1
|
Aykora D, Taşçı B, Şahin MZ, Tekeoğlu I, Uzun M, Sarafian V, Docheva D. Tendon regeneration deserves better: focused review on In vivo models, artificial intelligence and 3D bioprinting approaches. Front Bioeng Biotechnol 2025; 13:1580490. [PMID: 40352349 PMCID: PMC12062838 DOI: 10.3389/fbioe.2025.1580490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/07/2025] [Indexed: 05/14/2025] Open
Abstract
Tendon regeneration has been one of the most challenging issues in orthopedics. Despite various surgical techniques and rehabilitation methods, tendon tears or ruptures cannot wholly regenerate and gain the load-bearing capacity the tendon tissue had before the injury. The enhancement of tendon regeneration mostly requires grafting or an artificial tendon-like tissue to replace the damaged tendon. Tendon tissue engineering offers promising regenerative effects with numerous techniques in the additive manufacturing context. 3D bioprinting is a widely used additive manufacturing method to produce tendon-like artificial tissues based on biocompatible substitutes. There are multiple techniques and bio-inks for fabricating innovative scaffolds for tendon applications. Nevertheless, there are still many drawbacks to overcome for the successful regeneration of injured tendon tissue. The most important target is to catch the highest similarity to the tissue requirements such as anisotropy, porosity, viscoelasticity, mechanical strength, and cell-compatible constructs. To achieve the best-designed artificial tendon-like structure, novel AI-based systems in the field of 3D bioprinting may unveil excellent final products to re-establish tendon integrity and functionality. AI-driven optimization can enhance bio-ink selection, scaffold architecture, and printing parameters, ensuring better alignment with the biomechanical properties of native tendons. Furthermore, AI algorithms facilitate real-time process monitoring and adaptive adjustments, improving reproducibility and precision in scaffold fabrication. Thus, in vitro biocompatibility and in vivo application-based experimental processes will make it possible to accelerate tendon healing and reach the required mechanical strength. Integrating AI-based predictive modeling can further refine these experimental processes to evaluate scaffold performance, cell viability, and mechanical durability, ultimately improving translation into clinical applications. Here in this review, 3D bioprinting approaches and AI-based technology incorporation were given in addition to in vivo models.
Collapse
Affiliation(s)
- Damla Aykora
- Health Services Vocational School, Department of Medical Services and Techniques, First and Emergency Aid, Bitlis Eren University, Bitlis, Türkiye
| | - Burak Taşçı
- Vocational School of Technical Sciences, Fırat University, Elazığ, Türkiye
| | - Muhammed Zahid Şahin
- Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Sakarya University Training and Research Hospital, Sakarya University, Sakarya, Türkiye
| | - Ibrahim Tekeoğlu
- Faculty of Medicine, Department of Internal Medicine, Department of Physical Medicine and Rehabilitation, Kütahya Health Sciences University, Kütahya, Türkiye
| | - Metehan Uzun
- Health Services Vocational School, Department of Medical Services and Techniques, First and Emergency Aid, Bitlis Eren University, Bitlis, Türkiye
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria
- Department of Molecular and Regenerative Medicine, Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, Julius-Maximilians-University Würzburg, Wuerzburg, Germany
| |
Collapse
|
2
|
Aykora D, Taşçı B, Şahin MZ, Tekeoğlu I, Uzun M, Sarafian V, Docheva D. Tendon regeneration deserves better: focused review on In vivo models, artificial intelligence and 3D bioprinting approaches. Front Bioeng Biotechnol 2025; 13. [DOI: doi.org/10.3389/fbioe.2025.1580490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
Tendon regeneration has been one of the most challenging issues in orthopedics. Despite various surgical techniques and rehabilitation methods, tendon tears or ruptures cannot wholly regenerate and gain the load-bearing capacity the tendon tissue had before the injury. The enhancement of tendon regeneration mostly requires grafting or an artificial tendon-like tissue to replace the damaged tendon. Tendon tissue engineering offers promising regenerative effects with numerous techniques in the additive manufacturing context. 3D bioprinting is a widely used additive manufacturing method to produce tendon-like artificial tissues based on biocompatible substitutes. There are multiple techniques and bio-inks for fabricating innovative scaffolds for tendon applications. Nevertheless, there are still many drawbacks to overcome for the successful regeneration of injured tendon tissue. The most important target is to catch the highest similarity to the tissue requirements such as anisotropy, porosity, viscoelasticity, mechanical strength, and cell-compatible constructs. To achieve the best-designed artificial tendon-like structure, novel AI-based systems in the field of 3D bioprinting may unveil excellent final products to re-establish tendon integrity and functionality. AI-driven optimization can enhance bio-ink selection, scaffold architecture, and printing parameters, ensuring better alignment with the biomechanical properties of native tendons. Furthermore, AI algorithms facilitate real-time process monitoring and adaptive adjustments, improving reproducibility and precision in scaffold fabrication. Thus, in vitro biocompatibility and in vivo application-based experimental processes will make it possible to accelerate tendon healing and reach the required mechanical strength. Integrating AI-based predictive modeling can further refine these experimental processes to evaluate scaffold performance, cell viability, and mechanical durability, ultimately improving translation into clinical applications. Here in this review, 3D bioprinting approaches and AI-based technology incorporation were given in addition to in vivo models.
Collapse
|
3
|
Lv X, Wang S, Xu Z, Liu X, Liu G, Cao F, Ma Y. Structural Mechanical Properties of 3D Printing Biomimetic Bone Replacement Materials. Biomimetics (Basel) 2023; 8:biomimetics8020166. [PMID: 37092418 PMCID: PMC10123638 DOI: 10.3390/biomimetics8020166] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023] Open
Abstract
One of the primary challenges in developing bone substitutes is to create scaffolds with mechanical properties that closely mimic those of regenerated tissue. Scaffolds that mimic the structure of natural cancellous bone are believed to have better environmental adaptability. In this study, we used the porosity and thickness of pig cancellous bone as biomimetic design parameters, and porosity and structural shape as differential indicators, to design a biomimetic bone beam scaffold. The mechanical properties of the designed bone beam model were tested using the finite element method (FEM). PCL/β-TCP porous scaffolds were prepared using the FDM method, and their mechanical properties were tested. The FEM simulation results were compared and validated, and the effects of porosity and pore shape on the mechanical properties were analyzed. The results of this study indicate that the PCL/β-TCP scaffold, prepared using FDM 3D printing technology for cancellous bone tissue engineering, has excellent integrity and stability. Predicting the structural stability using FEM is effective. The triangle pore structure has the most stability in both simulations and tests, followed by the rectangle and honeycomb shapes, and the diamond structure has the worst stability. Therefore, adjusting the porosity and pore shape can change the mechanical properties of the composite scaffold to meet the mechanical requirements of customized tissue engineering.
Collapse
Affiliation(s)
- Xueman Lv
- The College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun 130031, China
| | - Shuo Wang
- The College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Zihe Xu
- The College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Xuanting Liu
- The College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Guoqin Liu
- The College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Feipeng Cao
- The College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Yunhai Ma
- The College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China
| |
Collapse
|
4
|
Evans LM, Sözümert E, Keenan BE, Wood CE, du Plessis A. A Review of Image-Based Simulation Applications in High-Value Manufacturing. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2023; 30:1495-1552. [PMID: 36685137 PMCID: PMC9847465 DOI: 10.1007/s11831-022-09836-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/15/2022] [Indexed: 06/17/2023]
Abstract
Image-Based Simulation (IBSim) is the process by which a digital representation of a real geometry is generated from image data for the purpose of performing a simulation with greater accuracy than with idealised Computer Aided Design (CAD) based simulations. Whilst IBSim originates in the biomedical field, the wider adoption of imaging for non-destructive testing and evaluation (NDT/NDE) within the High-Value Manufacturing (HVM) sector has allowed wider use of IBSim in recent years. IBSim is invaluable in scenarios where there exists a non-negligible variation between the 'as designed' and 'as manufactured' state of parts. It has also been used for characterisation of geometries too complex to accurately draw with CAD. IBSim simulations are unique to the geometry being imaged, therefore it is possible to perform part-specific virtual testing within batches of manufactured parts. This novel review presents the applications of IBSim within HVM, whereby HVM is the value provided by a manufactured part (or conversely the potential cost should the part fail) rather than the actual cost of manufacturing the part itself. Examples include fibre and aggregate composite materials, additive manufacturing, foams, and interface bonding such as welding. This review is divided into the following sections: Material Characterisation; Characterisation of Manufacturing Techniques; Impact of Deviations from Idealised Design Geometry on Product Design and Performance; Customisation and Personalisation of Products; IBSim in Biomimicry. Finally, conclusions are drawn, and observations made on future trends based on the current state of the literature.
Collapse
Affiliation(s)
- Llion Marc Evans
- Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN UK
- United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB UK
| | - Emrah Sözümert
- Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN UK
| | - Bethany E. Keenan
- Cardiff School of Engineering, Cardiff University, Cardiff, CF24 3AA UK
| | - Charles E. Wood
- School of Mechanical & Design Engineering, University of Portsmouth, Portsmouth, PO1 3DJ UK
| | - Anton du Plessis
- Object Research Systems, Montreal, H3B 1A7 Canada
- Research Group 3DInnovation, Stellenbosch University, Stellenbosch, 7602 South Africa
| |
Collapse
|
5
|
Taneja H, Salodkar SM, Singh Parmar A, Chaudhary S. Hydrogel based 3D printing: Bio ink for tissue engineering. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
A Biomimetic Design Method for 3D-Printed Lightweight Structures Using L-Systems and Parametric Optimization. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biological structures and organisms are determined and optimized to adapt to changes and constraints imposed by the environment. The multiple functionalities and properties exhibited by such structures are currently a source of inspiration for designers and engineers. Thus, biomimetic design has been increasingly used in recent years with the intensive development of additive manufacturing to deliver innovative solutions. Due to their multifunctional properties combining softness, high stiffness, and light weight, many potential applications can be seen in the medical, aerospace, and automotive sectors. This paper introduces a biomimetic design and geometric modeling method of 3D-printed lightweight structures based on L-systems generated and distributed along their principal stress lines. Numerical simulations and parametric optimization were conducted with three case studies to demonstrate the relevance and applicability of this method in adapting mechanical structures to various load cases as well as ensuring a proper stiffness-to-weight ratio.
Collapse
|
7
|
Abstract
The successful transplantation of stem cells has the potential to transform regenerative medicine approaches and open promising avenues to repair, replace, and regenerate diseased, damaged, or aged tissues. However, pre-/post-transplantation issues of poor cell survival, retention, cell fate regulation, and insufficient integration with host tissues constitute significant challenges. The success of stem cell transplantation depends upon the coordinated sequence of stem cell renewal, specific lineage differentiation, assembly, and maintenance of long-term function. Advances in biomaterials can improve pre-/post-transplantation outcomes by integrating biophysiochemical cues and emulating tissue microenvironments. This review highlights leading biomaterials-based approaches for enhancing stem cell transplantation.
Collapse
Affiliation(s)
- Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; School of Engineering, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
8
|
Zimnyakov DA, Alonov MV, Ushakova EV, Ushakova OV, Popov VK, Minaev NV, Minaeva SA, Epifanov EO. Supercritical Fluid Synthesis of Highly Porous Polylactide Matrices: Fundamental Features and Technology of Formation, Development and Stabilization of Polymer Foams. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793121080182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Blázquez-Carmona P, Sanz-Herrera JA, Martínez-Vázquez FJ, Domínguez J, Reina-Romo E. Structural optimization of 3D-printed patient-specific ceramic scaffolds for in vivo bone regeneration in load-bearing defects. J Mech Behav Biomed Mater 2021; 121:104613. [PMID: 34126507 DOI: 10.1016/j.jmbbm.2021.104613] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Tissue engineering has recently gained popularity as an alternative to autografts to stimulate bone tissue regeneration through structures called scaffolds. Most of the in vivo experiments on long-bony defects use internally-stabilized generic scaffolds. Despite the wide variety of computational methods, a standardized protocol is required to optimize ceramic scaffolds for load-bearing bony defects stabilized with flexible fixations. An optimization problem was defined for applications to sheep metatarsus defects. It covers biological parameters (porosity, pore size, and the specific surface area) and mechanical constraints based on in vivo and in vitro results reported in the literature. The optimized parameters (59.30% of porosity, 5768.91 m-1 of specific surface area, and 360.80 μm of pore size) and the compressive strength of the selected structure were validated in vitro by means of tomographic images and compression tests of six 3D-printed samples. Divergences between the design and measured values of the optimized parameters, mainly due to manufacturing defects, are consistent with the previous studies. Using the mixed experimental-mathematical scaffold-design procedure described, they could be implanted in vivo with instrumented external fixators, therefore facilitating biomechanical monitoring of the regeneration process.
Collapse
Affiliation(s)
- Pablo Blázquez-Carmona
- E.T.S.I, Universidad de Sevilla, Avenida Camino de los Descubrimientos s/n, 41092, Seville, Spain.
| | | | | | - Jaime Domínguez
- E.T.S.I, Universidad de Sevilla, Avenida Camino de los Descubrimientos s/n, 41092, Seville, Spain.
| | - Esther Reina-Romo
- E.T.S.I, Universidad de Sevilla, Avenida Camino de los Descubrimientos s/n, 41092, Seville, Spain.
| |
Collapse
|
10
|
Almeida HA, Bártolo PJ. Biomimetic Boundary-Based Scaffold Design for Tissue Engineering Applications. Methods Mol Biol 2021; 2147:3-18. [PMID: 32840806 DOI: 10.1007/978-1-0716-0611-7_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The design of optimized scaffolds for tissue engineering and regenerative medicine is a key topic of current research, as the complex macro- and micro-architectures required for scaffold applications depend not only on the mechanical properties but also on the physical and molecular queues of the surrounding tissue within the defect site. Thus, the prediction of optimal features for tissue engineering scaffolds is very important, for both its physical and biological properties.The relationship between high scaffold porosity and high mechanical properties is contradictory, as it becomes even more complex due to the scaffold degradation process. Biomimetic design has been considered as a viable method to design optimum scaffolds for tissue engineering applications. In this research work, the scaffold designs are based on biomimetic boundary-based bone micro-CT data. Based on the biomimetic boundaries and with the aid of topological optimization schemes, the boundary data and given porosity is used to obtain the initial scaffold designs. In summary, the proposed scaffold design scheme uses the principles of both the boundaries and porosity of the micro-CT data with the aid of numerical optimization and simulation tools.
Collapse
Affiliation(s)
- Henrique A Almeida
- Research Center for Information Technology and Communications, School of Technology and Management, Polytechnic Institute of Leiria, Leiria, Portugal.
| | - Paulo J Bártolo
- Mechanical and Aeronautical Engineering Division, School of Mechanical, Aerospace & Civil Engineering, Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK.
| |
Collapse
|
11
|
Wang Z, Kapadia W, Li C, Lin F, Pereira RF, Granja PL, Sarmento B, Cui W. Tissue-specific engineering: 3D bioprinting in regenerative medicine. J Control Release 2021; 329:237-256. [DOI: 10.1016/j.jconrel.2020.11.044] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022]
|
12
|
Gori M, Giannitelli SM, Torre M, Mozetic P, Abbruzzese F, Trombetta M, Traversa E, Moroni L, Rainer A. Biofabrication of Hepatic Constructs by 3D Bioprinting of a Cell-Laden Thermogel: An Effective Tool to Assess Drug-Induced Hepatotoxic Response. Adv Healthc Mater 2020; 9:e2001163. [PMID: 32940019 DOI: 10.1002/adhm.202001163] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/23/2020] [Indexed: 12/12/2022]
Abstract
A thermoresponsive Pluronic/alginate semisynthetic hydrogel is used to bioprint 3D hepatic constructs, with the aim to investigate liver-specific metabolic activity of the 3D constructs compared to traditional 2D adherent cultures. The bioprinting method relies on a bioinert hydrogel and is characterized by high-shape fidelity, mild depositing conditions and easily controllable gelation mechanism. Furthermore, the dissolution of the sacrificial Pluronic templating agent significantly ameliorates the diffusive properties of the printed hydrogel. The present findings demonstrate high viability and liver-specific metabolic activity, as assessed by synthesis of urea, albumin, and expression levels of the detoxifying CYP1A2 enzyme of cells embedded in the 3D hydrogel system. A markedly increased sensitivity to a well-known hepatotoxic drug (acetaminophen) is observed for cells in 3D constructs compared to 2D cultures. Therefore, the 3D model developed herein may represent an in vitro alternative to animal models for investigating drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Manuele Gori
- Department of Engineering Università Campus Bio‐Medico di Roma via Álvaro del Portillo 21 Rome 00128 Italy
| | - Sara M. Giannitelli
- Department of Engineering Università Campus Bio‐Medico di Roma via Álvaro del Portillo 21 Rome 00128 Italy
| | - Miranda Torre
- Department of Engineering Università Campus Bio‐Medico di Roma via Álvaro del Portillo 21 Rome 00128 Italy
| | - Pamela Mozetic
- Center for Translational Medicine (CTM) International Clinical Research Center (ICRC) St. Anne's University Hospital Studentská 812/6 Brno 62500 Czechia
- Institute of Nanotechnology (NANOTEC) National Research Council via Monteroni Lecce 73100 Italy
| | - Franca Abbruzzese
- Department of Engineering Università Campus Bio‐Medico di Roma via Álvaro del Portillo 21 Rome 00128 Italy
| | - Marcella Trombetta
- Department of Engineering Università Campus Bio‐Medico di Roma via Álvaro del Portillo 21 Rome 00128 Italy
| | - Enrico Traversa
- School of Energy Science and Engineering University of Electronic Science and Technology of China 2006 Xiyuan Road Chengdu Sichuan 611731 China
| | - Lorenzo Moroni
- Institute of Nanotechnology (NANOTEC) National Research Council via Monteroni Lecce 73100 Italy
- MERLN Institute for Technology Inspired Regenerative Medicine Department of Complex Tissue Regeneration Maastricht University Universiteitssingel 40 Maastricht 6229 ER the Netherlands
| | - Alberto Rainer
- Department of Engineering Università Campus Bio‐Medico di Roma via Álvaro del Portillo 21 Rome 00128 Italy
- Institute of Nanotechnology (NANOTEC) National Research Council via Monteroni Lecce 73100 Italy
- MERLN Institute for Technology Inspired Regenerative Medicine Department of Complex Tissue Regeneration Maastricht University Universiteitssingel 40 Maastricht 6229 ER the Netherlands
| |
Collapse
|
13
|
Direct-Write Deposition of Thermogels. Methods Mol Biol 2020. [PMID: 32840816 DOI: 10.1007/978-1-0716-0611-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The use of biocompatible hydrogels has widely extended the potential of additive manufacturing (AM) in the biomedical field leading to the production of 3D tissue and organ analogs for in vitro and in vivo studies.In this work, the direct-write deposition of thermosensitive hydrogels is described as a facile route to obtain 3D cell-laden constructs with controlled 3D structure and stable behavior under physiological conditions.
Collapse
|
14
|
Percoco G, Uva AE, Fiorentino M, Gattullo M, Manghisi VM, Boccaccio A. Mechanobiological Approach to Design and Optimize Bone Tissue Scaffolds 3D Printed with Fused Deposition Modeling: A Feasibility Study. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E648. [PMID: 32024158 PMCID: PMC7041376 DOI: 10.3390/ma13030648] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/11/2022]
Abstract
In spite of the rather large use of the fused deposition modeling (FDM) technique for the fabrication of scaffolds, no studies are reported in the literature that optimize the geometry of such scaffold types based on mechanobiological criteria. We implemented a mechanobiology-based optimization algorithm to determine the optimal distance between the strands in cylindrical scaffolds subjected to compression. The optimized scaffolds were then 3D printed with the FDM technique and successively measured. We found that the difference between the optimized distances and the average measured ones never exceeded 8.27% of the optimized distance. However, we found that large fabrication errors are made on the filament diameter when the filament diameter to be realized differs significantly with respect to the diameter of the nozzle utilized for the extrusion. This feasibility study demonstrated that the FDM technique is suitable to build accurate scaffold samples only in the cases where the strand diameter is close to the nozzle diameter. Conversely, when a large difference exists, large fabrication errors can be committed on the diameter of the filaments. In general, the scaffolds realized with the FDM technique were predicted to stimulate the formation of amounts of bone smaller than those that can be obtained with other regular beam-based scaffolds.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonio Boccaccio
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via E. Orabona 4, 70126 Bari, Italy; (G.P.); (A.E.U.); (M.F.); (M.G.); (V.M.M.)
| |
Collapse
|
15
|
Rodríguez-Montaño ÓL, Cortés-Rodríguez CJ, Naddeo F, Uva AE, Fiorentino M, Naddeo A, Cappetti N, Gattullo M, Monno G, Boccaccio A. Irregular Load Adapted Scaffold Optimization: A Computational Framework Based on Mechanobiological Criteria. ACS Biomater Sci Eng 2019; 5:5392-5411. [DOI: 10.1021/acsbiomaterials.9b01023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Óscar L. Rodríguez-Montaño
- Departamento de Ingeniería Mecánica y Mecatrónica, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá D.C., Colombia
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Viale Japigia, 182, 70126 Bari, Italy
| | - Carlos Julio Cortés-Rodríguez
- Departamento de Ingeniería Mecánica y Mecatrónica, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá D.C., Colombia
| | - Francesco Naddeo
- Dipartimento di Ingegneria Industriale, Università di Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Antonio E. Uva
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Viale Japigia, 182, 70126 Bari, Italy
| | - Michele Fiorentino
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Viale Japigia, 182, 70126 Bari, Italy
| | - Alessandro Naddeo
- Dipartimento di Ingegneria Industriale, Università di Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Nicola Cappetti
- Dipartimento di Ingegneria Industriale, Università di Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Michele Gattullo
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Viale Japigia, 182, 70126 Bari, Italy
| | - Giuseppe Monno
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Viale Japigia, 182, 70126 Bari, Italy
| | - Antonio Boccaccio
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Viale Japigia, 182, 70126 Bari, Italy
| |
Collapse
|
16
|
Baino F, Barberi J, Fiume E, Orlygsson G, Massera J, Verné E. Robocasting of Bioactive SiO 2-P 2O 5-CaO-MgO-Na 2O-K 2O Glass Scaffolds. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:5153136. [PMID: 31098008 PMCID: PMC6487107 DOI: 10.1155/2019/5153136] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/12/2019] [Indexed: 11/21/2022]
Abstract
Bioactive silicate glass scaffolds were fabricated by a robocasting process in which all the movements of the printing head were programmed by compiling a script (text file). A printable ink made of glass powder and Pluronic F-127, acting as a binder, was extruded to obtain macroporous scaffolds with a grid-like three-dimensional structure. The scaffold architecture was investigated by scanning electron microscopy and microtomographic analysis, which allowed quantifying the microstructural parameters (pore size 150-180 μm and strut diameter 300 μm). In vitro tests in simulated body fluid (SBF) confirmed the apatite-forming ability (i.e., bioactivity) of the scaffolds. The compressive strength (around 10 MPa for as-produced scaffolds) progressively decreased during immersion in SBF (3.3 MPa after 4 weeks) but remains acceptable for bone repair applications. Taken together, these results (adequate porosity and mechanical strength as well as bioactivity) support the potential suitability of the prepared scaffolds for bone substitution.
Collapse
Affiliation(s)
- Francesco Baino
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Turin, Italy
| | - Jacopo Barberi
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Turin, Italy
| | - Elisa Fiume
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Turin, Italy
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, Turin, Italy
| | - Gissur Orlygsson
- Department of Materials, Biotechnology and Energy, Innovation Center Iceland (ICI), Reykjavik, Iceland
| | - Jonathan Massera
- Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland
| | - Enrica Verné
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Turin, Italy
| |
Collapse
|
17
|
Boffito M, Di Meglio F, Mozetic P, Giannitelli SM, Carmagnola I, Castaldo C, Nurzynska D, Sacco AM, Miraglia R, Montagnani S, Vitale N, Brancaccio M, Tarone G, Basoli F, Rainer A, Trombetta M, Ciardelli G, Chiono V. Surface functionalization of polyurethane scaffolds mimicking the myocardial microenvironment to support cardiac primitive cells. PLoS One 2018; 13:e0199896. [PMID: 29979710 PMCID: PMC6034803 DOI: 10.1371/journal.pone.0199896] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/15/2018] [Indexed: 11/28/2022] Open
Abstract
Scaffolds populated with human cardiac progenitor cells (CPCs) represent a therapeutic opportunity for heart regeneration after myocardial infarction. In this work, square-grid scaffolds are prepared by melt-extrusion additive manufacturing from a polyurethane (PU), further subjected to plasma treatment for acrylic acid surface grafting/polymerization and finally grafted with laminin-1 (PU-LN1) or gelatin (PU-G) by carbodiimide chemistry. LN1 is a cardiac niche extracellular matrix component and plays a key role in heart formation during embryogenesis, while G is a low-cost cell-adhesion protein, here used as a control functionalizing molecule. X-ray photoelectron spectroscopy analysis shows nitrogen percentage increase after functionalization. O1s and C1s core-level spectra and static contact angle measurements show changes associated with successful functionalization. ELISA assay confirms LN1 surface grafting. PU-G and PU-LN1 scaffolds both improve CPC adhesion, but LN1 functionalization is superior in promoting proliferation, protection from apoptosis and expression of differentiation markers for cardiomyocytes, endothelial and smooth muscle cells. PU-LN1 and PU scaffolds are biodegraded into non-cytotoxic residues. Scaffolds subcutaneously implanted in mice evoke weak inflammation and integrate with the host tissue, evidencing a significant blood vessel density around the scaffolds. PU-LN1 scaffolds show their superiority in driving CPC behavior, evidencing their promising role in myocardial regenerative medicine.
Collapse
Affiliation(s)
- Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Franca Di Meglio
- Department of Public Health, University of Naples ‘Federico II’, Naples, Italy
| | - Pamela Mozetic
- Department of Engineering, Tissue Engineering Unit, Università Campus Bio-Medico di Roma, Rome, Italy
- Center for Translational Medicine, International Clinical Research Center, St.Anne’s University Hospital, Brno, Czechia
| | - Sara Maria Giannitelli
- Department of Engineering, Tissue Engineering Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Clotilde Castaldo
- Department of Public Health, University of Naples ‘Federico II’, Naples, Italy
| | - Daria Nurzynska
- Department of Public Health, University of Naples ‘Federico II’, Naples, Italy
| | - Anna Maria Sacco
- Department of Public Health, University of Naples ‘Federico II’, Naples, Italy
| | - Rita Miraglia
- Department of Public Health, University of Naples ‘Federico II’, Naples, Italy
| | - Stefania Montagnani
- Department of Public Health, University of Naples ‘Federico II’, Naples, Italy
| | - Nicoletta Vitale
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Guido Tarone
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Francesco Basoli
- Department of Engineering, Tissue Engineering Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Alberto Rainer
- Department of Engineering, Tissue Engineering Unit, Università Campus Bio-Medico di Roma, Rome, Italy
- Institute for Photonics and Nanotechnology, National Research Council, Rome, Italy
| | - Marcella Trombetta
- Department of Engineering, Tissue Engineering Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
18
|
Rhombicuboctahedron unit cell based scaffolds for bone regeneration: geometry optimization with a mechanobiology – driven algorithm. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 83:51-66. [DOI: 10.1016/j.msec.2017.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/18/2017] [Accepted: 09/27/2017] [Indexed: 12/28/2022]
|
19
|
Heljak MK, Kurzydlowski KJ, Swieszkowski W. Computer aided design of architecture of degradable tissue engineering scaffolds. Comput Methods Biomech Biomed Engin 2017; 20:1623-1632. [PMID: 29106807 DOI: 10.1080/10255842.2017.1399263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
One important factor affecting the process of tissue regeneration is scaffold stiffness loss, which should be properly balanced with the rate of tissue regeneration. The aim of the research reported here was to develop a computer tool for designing the architecture of biodegradable scaffolds fabricated by melt-dissolution deposition systems (e.g. Fused Deposition Modeling) to provide the required scaffold stiffness at each stage of degradation/regeneration. The original idea presented in the paper is that the stiffness of a tissue engineering scaffold can be controlled during degradation by means of a proper selection of the diameter of the constituent fibers and the distances between them. This idea is based on the size-effect on degradation of aliphatic polyesters. The presented computer tool combines a genetic algorithm and a diffusion-reaction model of polymer hydrolytic degradation. In particular, we show how to design the architecture of scaffolds made of poly(DL-lactide-co-glycolide) with the required Young's modulus change during hydrolytic degradation.
Collapse
Affiliation(s)
- M K Heljak
- a Faculty of Materials Science and Engineering , Warsaw University of Technology , Warsaw , Poland
| | - K J Kurzydlowski
- a Faculty of Materials Science and Engineering , Warsaw University of Technology , Warsaw , Poland
| | - W Swieszkowski
- a Faculty of Materials Science and Engineering , Warsaw University of Technology , Warsaw , Poland
| |
Collapse
|
20
|
Development of an injectable pseudo-bone thermo-gel for application in small bone fractures. Int J Pharm 2017; 520:39-48. [DOI: 10.1016/j.ijpharm.2017.01.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 11/18/2022]
|
21
|
Uth N, Mueller J, Smucker B, Yousefi AM. Validation of scaffold design optimization in bone tissue engineering: finite element modeling versus designed experiments. Biofabrication 2017; 9:015023. [DOI: 10.1088/1758-5090/9/1/015023] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Poh PSP, Chhaya MP, Wunner FM, De-Juan-Pardo EM, Schilling AF, Schantz JT, van Griensven M, Hutmacher DW. Polylactides in additive biomanufacturing. Adv Drug Deliv Rev 2016; 107:228-246. [PMID: 27492211 DOI: 10.1016/j.addr.2016.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/25/2016] [Indexed: 01/25/2023]
Abstract
New advanced manufacturing technologies under the alias of additive biomanufacturing allow the design and fabrication of a range of products from pre-operative models, cutting guides and medical devices to scaffolds. The process of printing in 3 dimensions of cells, extracellular matrix (ECM) and biomaterials (bioinks, powders, etc.) to generate in vitro and/or in vivo tissue analogue structures has been termed bioprinting. To further advance in additive biomanufacturing, there are many aspects that we can learn from the wider additive manufacturing (AM) industry, which have progressed tremendously since its introduction into the manufacturing sector. First, this review gives an overview of additive manufacturing and both industry and academia efforts in addressing specific challenges in the AM technologies to drive toward AM-enabled industrial revolution. After which, considerations of poly(lactides) as a biomaterial in additive biomanufacturing are discussed. Challenges in wider additive biomanufacturing field are discussed in terms of (a) biomaterials; (b) computer-aided design, engineering and manufacturing; (c) AM and additive biomanufacturing printers hardware; and (d) system integration. Finally, the outlook for additive biomanufacturing was discussed.
Collapse
Affiliation(s)
- Patrina S P Poh
- Department of Experimental Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Mohit P Chhaya
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.
| | - Felix M Wunner
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.
| | - Elena M De-Juan-Pardo
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.
| | - Arndt F Schilling
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; Clinic for Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany.
| | - Jan-Thorsten Schantz
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Martijn van Griensven
- Department of Experimental Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Dietmar W Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia; Institute for Advanced Study, Technical University of Munich, Garching, Germany.
| |
Collapse
|
23
|
Costantini M, Colosi C, Mozetic P, Jaroszewicz J, Tosato A, Rainer A, Trombetta M, Święszkowski W, Dentini M, Barbetta A. Correlation between porous texture and cell seeding efficiency of gas foaming and microfluidic foaming scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:668-77. [DOI: 10.1016/j.msec.2016.02.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/25/2015] [Accepted: 02/03/2016] [Indexed: 01/26/2023]
|
24
|
The influence of topography on tissue engineering perspective. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:906-21. [DOI: 10.1016/j.msec.2015.12.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/26/2015] [Accepted: 12/30/2015] [Indexed: 12/26/2022]
|
25
|
Geometry Design Optimization of Functionally Graded Scaffolds for Bone Tissue Engineering: A Mechanobiological Approach. PLoS One 2016; 11:e0146935. [PMID: 26771746 PMCID: PMC4714836 DOI: 10.1371/journal.pone.0146935] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/25/2015] [Indexed: 12/22/2022] Open
Abstract
Functionally Graded Scaffolds (FGSs) are porous biomaterials where porosity changes in space with a specific gradient. In spite of their wide use in bone tissue engineering, possible models that relate the scaffold gradient to the mechanical and biological requirements for the regeneration of the bony tissue are currently missing. In this study we attempt to bridge the gap by developing a mechanobiology-based optimization algorithm aimed to determine the optimal graded porosity distribution in FGSs. The algorithm combines the parametric finite element model of a FGS, a computational mechano-regulation model and a numerical optimization routine. For assigned boundary and loading conditions, the algorithm builds iteratively different scaffold geometry configurations with different porosity distributions until the best microstructure geometry is reached, i.e. the geometry that allows the amount of bone formation to be maximized. We tested different porosity distribution laws, loading conditions and scaffold Young’s modulus values. For each combination of these variables, the explicit equation of the porosity distribution law–i.e the law that describes the pore dimensions in function of the spatial coordinates–was determined that allows the highest amounts of bone to be generated. The results show that the loading conditions affect significantly the optimal porosity distribution. For a pure compression loading, it was found that the pore dimensions are almost constant throughout the entire scaffold and using a FGS allows the formation of amounts of bone slightly larger than those obtainable with a homogeneous porosity scaffold. For a pure shear loading, instead, FGSs allow to significantly increase the bone formation compared to a homogeneous porosity scaffolds. Although experimental data is still necessary to properly relate the mechanical/biological environment to the scaffold microstructure, this model represents an important step towards optimizing geometry of functionally graded scaffolds based on mechanobiological criteria.
Collapse
|
26
|
Boccaccio A, Uva AE, Fiorentino M, Lamberti L, Monno G. A Mechanobiology-based Algorithm to Optimize the Microstructure Geometry of Bone Tissue Scaffolds. Int J Biol Sci 2016; 12:1-17. [PMID: 26722213 PMCID: PMC4679394 DOI: 10.7150/ijbs.13158] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/23/2015] [Indexed: 01/02/2023] Open
Abstract
Complexity of scaffold geometries and biological mechanisms involved in the bone generation process make the design of scaffolds a quite challenging task. The most common approaches utilized in bone tissue engineering require costly protocols and time-consuming experiments. In this study we present an algorithm that, combining parametric finite element models of scaffolds with numerical optimization methods and a computational mechano-regulation model, is able to predict the optimal scaffold microstructure. The scaffold geometrical parameters are perturbed until the best geometry that allows the largest amounts of bone to be generated, is reached. We study the effects of the following factors: (1) the shape of the pores; (2) their spatial distribution; (3) the number of pores per unit area. The optimal dimensions of the pores have been determined for different values of scaffold Young's modulus and compression loading acting on the scaffold upper surface. Pores with rectangular section were predicted to lead to the formation of larger amounts of bone compared to square section pores; similarly, elliptic pores were predicted to allow the generation of greater amounts of bone compared to circular pores. The number of pores per unit area appears to have rather negligible effects on the bone regeneration process. Finally, the algorithm predicts that for increasing loads, increasing values of the scaffold Young's modulus are preferable. The results shown in the article represent a proof-of-principle demonstration of the possibility to optimize the scaffold microstructure geometry based on mechanobiological criteria.
Collapse
Affiliation(s)
- Antonio Boccaccio
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70126 Bari, Italy
| | - Antonio Emmanuele Uva
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70126 Bari, Italy
| | - Michele Fiorentino
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70126 Bari, Italy
| | - Luciano Lamberti
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70126 Bari, Italy
| | - Giuseppe Monno
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70126 Bari, Italy
| |
Collapse
|
27
|
Pluronic F127 Hydrogel Characterization and Biofabrication in Cellularized Constructs for Tissue Engineering Applications. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.procir.2015.11.001] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
28
|
Combined additive manufacturing approaches in tissue engineering. Acta Biomater 2015; 24:1-11. [PMID: 26134665 DOI: 10.1016/j.actbio.2015.06.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 06/26/2015] [Accepted: 06/26/2015] [Indexed: 12/12/2022]
Abstract
Advances introduced by additive manufacturing (AM) have significantly improved the control over the microarchitecture of scaffolds for tissue engineering. This has led to the flourishing of research works addressing the optimization of AM scaffolds microarchitecture to optimally trade-off between conflicting requirements (e.g. mechanical stiffness and porosity level). A fascinating trend concerns the integration of AM with other scaffold fabrication methods (i.e. "combined" AM), leading to hybrid architectures with complementary structural features. Although this innovative approach is still at its beginning, significant results have been achieved in terms of improved biological response to the scaffold, especially targeting the regeneration of complex tissues. This review paper reports the state of the art in the field of combined AM, posing the accent on recent trends, challenges, and future perspectives.
Collapse
|
29
|
Baldino L, Naddeo F, Cardea S, Naddeo A, Reverchon E. FEM modeling of the reinforcement mechanism of Hydroxyapatite in PLLA scaffolds produced by supercritical drying, for Tissue Engineering applications. J Mech Behav Biomed Mater 2015; 51:225-36. [PMID: 26275485 DOI: 10.1016/j.jmbbm.2015.07.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/16/2015] [Accepted: 07/21/2015] [Indexed: 10/23/2022]
Abstract
Scaffolds have been produced by supercritical CO2 drying of Poly-L-Lactid Acid (PLLA) gels loaded with micrometric fructose particles used as porogens. These structures show a microporous architecture generated by the voids left in the solid material by porogen leaching, while they maintain the nanostructure of the gel, consisting of a network of nanofilaments. These scaffolds have also been loaded with Hydroxyapatite (HA) nanoparticles, from 10 to 50% w/w with respect to the polymer, to improve the mechanical properties of the PLLA structure. Based on miscroscopic and mechanical considerations, we propose a parametric Finite Element Method (FEM) model of PLLA-HA composites that describes the microporous structure as a close-packing of equal spheres and the nanoscale structure as a space frame of isotropic curved fibers. The effect of HA on the mechanical properties of the scaffolds has been modeled on the basis of SEM images and by taking into consideration the formation of concentric cylinders of HA nanoparticles around PLLA nanofibers. Modeling analysis confirms that mechanical properties of these scaffolds depend on nanofibrous network connections and that bending is the major factor causing deformation of the network. The FEM model also takes into account the formation of HA multi-layer coating on some areas in the nanofiber network and its increase in thickness with HA percentage. The Young modulus tends to a plateau for HA percentages larger than 30% w/w and when the coverage of the nanofibers produced by HA nanoparticles reaches a loaded surface index of 0.14 in the FEM model.
Collapse
Affiliation(s)
- L Baldino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - F Naddeo
- Department of Information Engineering, Electrical Engineering and Applied Mathematics, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - S Cardea
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - A Naddeo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - E Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; NANO_MATES, Research Centre for Nanomaterials and Nanotechnology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
30
|
Yousefi AM, Hoque ME, Prasad RGSV, Uth N. Current strategies in multiphasic scaffold design for osteochondral tissue engineering: A review. J Biomed Mater Res A 2014; 103:2460-81. [PMID: 25345589 DOI: 10.1002/jbm.a.35356] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/04/2014] [Accepted: 10/12/2014] [Indexed: 12/23/2022]
Abstract
The repair of osteochondral defects requires a tissue engineering approach that aims at mimicking the physiological properties and structure of two different tissues (cartilage and bone) using specifically designed scaffold-cell constructs. Biphasic and triphasic approaches utilize two or three different architectures, materials, or composites to produce a multilayered construct. This article gives an overview of some of the current strategies in multiphasic/gradient-based scaffold architectures and compositions for tissue engineering of osteochondral defects. In addition, the application of finite element analysis (FEA) in scaffold design and simulation of in vitro and in vivo cell growth outcomes has been briefly covered. FEA-based approaches can potentially be coupled with computer-assisted fabrication systems for controlled deposition and additive manufacturing of the simulated patterns. Finally, a summary of the existing challenges associated with the repair of osteochondral defects as well as some recommendations for future directions have been brought up in the concluding section of this article.
Collapse
Affiliation(s)
- Azizeh-Mitra Yousefi
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, Ohio, 45056
| | - Md Enamul Hoque
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Malaysia Campus, Malaysia
| | - Rangabhatala G S V Prasad
- Biomedical and Pharmaceutical Technology Research Group, Nano Research for Advanced Materials, Bangalore, Karnataka, India
| | - Nicholas Uth
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, Ohio, 45056
| |
Collapse
|
31
|
Seyedmahmoud R, Mozetic P, Rainer A, Giannitelli SM, Basoli F, Trombetta M, Traversa E, Licoccia S, Rinaldi A. A primer of statistical methods for correlating parameters and properties of electrospun poly(l-lactide) scaffolds for tissue engineering-PART 2: Regression. J Biomed Mater Res A 2014; 103:103-14. [DOI: 10.1002/jbm.a.35183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/19/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Rasoul Seyedmahmoud
- Department of Chemical Science and Technology and NAST Center; University of Rome Tor Vergata; Rome Italy
| | - Pamela Mozetic
- Tissue Engineering Laboratory, CIR-Center of Integrated Research, Università Campus Bio-Medico di Roma; Rome Italy
| | - Alberto Rainer
- Tissue Engineering Laboratory, CIR-Center of Integrated Research, Università Campus Bio-Medico di Roma; Rome Italy
| | - Sara Maria Giannitelli
- Tissue Engineering Laboratory, CIR-Center of Integrated Research, Università Campus Bio-Medico di Roma; Rome Italy
| | - Francesco Basoli
- Department of Chemical Science and Technology and NAST Center; University of Rome Tor Vergata; Rome Italy
| | - Marcella Trombetta
- Tissue Engineering Laboratory, CIR-Center of Integrated Research, Università Campus Bio-Medico di Roma; Rome Italy
| | - Enrico Traversa
- Department of Chemical Science and Technology and NAST Center; University of Rome Tor Vergata; Rome Italy
- Division of Physical Sciences and Engineering; King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Silvia Licoccia
- Department of Chemical Science and Technology and NAST Center; University of Rome Tor Vergata; Rome Italy
| | - Antonio Rinaldi
- Department of Chemical Science and Technology and NAST Center; University of Rome Tor Vergata; Rome Italy
- ENEA,CR Casaccia; Via Anguillarese 301, Santa Maria di Galeria Rome Italy
- International Research Center for Mathematics & Mechanics of Complex Systems, University of L'Aquila; Via S. Pasquale, Cisterna di Latina (LT) Italy
| |
Collapse
|
32
|
Chiono V, Mozetic P, Boffito M, Sartori S, Gioffredi E, Silvestri A, Rainer A, Giannitelli SM, Trombetta M, Nurzynska D, Di Meglio F, Castaldo C, Miraglia R, Montagnani S, Ciardelli G. Polyurethane-based scaffolds for myocardial tissue engineering. Interface Focus 2014; 4:20130045. [PMID: 24501673 PMCID: PMC3886310 DOI: 10.1098/rsfs.2013.0045] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bi-layered scaffolds with a 0°/90° lay-down pattern were prepared by melt-extrusion additive manufacturing (AM) using a poly(ester urethane) (PU) synthesized from poly(ε-caprolactone) diol, 1,4-butandiisocyanate and l-lysine ethyl ester dihydrochloride chain extender. Rheological analysis and differential scanning calorimetry of the starting material showed that compression moulded PU films were in the molten state at a higher temperature than 155°C. The AM processing temperature was set at 155°C after verifying the absence of PU thermal degradation phenomena by isothermal thermogravimetry analysis and rheological characterization performed at 165°C. Scaffolds highly reproduced computer-aided design geometry and showed an elastomeric-like behaviour which is promising for applications in myocardial regeneration. PU scaffolds supported the adhesion and spreading of human cardiac progenitor cells (CPCs), whereas they did not stimulate CPC proliferation after 1-14 days culture time. In the future, scaffold surface functionalization with bioactive peptides/proteins will be performed to specifically guide CPC behaviour.
Collapse
Affiliation(s)
- Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, Italy
| | - Pamela Mozetic
- Tissue Engineering Laboratory, Università ‘Campus Bio-Medico di Roma’, Via Alvaro del Portillo 21, Rome, Italy
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, Italy
| | - Susanna Sartori
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, Italy
| | - Emilia Gioffredi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, Italy
| | - Antonella Silvestri
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, Italy
| | - Alberto Rainer
- Tissue Engineering Laboratory, Università ‘Campus Bio-Medico di Roma’, Via Alvaro del Portillo 21, Rome, Italy
| | - Sara Maria Giannitelli
- Tissue Engineering Laboratory, Università ‘Campus Bio-Medico di Roma’, Via Alvaro del Portillo 21, Rome, Italy
| | - Marcella Trombetta
- Tissue Engineering Laboratory, Università ‘Campus Bio-Medico di Roma’, Via Alvaro del Portillo 21, Rome, Italy
| | - Daria Nurzynska
- Department of Public Health, University of Naples ‘Federico II’, Via Pansini 5, Naples, Italy
| | - Franca Di Meglio
- Department of Public Health, University of Naples ‘Federico II’, Via Pansini 5, Naples, Italy
| | - Clotilde Castaldo
- Department of Public Health, University of Naples ‘Federico II’, Via Pansini 5, Naples, Italy
| | - Rita Miraglia
- Department of Public Health, University of Naples ‘Federico II’, Via Pansini 5, Naples, Italy
| | - Stefania Montagnani
- Department of Public Health, University of Naples ‘Federico II’, Via Pansini 5, Naples, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, Italy
| |
Collapse
|
33
|
Giannitelli SM, Accoto D, Trombetta M, Rainer A. Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomater 2014; 10:580-94. [PMID: 24184176 DOI: 10.1016/j.actbio.2013.10.024] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 09/28/2013] [Accepted: 10/22/2013] [Indexed: 02/07/2023]
Abstract
Advances introduced by additive manufacturing have significantly improved the ability to tailor scaffold architecture, enhancing the control over microstructural features. This has led to a growing interest in the development of innovative scaffold designs, as testified by the increasing amount of research activities devoted to the understanding of the correlation between topological features of scaffolds and their resulting properties, in order to find architectures capable of optimal trade-off between often conflicting requirements (such as biological and mechanical ones). The main aim of this paper is to provide a review and propose a classification of existing methodologies for scaffold design and optimization in order to address key issues and help in deciphering the complex link between design criteria and resulting scaffold properties.
Collapse
Affiliation(s)
- S M Giannitelli
- Tissue Engineering Laboratory, CIR - Center for Integrated Research, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Rome, Italy
| | - D Accoto
- Biomedical Robotics and Biomicrosystems Laboratory, CIR - Center for Integrated Research, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Rome, Italy
| | - M Trombetta
- Tissue Engineering Laboratory, CIR - Center for Integrated Research, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Rome, Italy
| | - A Rainer
- Tissue Engineering Laboratory, CIR - Center for Integrated Research, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Rome, Italy.
| |
Collapse
|
34
|
Giannitelli SM, Rainer A, Accoto D, De Porcellinis S, De-Juan-Pardo EM, Guglielmelli E, Trombetta M. Optimization Approaches for the Design of Additively Manufactured Scaffolds. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-94-007-7073-7_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
35
|
Computer-Aided Tissue Engineering: Application to the Case of Anterior Cruciate Ligament Repair. LECTURE NOTES IN COMPUTATIONAL VISION AND BIOMECHANICS 2013. [DOI: 10.1007/978-94-007-5890-2_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
36
|
|