft, the Netherlands
| | - Maayke M.P. Kuijten
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.,Oncode Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ben Haspels
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Calvin Shun Yu Lo
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Amr Othman
- BIOND Solutions B.V., Delft, the Netherlands
| | | | | | | | - Hanny Odijk
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marieke van de Ven
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Ageing, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Corrina M.A. de Ridder
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Wytske M. van Weerden
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jos Jonkers
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Ageing, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ronald Dekker
- Department of Microelectronics, Electronic Components, Technology and Materials, Delft University of Technology, Delft, the Netherlands.,Philips Research, Eindhoven, the Netherlands
| | - Nitika Taneja
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.,Oncode Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Dik C. van Gent
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.,Oncode Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.,Corresponding Author: Dik C. van Gent, Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr. Molewaterplein 40, Rotterdam 3015GD, the Netherlands. Phone: 31-10-7043932; E-mail:
| |
Collapse
|
20
|
Eslami Amirabadi H, Donkers JM, Wierenga E, Ingenhut B, Pieters L, Stevens L, Donkers T, Westerhout J, Masereeuw R, Bobeldijk-Pastorova I, Nooijen I, van de Steeg E. Intestinal explant barrier chip: long-term intestinal absorption screening in a novel microphysiological system using tissue explants. LAB ON A CHIP 2022; 22:326-342. [PMID: 34877953 DOI: 10.1039/d1lc00669j] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The majority of intestinal in vitro screening models use cell lines that do not reflect the complexity of the human intestinal tract and hence often fail to accurately predict intestinal drug absorption. Tissue explants have intact intestinal architecture and cell type diversity, but show short viability in static conditions. Here, we present a medium throughput microphysiological system, Intestinal Explant Barrier Chip (IEBC), that creates a dynamic microfluidic microenvironment and prolongs tissue viability. Using a snap fit mechanism, we successfully incorporated human and porcine colon tissue explants and studied tissue functionality, integrity and viability for 24 hours. With a proper distinction of transcellular over paracellular transport (ratio >2), tissue functionality was good at early and late timepoints. Low leakage of FITC-dextran and preserved intracellular lactate dehydrogenase levels indicate maintained tissue integrity and viability, respectively. From a selection of low to high permeability drugs, 6 out of 7 properly ranked according to their fraction absorbed. In conclusion, the IEBC is a novel screening platform benefitting from the complexity of tissue explants and the flow in microfluidic chips.
Collapse
Affiliation(s)
- Hossein Eslami Amirabadi
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands.
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Joanne M Donkers
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands.
| | - Esmée Wierenga
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands.
| | - Bastiaan Ingenhut
- Materials solution department, TNO, and Brightlands Materials Centre, Geleen, The Netherlands
| | - Lisanne Pieters
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands.
| | - Lianne Stevens
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands.
- Department of Surgery, Division of Transplantation, Leiden University Medical Centre, Leiden, The Netherlands
| | - Tim Donkers
- Division of Space systems engineering, TNO, Delft, the Netherlands
| | | | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ivana Bobeldijk-Pastorova
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands.
| | - Irene Nooijen
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands.
| | - Evita van de Steeg
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands.
| |
Collapse
|
21
|
Demers I, Donkers J, Kremer B, Speel EJ. Ex Vivo Culture Models to Indicate Therapy Response in Head and Neck Squamous Cell Carcinoma. Cells 2020; 9:E2527. [PMID: 33238461 PMCID: PMC7700693 DOI: 10.3390/cells9112527] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is characterized by a poor 5 year survival and varying response rates to both standard-of-care and new treatments. Despite advances in medicine and treatment methods, mortality rates have hardly decreased in recent decades. Reliable patient-derived tumor models offer the chance to predict therapy response in a personalized setting, thereby improving treatment efficacy by identifying the most appropriate treatment regimen for each patient. Furthermore, ex vivo tumor models enable testing of novel therapies before introduction in clinical practice. A literature search was performed to identify relevant literature describing three-dimensional ex vivo culture models of HNSCC to examine sensitivity to chemotherapy, radiotherapy, immunotherapy and targeted therapy. We provide a comprehensive overview of the currently used three-dimensional ex vivo culture models for HNSCC with their advantages and limitations, including culture success percentage and comparison to the original tumor. Furthermore, we evaluate the potential of these models to predict patient therapy response.
Collapse
Affiliation(s)
- Imke Demers
- Department of Pathology, GROW-school for Oncology and Development Biology, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands;
| | - Johan Donkers
- Department of Otorhinolaryngology, Head and Neck Surgery, GROW-School for Oncology and Development Biology, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands; (J.D.); (B.K.)
| | - Bernd Kremer
- Department of Otorhinolaryngology, Head and Neck Surgery, GROW-School for Oncology and Development Biology, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands; (J.D.); (B.K.)
| | - Ernst Jan Speel
- Department of Pathology, GROW-school for Oncology and Development Biology, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands;
| |
Collapse
|
22
|
Chew D, Green V, Riley A, England RJ, Greenman J. The Changing Face of in vitro Culture Models for Thyroid Cancer Research: A Systematic Literature Review. Front Surg 2020; 7:43. [PMID: 32766274 PMCID: PMC7378741 DOI: 10.3389/fsurg.2020.00043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Thyroid cancer is the most common endocrine malignancy worldwide. Primary treatment with surgery and radioactive iodine is usually successful, however, there remains a small proportion of thyroid cancers that are resistant to these treatments, and often represent aggressive forms of the disease. Since the 1950s, in vitro thyroid culture systems have been used in thyroid cancer research. In vitro culture models have evolved from 2-dimensional thyrocyte monolayers into physiologically functional 3-dimensional organoids. Recently, research groups have utilized in vitro thyroid cancer models to identify numerous genetic and epigenetic factors that are involved with tumorigenesis as well as test the efficacy of cytotoxic drugs on thyroid cancer cells and identify cancer stem cells within thyroid tumors. Objective of Review: The objective of this literature review is to summarize how thyroid in vitro culture models have evolved and highlight how in vitro models have been fundamental to thyroid cancer research. Type of Review: Systematic literature review. Search Strategy: The National Institute for Health and Care Excellence (NICE) Healthcare and Databases Advanced Search (HDAS) tool was used to search EMBASE, Medline and PubMed databases. The following terms were included in the search: “in vitro” AND “thyroid cancer”. The search period was confined from January 2008 until June 2019. A manual search of the references of review articles and other key articles was also performed using Google Scholar. Evaluation Method: All experimental studies and review articles that explicitly mentioned the use of in vitro models for thyroid cancer research in the title and/or abstract were considered. Full-text versions of all selected articles were evaluated. Experimental studies were reviewed and grouped according to topic: genetics/epigenetics, drug testing/cancer treatment, and side populations (SP)/tumor microenvironment (TME). Results: Three thousand three hundred and seventy three articles were identified through database and manual searches. One thousand two hundred and sixteen articles remained after duplicates were removed. Five hundred and eighty nine articles were excluded based on title and/or abstract. Of the remaining 627 full-text articles: 24 were review articles, 332 related to genetic/epigenetics, 240 related to drug testing/treatments, and 31 related to SP/TME. Conclusion:In vitro cell culture models have been fundamental in thyroid cancer research. There have been many advances in culture techniques- developing complex cellular architecture that more closely resemble tumors in vivo. Genetic and epigenetic factors that have been identified using in vitro culture models can be used as targets for novel drug therapies. In the future, in vitro systems will facilitate personalized medicine, offering bespoke treatments to patients.
Collapse
Affiliation(s)
- Dylan Chew
- Department of ENT, Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, London, United Kingdom
| | - Victoria Green
- Department of Biomedical Sciences, University of Hull, Hull, United Kingdom
| | - Andrew Riley
- Department of Biomedical Sciences, University of Hull, Hull, United Kingdom
| | - Richard James England
- Department of ENT, Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, London, United Kingdom.,Department of Biomedical Sciences, University of Hull, Hull, United Kingdom
| | - John Greenman
- Department of Biomedical Sciences, University of Hull, Hull, United Kingdom
| |
Collapse
|
23
|
Horowitz LF, Rodriguez AD, Ray T, Folch A. Microfluidics for interrogating live intact tissues. MICROSYSTEMS & NANOENGINEERING 2020; 6:69. [PMID: 32879734 PMCID: PMC7443437 DOI: 10.1038/s41378-020-0164-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 05/08/2023]
Abstract
The intricate microarchitecture of tissues - the "tissue microenvironment" - is a strong determinant of tissue function. Microfluidics offers an invaluable tool to precisely stimulate, manipulate, and analyze the tissue microenvironment in live tissues and engineer mass transport around and into small tissue volumes. Such control is critical in clinical studies, especially where tissue samples are scarce, in analytical sensors, where testing smaller amounts of analytes results in faster, more portable sensors, and in biological experiments, where accurate control of the cellular microenvironment is needed. Microfluidics also provides inexpensive multiplexing strategies to address the pressing need to test large quantities of drugs and reagents on a single biopsy specimen, increasing testing accuracy, relevance, and speed while reducing overall diagnostic cost. Here, we review the use of microfluidics to study the physiology and pathophysiology of intact live tissues at sub-millimeter scales. We categorize uses as either in vitro studies - where a piece of an organism must be excised and introduced into the microfluidic device - or in vivo studies - where whole organisms are small enough to be introduced into microchannels or where a microfluidic device is interfaced with a live tissue surface (e.g. the skin or inside an internal organ or tumor) that forms part of an animal larger than the device. These microfluidic systems promise to deliver functional measurements obtained directly on intact tissue - such as the response of tissue to drugs or the analysis of tissue secretions - that cannot be obtained otherwise.
Collapse
Affiliation(s)
- Lisa F. Horowitz
- Department of Bioengineering, University of Washington, Seattle, WA 98195 USA
| | - Adán D. Rodriguez
- Department of Bioengineering, University of Washington, Seattle, WA 98195 USA
| | - Tyler Ray
- Department of Mechanical Engineering, University of Hawaiʻi at Mānoa, Honolulu, HI 96822 USA
| | - Albert Folch
- Department of Bioengineering, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
24
|
Olubajo F, Achawal S, Greenman J. Development of a Microfluidic Culture Paradigm for Ex Vivo Maintenance of Human Glioblastoma Tissue: A New Glioblastoma Model? Transl Oncol 2019; 13:1-10. [PMID: 31726354 PMCID: PMC6854064 DOI: 10.1016/j.tranon.2019.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND: One way to overcome the genetic and molecular variations within glioblastoma is to treat each tumour on an individual basis. To facilitate this, we have developed a microfluidic culture paradigm that maintains human glioblastoma tissue ex vivo. METHODS: The assembled device, fabricated using a photolithographic process, is composed of two layers of glass bonded together to contain a tissue chamber and a network of microchannels that allow continued tissue perfusion. RESULTS: A total of 128 tissue biopsies (from 33 patients) were maintained in microfluidic devices for an average of 72 hours. Tissue viability (measured with Annexin V and propidium iodide) was 61.1% in tissue maintained on chip compared with 68.9% for fresh tissue analysed at commencement of the experiments. Other biomarkers, including lactate dehydrogenase absorbance and trypan blue exclusion, supported the viability of the tissue maintained on chip. Histological appearances remained unchanged during the tissue maintenance period, and immunohistochemical analysis of Ki67 and caspase 3 showed no significant differences when compared with fresh tissues. A trend showed that tumours associated with poorer outcomes (recurrent tumours and Isocitrate Dehydrogenase - IDH wildtype) displayed higher viability on chip than tumours linked with improved outcomes (low-grade gliomas, IDH mutants and primary tumours). conclusions: This work has demonstrated for the first time that human glioblastoma tissue can be successfully maintained within a microfluidic device and has the potential to be developed as a new platform for studying the biology of brain tumours, with the long-term aim of replacing current preclinical GBM models and facilitating personalised treatments.
Collapse
Affiliation(s)
- Farouk Olubajo
- Department of Neurosurgery, Hull and East Yorkshire Hospitals, Hull Royal Infirmary, Anlaby Road, Hull, HU3 2JZ, UK.
| | - Shailendra Achawal
- Department of Neurosurgery, Hull and East Yorkshire Hospitals, Hull Royal Infirmary, Anlaby Road, Hull, HU3 2JZ, UK
| | - John Greenman
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| |
Collapse
|
25
|
Kennedy R, Kuvshinov D, Sdrolia A, Kuvshinova E, Hilton K, Crank S, Beavis AW, Green V, Greenman J. A patient tumour-on-a-chip system for personalised investigation of radiotherapy based treatment regimens. Sci Rep 2019; 9:6327. [PMID: 31004114 PMCID: PMC6474873 DOI: 10.1038/s41598-019-42745-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/01/2019] [Indexed: 01/22/2023] Open
Abstract
Development of personalised cancer models to predict response to radiation would benefit patient care; particularly in malignancies where treatment resistance is prevalent. Herein, a robust, easy to use, tumour-on-a-chip platform which maintains precision cut head and neck cancer for the purpose of ex vivo irradiation is described. The device utilises sintered discs to separate the biopsy and medium, mimicking in vivo microvascular flow and diffusion, maintaining tissue viability for 68 h. Integrity of tissues is demonstrated by the low levels of lactate dehydrogenase release and retained histology, accompanied by assessment of cell viability by trypan blue exclusion and flow cytometry; fluid dynamic modelling validates culture conditions. An irradiation jig is described for reproducible delivery of clinically-relevant doses (5 × 2 Gy) to newly-presenting primary tumours (n = 12); the addition of concurrent cisplatin is also investigated (n = 8) with response analysed by immunohistochemistry. Fractionated irradiation reduced proliferation (BrdU, p = 0.0064), increased DNA damage (ƴH2AX, p = 0.0043) and caspase-dependent apoptosis (caspase-cleaved cytokeratin-18) compared to control; caspase-dependent apoptosis was further increased by concurrent cisplatin compared to control (p = 0.0063). This is a proof of principle study showing the response of cancer tissue to irradiation ex vivo in a bespoke system. The novel platform described has the potential to personalise treatment for patients in a cost-effective manner with applicability to any solid tumour.
Collapse
Affiliation(s)
- R Kennedy
- Department of Biomedical Sciences, The University of Hull, Cottingham Road, Hull, UK
| | - D Kuvshinov
- School of Engineering & Computer Science, The University of Hull, Cottingham Road, Hull, UK
| | - A Sdrolia
- Department of Medical Physics, Hull and East Yorkshire Hospitals NHS Trust, Cottingham, UK
| | - E Kuvshinova
- Department of Chemical & Biological Engineering, The University of Sheffield, Sheffield, UK
| | - K Hilton
- Department of Medical Physics, Hull and East Yorkshire Hospitals NHS Trust, Cottingham, UK
| | - S Crank
- Department of Maxillofacial Surgery, Hull and East Yorkshire Hospitals NHS Trust, Hull, UK
| | - A W Beavis
- Department of Biomedical Sciences, The University of Hull, Cottingham Road, Hull, UK
- Department of Medical Physics, Hull and East Yorkshire Hospitals NHS Trust, Cottingham, UK
- Faculty of Health and Well Being, Sheffield-Hallam University, Sheffield, UK
| | - V Green
- Department of Biomedical Sciences, The University of Hull, Cottingham Road, Hull, UK
| | - J Greenman
- Department of Biomedical Sciences, The University of Hull, Cottingham Road, Hull, UK.
| |
Collapse
|
26
|
Simeone K, Guay-Lord R, Lateef MA, Péant B, Kendall-Dupont J, Orimoto AM, Carmona E, Provencher D, Saad F, Gervais T, Mes-Masson AM. Paraffin-embedding lithography and micro-dissected tissue micro-arrays: tools for biological and pharmacological analysis of ex vivo solid tumors. LAB ON A CHIP 2019; 19:693-705. [PMID: 30671574 DOI: 10.1039/c8lc00982a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
There is an urgent need and strong clinical and pharmaceutical interest in developing assays that allow for the direct testing of therapeutic agents on primary tissues. Current technologies fail to provide the required sample longevity, throughput, and integration with standard clinically proven assays to make the approach viable. Here we report a microfluidic micro-histological platform that enables ex vivo culture of a large array of prostate and ovarian cancer micro-dissected tissue (MDT) followed by direct on-chip fixation and paraffination, a process we term paraffin-embedding lithography (PEL). The result is a high density MDT-Micro Array (MDTMA) compatible with standard clinical histopathology that can be used to analyse ex vivo tumor response or resistance to therapeutic agents. The cellular morphology and tissue architecture are preserved in MDTs throughout the 15 day culture period. We also demonstrate how this methodology can be used to study molecular pathways involved in cancer by performing in-depth characterization of biological and pharmacological mechanisms such as p65 nuclear translocation via TNF stimuli, and to predict the treatment outcome in the clinic via MDT response to taxane-based therapies.
Collapse
Affiliation(s)
- Kayla Simeone
- Centre de recherche du CHUM (CRCHUM)/Institut du Cancer de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hoarau-Véchot J, Rafii A, Touboul C, Pasquier J. Halfway between 2D and Animal Models: Are 3D Cultures the Ideal Tool to Study Cancer-Microenvironment Interactions? Int J Mol Sci 2018; 19:ijms19010181. [PMID: 29346265 PMCID: PMC5796130 DOI: 10.3390/ijms19010181] [Citation(s) in RCA: 318] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 02/06/2023] Open
Abstract
An area that has come to be of tremendous interest in tumor research in the last decade is the role of the microenvironment in the biology of neoplastic diseases. The tumor microenvironment (TME) comprises various cells that are collectively important for normal tissue homeostasis as well as tumor progression or regression. Seminal studies have demonstrated the role of the dialogue between cancer cells (at many sites) and the cellular component of the microenvironment in tumor progression, metastasis, and resistance to treatment. Using an appropriate system of microenvironment and tumor culture is the first step towards a better understanding of the complex interaction between cancer cells and their surroundings. Three-dimensional (3D) models have been widely described recently. However, while it is claimed that they can bridge the gap between in vitro and in vivo, it is sometimes hard to decipher their advantage or limitation compared to classical two-dimensional (2D) cultures, especially given the broad number of techniques used. We present here a comprehensive review of the different 3D methods developed recently, and, secondly, we discuss the pros and cons of 3D culture compared to 2D when studying interactions between cancer cells and their microenvironment.
Collapse
Affiliation(s)
- Jessica Hoarau-Véchot
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Qatar Foundation, Education City, Doha 24144, Qatar.
| | - Arash Rafii
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Qatar Foundation, Education City, Doha 24144, Qatar.
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Cyril Touboul
- UMR INSERM U965, Angiogenèse et Recherche Translationnelle, Hôpital Lariboisière, 49 bd de la Chapelle, 75010 Paris, France.
- Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Centre Hospitalier Intercommunal de Créteil, Faculté de Médecine de Créteil UPEC, Paris XII, 40 Avenue de Verdun, 94000 Créteil, France.
| | - Jennifer Pasquier
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Qatar Foundation, Education City, Doha 24144, Qatar.
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
- INSERM U955, Equipe 7, 94000 Créteil, France.
| |
Collapse
|
28
|
Cheah R, Srivastava R, Stafford ND, Beavis AW, Green V, Greenman J. Measuring the response of human head and neck squamous cell carcinoma to irradiation in a microfluidic model allowing customized therapy. Int J Oncol 2017; 51:1227-1238. [PMID: 28902347 DOI: 10.3892/ijo.2017.4118] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/31/2017] [Indexed: 11/06/2022] Open
Abstract
Radiotherapy is the standard treatment for head and neck squamous cell carcinoma (HNSCC), however, radioresistance remains a major clinical problem despite significant improvements in treatment protocols. Therapeutic outcome could potentially be improved if a patient's tumour response to irradiation could be predicted ex vivo before clinical application. The present study employed a bespoke microfluidic device to maintain HNSCC tissue whilst subjecting it to external beam irradiation and measured the responses using a panel of cell death and proliferation markers. HNSCC biopsies from five newly-presenting patients [2 lymph node (LN); 3 primary tumour (PT)] were divided into parallel microfluidic devices and replicates of each tumour were subjected to single-dose irradiation (0, 5, 10, 15 and 20 Gy). Lactate dehydrogenase (LDH) release was measured and tissue sections were stained for cytokeratin (CK), cleaved-CK18 (cCK18), phosphorylated-H2AX (γH2AX) and Ki‑67 by immunohistochemistry. In addition, fragmented DNA was detected using terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL). Compared with non‑irradiated controls, higher irradiation doses resulted in elevated CK18-labelling index in two lymph nodes [15 Gy; 34.8% on LN1 and 31.7% on LN2 (p=0.006)] and a single laryngeal primary tumour (20 Gy; 31.5%; p=0.014). Significantly higher levels of DNA fragmentation were also detected in both lymph node samples and one primary tumour but at varying doses of irradiation, i.e., LN1 (20 Gy; 27.6%; p=0.047), LN2 (15 Gy; 15.3%; p=0.038) and PT3 (10 Gy; 35.2%; p=0.01). The γH2AX expression was raised but not significantly in the majority of samples. The percentage of Ki‑67 positive nuclei reduced dose-dependently following irradiation. In contrast no significant difference in LDH release was observed between irradiated groups and controls. There is clear inter- and intra-patient variability in response to irradiation when measuring a variety of parameters, which offers the potential for the approach to provide clinically valuable information.
Collapse
Affiliation(s)
- Ramsah Cheah
- Hull York Medical School, University of Hull, Hull, HU6 7RX, UK
| | | | | | - Andrew W Beavis
- Radiation Physics, Hull and East Yorkshire Hospitals NHS Trust, Faculty of Science and Engineering, University of Hull, Hull, HU6 7RX, UK
| | - Victoria Green
- School of Life Sciences, University of Hull, Hull, HU6 7RX, UK
| | - John Greenman
- School of Life Sciences, University of Hull, Hull, HU6 7RX, UK
| |
Collapse
|
29
|
Bower R, Green VL, Kuvshinova E, Kuvshinov D, Karsai L, Crank ST, Stafford ND, Greenman J. Maintenance of head and neck tumor on-chip: gateway to personalized treatment? Future Sci OA 2017; 3:FSO174. [PMID: 28670466 PMCID: PMC5481812 DOI: 10.4155/fsoa-2016-0089] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/19/2017] [Indexed: 12/14/2022] Open
Abstract
AIM Head and neck squamous cell carcinomas (HNSCC) are solid tumors with low overall survival (40-60%). In a move toward personalized medicine, maintenance of tumor biopsies in microfluidic tissue culture devices is being developed. METHODOLOGY/RESULTS HNSCC (n = 15) was dissected (5-10 mg) and either analyzed immediately or cultured in a microfluidic device (37°C) for 48 h. No difference was observed in morphology between pre- and postculture specimens. Dissociated samples were analyzed using trypan blue exclusion (viability), propidium iodide flow cytometry (death) and MTS assay (proliferation) with no significant difference observed highlighting tissue maintenance. Computational fluid dynamics showed laminar flow within the system. CONCLUSION The microfluidic culture system successfully maintained HNSCC for 48 h, the culture system will allow testing of different treatment modalities with response monitoring.
Collapse
Affiliation(s)
- Ruth Bower
- School of Life Sciences, The University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Victoria L Green
- School of Life Sciences, The University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Elena Kuvshinova
- Department of Chemical & Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Dmitriy Kuvshinov
- School of Engineering & Computer Science, The University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Laszlo Karsai
- Department of Cellular Pathology, Hull Royal Infirmary, Anlaby Road, Hull, HU3 2JZ, UK
| | - Stephen T Crank
- Department of Oral & Maxillofacial Surgery, Hull Royal Infirmary, Anlaby Road, Hull, HU3 2JZ, UK
| | - Nicholas D Stafford
- Castle Hill Hospital, University of Hull, Daisy Building, Cottingham, HU16 5JQ, UK
| | - John Greenman
- School of Life Sciences, The University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| |
Collapse
|
30
|
Holton AB, Sinatra FL, Kreahling J, Conway AJ, Landis DA, Altiok S. Microfluidic Biopsy Trapping Device for the Real-Time Monitoring of Tumor Microenvironment. PLoS One 2017; 12:e0169797. [PMID: 28085924 PMCID: PMC5235371 DOI: 10.1371/journal.pone.0169797] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/21/2016] [Indexed: 01/09/2023] Open
Abstract
The tumor microenvironment is composed of cellular and stromal components such as tumor cells, mesenchymal cells, immune cells, cancer associated fibroblasts and the supporting extracellular matrix. The tumor microenvironment provides crucial support for growth and progression of tumor cells and affects tumor response to therapeutic interventions. To better understand tumor biology and to develop effective cancer therapeutic agents it is important to develop preclinical platforms that can faithfully recapitulate the tumor microenvironment and the complex interaction between the tumor and its surrounding stromal elements. Drug studies performed in vitro with conventional two-dimensional cancer cell line models do not optimally represent clinical drug response as they lack true tumor heterogeneity and are often performed in static culture conditions lacking stromal tumor components that significantly influence the metabolic activity and proliferation of cells. Recent microfluidic approaches aim to overcome such obstacles with the use of cell lines derived in artificial three-dimensional supportive gels or micro-chambers. However, absence of a true tumor microenvironment and full interstitial flow, leads to less than optimal evaluation of tumor response to drug treatment. Here we report a continuous perfusion microfluidic device coupled with microscopy and image analysis for the assessment of drug effects on intact fresh tumor tissue. We have demonstrated that fine needle aspirate biopsies obtained from patient-derived xenograft models of adenocarcinoma of the lung can successfully be analyzed for their response to ex vivo drug treatment within this biopsy trapping microfluidic device, wherein a protein kinase C inhibitor, staurosporine, was used to assess tumor cell death as a proof of principle. This approach has the potential to study tumor tissue within its intact microenvironment to better understand tumor response to drug treatments and eventually to choose the most effective drug and drug combination for individual patients in a cost effective and timely manner.
Collapse
Affiliation(s)
- Angela Babetski Holton
- Draper, Cambridge, Massachusetts, United States of America
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, United States of America
| | | | - Jenny Kreahling
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Amy J. Conway
- Draper, Cambridge, Massachusetts, United States of America
| | | | - Soner Altiok
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
31
|
Dawson A, Dyer C, Macfie J, Davies J, Karsai L, Greenman J, Jacobsen M. A microfluidic chip based model for the study of full thickness human intestinal tissue using dual flow. BIOMICROFLUIDICS 2016; 10:064101. [PMID: 27822333 PMCID: PMC5097047 DOI: 10.1063/1.4964813] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/30/2016] [Indexed: 05/09/2023]
Abstract
The study of inflammatory bowel disease, including Ulcerative Colitis and Crohn's Disease, has relied largely upon the use of animal or cell culture models; neither of which can represent all aspects of the human pathophysiology. Presented herein is a dual flow microfluidic device which holds full thickness human intestinal tissue in a known orientation. The luminal and serosal sides are independently perfused ex vivo with nutrients with simultaneous waste removal for up to 72 h. The microfluidic device maintains the viability and integrity of the tissue as demonstrated through Haematoxylin & Eosin staining, immunohistochemistry and release of lactate dehydrogenase. In addition, the inflammatory state remains in the tissue after perfusion on the device as determined by measuring calprotectin levels. It is anticipated that this human model will be extremely useful for studying the biology and testing novel interventions in diseased tissue.
Collapse
Affiliation(s)
- A Dawson
- Faculty of Life Sciences, University of Hull , Cottingham Road, Hull HU6 7RX, United Kingdom
| | - C Dyer
- Faculty of Life Sciences, University of Hull , Cottingham Road, Hull HU6 7RX, United Kingdom
| | - J Macfie
- Scarborough Hospital , Woodlands Drive, Scarborough Y012 6QL, United Kingdom
| | - J Davies
- General Surgery, Castlehill Hospital , Castle Rd, Cottingham HU16 5JQ, United Kingdom
| | - L Karsai
- Pathology Building, Hull Royal Infirmary , Anlaby Road, Hull HU3 2JZ, United Kingdom
| | - J Greenman
- Faculty of Life Sciences, University of Hull , Cottingham Road, Hull HU6 7RX, United Kingdom
| | | |
Collapse
|
32
|
Esfahani MMN, Tarn MD, Choudhury TA, Hewitt LC, Mayo AJ, Rubin TA, Waller MR, Christensen MG, Dawson A, Pamme N. Lab-on-a-chip workshop activities for secondary school students. BIOMICROFLUIDICS 2016; 10:011301. [PMID: 26865902 PMCID: PMC4744233 DOI: 10.1063/1.4940884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/09/2016] [Indexed: 05/16/2023]
Abstract
The ability to engage and inspire younger generations in novel areas of science is important for bringing new researchers into a burgeoning field, such as lab-on-a-chip. We recently held a lab-on-a-chip workshop for secondary school students, for which we developed a number of hands-on activities that explained various aspects of microfluidic technology, including fabrication (milling and moulding of microfluidic devices, and wax printing of microfluidic paper-based analytical devices, so-called μPADs), flow regimes (gradient formation via diffusive mixing), and applications (tissue analysis and μPADs). Questionnaires completed by the students indicated that they found the workshop both interesting and informative, with all activities proving successful, while providing feedback that could be incorporated into later iterations of the event.
Collapse
Affiliation(s)
| | - Mark D Tarn
- Department of Chemistry, University of Hull , Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Tahmina A Choudhury
- Department of Chemistry, University of Hull , Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Laura C Hewitt
- Department of Chemistry, University of Hull , Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Ashley J Mayo
- Department of Chemistry, University of Hull , Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Theodore A Rubin
- Department of Chemistry, University of Hull , Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Mathew R Waller
- Department of Chemistry, University of Hull , Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Martin G Christensen
- Department of Chemistry, University of Hull , Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Amy Dawson
- School of Biological, Biomedical and Environmental Sciences, University of Hull , Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Nicole Pamme
- Department of Chemistry, University of Hull , Cottingham Road, Hull HU6 7RX, United Kingdom
| |
Collapse
|
33
|
Feasibility of Primary Tumor Culture Models and Preclinical Prediction Assays for Head and Neck Cancer: A Narrative Review. Cancers (Basel) 2015; 7:1716-42. [PMID: 26343729 PMCID: PMC4586791 DOI: 10.3390/cancers7030858] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/06/2015] [Accepted: 08/20/2015] [Indexed: 12/15/2022] Open
Abstract
Primary human tumor culture models allow for individualized drug sensitivity testing and are therefore a promising technique to achieve personalized treatment for cancer patients. This would especially be of interest for patients with advanced stage head and neck cancer. They are extensively treated with surgery, usually in combination with high-dose cisplatin chemoradiation. However, adding cisplatin to radiotherapy is associated with an increase in severe acute toxicity, while conferring only a minor overall survival benefit. Hence, there is a strong need for a preclinical model to identify patients that will respond to the intended treatment regimen and to test novel drugs. One of such models is the technique of culturing primary human tumor tissue. This review discusses the feasibility and success rate of existing primary head and neck tumor culturing techniques and their corresponding chemo- and radiosensitivity assays. A comprehensive literature search was performed and success factors for culturing in vitro are debated, together with the actual value of these models as preclinical prediction assay for individual patients. With this review, we aim to fill a gap in the understanding of primary culture models from head and neck tumors, with potential importance for other tumor types as well.
Collapse
|
34
|
Dereli-Korkut Z, Akaydin HD, Ahmed AHR, Jiang X, Wang S. Three dimensional microfluidic cell arrays for ex vivo drug screening with mimicked vascular flow. Anal Chem 2014; 86:2997-3004. [PMID: 24568664 PMCID: PMC3982971 DOI: 10.1021/ac403899j] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Currently, there are no reliable ex vivo models
that predict anticancer drug responses in human tumors accurately.
A comprehensive method of mimicking a 3D microenvironment to study
effects of anticancer drugs on specific cancer types is essential.
Here, we report the development of a three-dimensional microfluidic
cell array (3D μFCA), which reconstructs a 3D tumor microenvironment
with cancer cells and microvascular endothelial cells. To mimic the in vivo spatial relationship between microvessels and nonendothelial
cells embedded in extracellular matrix, three polydimethylsiloxane
(PDMS) layers were built into this array. The multilayer property
of the device enabled the imitation of the drug delivery in a microtissue
array with simulated blood circulation. This 3D μFCA system
may provide better predictions of drug responses and identification
of a suitable treatment for a specific patient if biopsy samples are
used. To the pharmaceutical industry, the scaling-up of our 3D μFCA
system may offer a novel high throughput screening tool.
Collapse
Affiliation(s)
- Zeynep Dereli-Korkut
- Department of Biomedical Engineering, The City College of the City University of New York , 160 Convent Ave. Steinman Hall T-434, New York, New York 10031, United States
| | | | | | | | | |
Collapse
|
35
|
Carr SD, Green VL, Stafford ND, Greenman J. Analysis of radiation-induced cell death in head and neck squamous cell carcinoma and rat liver maintained in microfluidic devices. Otolaryngol Head Neck Surg 2013; 150:73-80. [PMID: 24098006 DOI: 10.1177/0194599813507427] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The aim of this study was to investigate how head and neck squamous cell carcinoma (HNSCC) tissue biopsies maintained in a pseudo in vivo environment within a bespoke microfluidic device respond to radiation treatment. STUDY DESIGN Feasibility study. SETTING Tertiary referral center. SUBJECTS AND METHODS Thirty-five patients with HNSCC were recruited, and liver tissue from 5 Wistar rats was obtained. A microfluidic device was used to maintain the tissue biopsy samples in a viable state. Rat liver was used to optimize the methodology. HNSCC was obtained from patients with T1-T3 laryngeal or oropharyngeal SCC; N1-N2 metastatic cervical lymph nodes were also obtained. Irradiation consisted of single doses of between 2 Gy and 40 Gy and a fractionated course of 5×2 Gy. Cell death was assessed in the tissue effluent using the soluble markers lactate dehydrogenase (LDH) and cytochrome c and in the tissue by immunohistochemical detection of cleaved cytokeratin18 (M30 antibody). RESULTS A significant surge in LDH release was demonstrated in the rat liver after a single dose of 20 Gy; in HNSCC, it was seen after 40 Gy compared with the control. There was no significant difference in cytochrome c release after 5 Gy or 10 Gy. M30 demonstrated a dose-dependent increase in apoptotic index for a given increase in single-dose radiotherapy. There was a significant increase in apoptotic index between 1×2 Gy and 5×2 Gy. CONCLUSION M30 is a superior method compared with soluble markers in detecting low-dose radiation-induced cell death. This microfluidic technique can be used to assess radiation-induced cell death in HNSCC and therefore has the potential to be used to predict radiation response.
Collapse
|
36
|
Integrated RNA extraction and RT-PCR for semi-quantitative gene expression studies on a microfluidic device. J Transl Med 2013; 93:961-6. [PMID: 23711823 DOI: 10.1038/labinvest.2013.76] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 11/08/2022] Open
Abstract
This paper describes the development of a microfluidic methodology, using RNA extraction and reverse transcription PCR, for investigating expression levels of cytochrome P450 genes. Cytochrome P450 enzymes are involved in the metabolism of xenobiotics, including many commonly prescribed drugs, therefore information on their expression is useful in both pharmaceutical and clinical settings. RNA extraction, from rat liver tissue or primary rat hepatocytes, was performed using a silica-based solid-phase extraction technique. Following elution of the purified RNA, amplification of target sequences for the housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the cytochrome P450 gene CYP1A2, was carried out using a one-step reverse transcription PCR. Once the microfluidic methodology had been optimized, analysis of control and 3-methylcholanthrene-induced primary rat hepatocytes were used to evaluate the system. As expected, GAPDH was consistently expressed, whereas CYP1A2 levels were found to be raised in the drug-treated samples. The proposed system offers an initial platform for development of both rapid throughput analyzers for pharmaceutical drug screening and point-of-care diagnostic tests to aid provision of drug regimens, which can be tailor-made to the individual patient.
Collapse
|
37
|
Sivagnanam V, Gijs MAM. Exploring Living Multicellular Organisms, Organs, and Tissues Using Microfluidic Systems. Chem Rev 2013; 113:3214-47. [DOI: 10.1021/cr200432q] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Martin A. M. Gijs
- Laboratory
of Microsystems, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne,
Switzerland
| |
Collapse
|