1
|
Chen J, Jin L, Sha L, Cao M, Du L, Li Z, Luo X. Unraveling Changes of Brachial Artery Residual Stress and Its Relationship to Cardiovascular Disease Risk Factors. Rev Cardiovasc Med 2024; 25:289. [PMID: 39228504 PMCID: PMC11366995 DOI: 10.31083/j.rcm2508289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 09/05/2024] Open
Abstract
Background Arterial pressure volume index (API) offers a non-invasive measurement of brachial artery residual stress. This study investigated API distribution characteristics and correlations with cardiovascular disease risk (CVD) factors in a large Chinese population sample. Methods This cross-sectional study surveyed a total of 7620 participants. We analyzed the relationships between API and factors influencing CVD, using regression-based stepwise backward selection and restrictive cubic spline models to express relationships as standardized beta values. Results Multiple linear regression analysis identified many independent factors influencing API including age, sex, body mass index (BMI), pulse pressure (PP), heart rate (HR), hemoglobin, uric acid (UA), estimated glomerular filtration rate (eGFR), triglyceride (TC), and a history of hypertension. Notably, API values increased at 33 and escalated with advancing age. Increases in API were associated with rises in PP and UA increases, particularly when PP reached 60 mmHg and the UA reached 525 units. Conversely, API was found to decrease with elevated HR and eGFR. Furthermore, there was a significant inverted U-shaped relationship between API and BMI. Conclusions This study was the first to describe API distribution characteristics in a large sample of the Chinese population, providing references for evaluating API changes in the assessment of residual stress variations in diverse diseases. Notably, API displayed a U-shaped relationship with age and was closely related to traditional CVD risk factors, underscoring its potential as a non-invasive tool for risk assessment in vascular health. Clinical Trial Registration This research was registered with the China Clinical Trial Registration Center (Registration Number: ChiCTR2000035937).
Collapse
Affiliation(s)
- Jianxiong Chen
- Department of Ultrasound, Shanghai General Hospital of Nanjing Medical University, 200080 Shanghai, China
- Department of Ultrasound, Mindong Hospital Affiliated to Fujian Medical University, 355000 Ningde, Fujian, China
| | - Lin Jin
- Department of Ultrasound, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 200052 Shanghai, China
| | - Lei Sha
- Department of Ultrasound, Shanghai General Hospital Jiading Branch, Shanghai Jiaotong University School of Medicine, 200080 Shanghai, China
| | - Mengmeng Cao
- Department of Ultrasound, Shanghai General Hospital Jiading Branch, Shanghai Jiaotong University School of Medicine, 200080 Shanghai, China
| | - Lianfang Du
- Department of Ultrasound, The Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080 Shanghai, China
| | - Zhaojun Li
- Department of Ultrasound, Shanghai General Hospital of Nanjing Medical University, 200080 Shanghai, China
- Department of Ultrasound, Shanghai General Hospital Jiading Branch, Shanghai Jiaotong University School of Medicine, 200080 Shanghai, China
- Department of Ultrasound, The Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080 Shanghai, China
| | - Xianghong Luo
- Department of Echocardiography, The Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080 Shanghai, China
| |
Collapse
|
2
|
Dieffenbach PB, Aravamudhan A, Fredenburgh LE, Tschumperlin DJ. The Mechanobiology of Vascular Remodeling in the Aging Lung. Physiology (Bethesda) 2022; 37:28-38. [PMID: 34514871 PMCID: PMC8742727 DOI: 10.1152/physiol.00019.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aging is accompanied by declining lung function and increasing susceptibility to lung diseases. The role of endothelial dysfunction and vascular remodeling in these changes is supported by growing evidence, but underlying mechanisms remain elusive. In this review we summarize functional, structural, and molecular changes in the aging pulmonary vasculature and explore how interacting aging and mechanobiological cues may drive progressive vascular remodeling in the lungs.
Collapse
Affiliation(s)
- Paul B. Dieffenbach
- 1Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Aja Aravamudhan
- 2Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Laura E. Fredenburgh
- 1Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Daniel J. Tschumperlin
- 2Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| |
Collapse
|
3
|
Wang Y, Gharahi H, Grobbel MR, Rao A, Roccabianca S, Baek S. Potential damage in pulmonary arterial hypertension: An experimental study of pressure-induced damage of pulmonary artery. J Biomed Mater Res A 2021; 109:579-589. [PMID: 32589778 DOI: 10.1002/jbm.a.37042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022]
Abstract
Pulmonary arterial hypertension (PAH) is associated with elevated pulmonary arterial pressure. PAH prognosis remains poor with a 15% mortality rate within 1 year, even with modern clinical management. Previous clinical studies proposed wall shear stress (WSS) to be an important hemodynamic factor affecting cell mechanotransduction, growth and remodeling, and disease progress in PAH. However, WSS in vivo is typically at most 2.5 Pa and a doubt has been cast whether WSS alone can drive disease progress. Furthermore, our current understanding of PAH pathology largely comes from small animals' studies in which caliber enlargement, a hallmark of PAH in humans, is rarely reported. Therefore, a large-animal experiment on pulmonary arteries (PAs) is needed to validate whether increased pressure can induce enlargement of PAs caliber. In this study, we use an inflation testing device to characterize the mechanical behavior, both nonlinear elastic behavior and irreversible damage of porcine arteries. The parameters of elastic behavior are estimated from the inflation test at a low-pressure range before and after over-pressurization. Then, histological images are qualitatively examined for medial and adventitial layers. This study sheds light on the relevance of pressure-induced damage mechanism in human PAH.
Collapse
Affiliation(s)
- Yuheng Wang
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Hamidreza Gharahi
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Marissa R Grobbel
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Akshay Rao
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas, USA
| | - Sara Roccabianca
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Seungik Baek
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
4
|
Computational Fluid Dynamics Modeling of the Human Pulmonary Arteries with Experimental Validation. Ann Biomed Eng 2018; 46:1309-1324. [PMID: 29786774 DOI: 10.1007/s10439-018-2047-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 05/10/2018] [Indexed: 12/22/2022]
Abstract
Pulmonary hypertension (PH) is a chronic progressive disease characterized by elevated pulmonary arterial pressure, caused by an increase in pulmonary arterial impedance. Computational fluid dynamics (CFD) can be used to identify metrics representative of the stage of PH disease. However, experimental validation of CFD models is often not pursued due to the geometric complexity of the model or uncertainties in the reproduction of the required flow conditions. The goal of this work is to validate experimentally a CFD model of a pulmonary artery phantom using a particle image velocimetry (PIV) technique. Rapid prototyping was used for the construction of the patient-specific pulmonary geometry, derived from chest computed tomography angiography images. CFD simulations were performed with the pulmonary model with a Reynolds number matching those of the experiments. Flow rates, the velocity field, and shear stress distributions obtained with the CFD simulations were compared to their counterparts from the PIV flow visualization experiments. Computationally predicted flow rates were within 1% of the experimental measurements for three of the four branches of the CFD model. The mean velocities in four transversal planes of study were within 5.9 to 13.1% of the experimental mean velocities. Shear stresses were qualitatively similar between the two methods with some discrepancies in the regions of high velocity gradients. The fluid flow differences between the CFD model and the PIV phantom are attributed to experimental inaccuracies and the relative compliance of the phantom. This comparative analysis yielded valuable information on the accuracy of CFD predicted hemodynamics in pulmonary circulation models.
Collapse
|
5
|
Circulating miRNAs in Pediatric Pulmonary Hypertension Show Promise as Biomarkers of Vascular Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4957147. [PMID: 28819545 PMCID: PMC5551515 DOI: 10.1155/2017/4957147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/18/2017] [Accepted: 05/04/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND/OBJECTIVES The objective of this study was to evaluate the utility of circulating miRNAs as biomarkers of vascular function in pediatric pulmonary hypertension. METHOD Fourteen pediatric pulmonary arterial hypertension patients underwent simultaneous right heart catheterization (RHC) and blood biochemical analysis. Univariate and stepwise multivariate linear regression was used to identify and correlate measures of reactive and resistive afterload with circulating miRNA levels. Furthermore, circulating miRNA candidates that classified patients according to a 20% decrease in resistive afterload in response to oxygen (O2) or inhaled nitric oxide (iNO) were identified using receiver-operating curves. RESULTS Thirty-two circulating miRNAs correlated with the pulmonary vascular resistance index (PVRi), pulmonary arterial distensibility, and PVRi decrease in response to O2 and/or iNO. Multivariate models, combining the predictive capability of multiple promising miRNA candidates, revealed a good correlation with resistive (r = 0.97, P2-tailed < 0.0001) and reactive (r = 0.86, P2-tailed < 0.005) afterloads. Bland-Altman plots showed that 95% of the differences between multivariate models and RHC would fall within 0.13 (mmHg-min/L)m2 and 0.0085/mmHg for resistive and reactive afterloads, respectively. Circulating miR-663 proved to be a good classifier for vascular responsiveness to acute O2 and iNO challenges. CONCLUSION This study suggests that circulating miRNAs may be biomarkers to phenotype vascular function in pediatric PAH.
Collapse
|
6
|
Pursell ER, Vélez-Rendón D, Valdez-Jasso D. Biaxial Properties of the Left and Right Pulmonary Arteries in a Monocrotaline Rat Animal Model of Pulmonary Arterial Hypertension. J Biomech Eng 2016; 138:2565260. [DOI: 10.1115/1.4034826] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Indexed: 11/08/2022]
Abstract
In a monocrotaline (MCT) induced-pulmonary arterial hypertension (PAH) rat animal model, the dynamic stress–strain relation was investigated in the circumferential and axial directions using a linear elastic response model within the quasi-linear viscoelasticity theory framework. Right and left pulmonary arterial segments (RPA and LPA) were mechanically tested in a tubular biaxial device at the early stage (1 week post-MCT treatment) and at the advanced stage of the disease (4 weeks post-MCT treatment). The vessels were tested circumferentially at the in vivo axial length with matching in vivo measured pressure ranges. Subsequently, the vessels were tested axially at the mean pulmonary arterial pressure by stretching them from in vivo plus 5% of their length. Parameter estimation showed that the LPA and RPA remodel at different rates: axially, both vessels decreased in Young's modulus at the early stage of the disease, and increased at the advanced disease stage. Circumferentially, the Young's modulus increased in advanced PAH, but it was only significant in the RPA. The damping properties also changed in PAH; in the LPA relaxation times decreased continuously as the disease progressed, while in the RPA they initially increased and then decreased. Our modeling efforts were corroborated by the restructuring organization of the fibers imaged under multiphoton microscopy, where the collagen fibers become strongly aligned to the 45 deg angle in the RPA from an uncrimped and randomly organized state. Additionally, collagen content increased almost 10% in the RPA from the placebo to advanced PAH.
Collapse
Affiliation(s)
- Erica R. Pursell
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607
| | - Daniela Vélez-Rendón
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607
| | - Daniela Valdez-Jasso
- Assistant Professor Department of Bioengineering, University of Illinois at Chicago, 851 S Morgan Street, SEO 208, Chicago, IL 60607 e-mail:
| |
Collapse
|
7
|
Schäfer M, Kheyfets VO, Schroeder JD, Dunning J, Shandas R, Buckner JK, Browning J, Hertzberg J, Hunter KS, Fenster BE. Main pulmonary arterial wall shear stress correlates with invasive hemodynamics and stiffness in pulmonary hypertension. Pulm Circ 2016; 6:37-45. [PMID: 27076906 PMCID: PMC4809665 DOI: 10.1086/685024] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Pulmonary hypertension (PH) is associated with proximal pulmonary arterial remodeling characterized by increased vessel diameter, wall thickening, and stiffness. In vivo assessment of wall shear stress (WSS) may provide insights into the relationships between pulmonary hemodynamics and vascular remodeling. We investigated the relationship between main pulmonary artery (MPA) WSS and pulmonary hemodynamics as well as markers of stiffness. As part of a prospective study, 17 PH patients and 5 controls underwent same-day four-dimensional flow cardiac magnetic resonance imaging (4-D CMR) and right heart catheterization. Streamwise velocity profiles were generated in the cross-sectional MPA in 45° increments from velocity vector fields determined by 4-D CMR. WSS was calculated as the product of hematocrit-dependent viscosity and shear rate generated from the spatial gradient of the velocity profiles. In-plane average MPA WSS was significantly decreased in the PH cohort compared with that in controls (0.18 ± 0.07 vs. 0.32 ± 0.08 N/m(2); P = 0.01). In-plane MPA WSS showed strong inverse correlations with multiple hemodynamic indices, including pulmonary resistance (ρ = -0.74, P < 0.001), mean pulmonary pressure (ρ = -0.64, P = 0.006), and elastance (ρ = -0.70, P < 0.001). In addition, MPA WSS had significant associations with markers of stiffness, including capacitance (ρ = 0.67, P < 0.001), distensibility (ρ = 0.52, P = 0.013), and elastic modulus (ρ = -0.54, P = 0.01). In conclusion, MPA WSS is decreased in PH and is significantly associated with invasive hemodynamic indices and markers of stiffness. 4-D CMR-based assessment of WSS may represent a novel methodology to study blood-vessel wall interactions in PH.
Collapse
Affiliation(s)
- Michal Schäfer
- Division of Cardiology, National Jewish Health, Denver, Colorado, USA; Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Vitaly O Kheyfets
- Division of Cardiology, National Jewish Health, Denver, Colorado, USA; Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Joyce D Schroeder
- Division of Radiology, National Jewish Health, Denver, Colorado, USA
| | - Jamie Dunning
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Robin Shandas
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - J Kern Buckner
- Division of Cardiology, National Jewish Health, Denver, Colorado, USA
| | - James Browning
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | - Jean Hertzberg
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | - Kendall S Hunter
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA; BEF and KSH are co-senior authors
| | - Brett E Fenster
- Division of Cardiology, National Jewish Health, Denver, Colorado, USA; BEF and KSH are co-senior authors
| |
Collapse
|
8
|
Tian L, Wang Z, Liu Y, Eickhoff JC, Eliceiri KW, Chesler NC. Validation of an arterial constitutive model accounting for collagen content and crosslinking. Acta Biomater 2016; 31:276-287. [PMID: 26654765 DOI: 10.1016/j.actbio.2015.11.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/20/2015] [Accepted: 11/29/2015] [Indexed: 11/19/2022]
Abstract
During the progression of pulmonary hypertension (PH), proximal pulmonary arteries (PAs) increase in both thickness and stiffness. Collagen, a component of the extracellular matrix, is mainly responsible for these changes via increased collagen fiber amount (or content) and crosslinking. We sought to differentiate the effects of collagen content and cross-linking on mouse PA mechanical changes using a constitutive model with parameters derived from experiments in which collagen content and cross-linking were decoupled during hypoxic pulmonary hypertension (HPH). We employed an eight-chain orthotropic element model to characterize collagen's mechanical behavior and an isotropic neo-Hookean form to represent elastin. Our results showed a strong correlation between the material parameter related to collagen content and measured collagen content (R(2)=0.82, P<0.0001) and a moderate correlation between the material parameter related to collagen crosslinking and measured crosslinking (R(2)=0.24, P=0.06). There was no significant change in either the material parameter related to elastin or the measured elastin content from histology. The model-predicted pressure at which collagen begins to engage was ∼25mmHg, which is consistent with experimental observations. We conclude that this model may allow us to predict changes in the arterial extracellular matrix from measured mechanical behavior in PH patients, which may provide insight into prognoses and the effects of therapy. STATEMENT OF SIGNIFICANCE The literature has proposed several constitutive models to describe the mechanical effects of arterial collagen but none separates collagen content from crosslinking. Given that both are critical to arterial mechanics, the novel model described here does so. Furthermore, our novel model is well tested by experimental data; model parameters were reasonably correlated with measured collagen content and crosslinking and the model-predicted collagen transition stretch was consistent with that obtained experimentally. Given that arterial collagen structural changes and collagen engagement are critical to arterial stiffening in several disease states, this model, by linking mechanical and biological properties, may allow us to predict important biological changes during disease progression from measured mechanical behavior.
Collapse
Affiliation(s)
- Lian Tian
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhijie Wang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuming Liu
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI, USA
| | - Jens C Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI, USA
| | - Naomi C Chesler
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
9
|
Kheyfets VO, Dunning J, Truong U, Ivy DD, Hunter KA, Shandas R. Assessment of N-terminal prohormone B-type natriuretic peptide as a measure of vascular and ventricular function in pediatric pulmonary arterial hypertension. Pulm Circ 2015; 5:658-66. [PMID: 26697173 DOI: 10.1086/683697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease that puts excessive mechanical loads on the ventricle due to a gradual increase in pulmonary vascular impedance. We hypothesize that the increase in right ventricular (RV) afterload is reflected in the concentration of circulating biochemical markers of ventricular strain and stress (B-type natriuretic peptide [BNP] and N-terminal prohormone BNP [NT-proBNP]). We retrospectively analyzed right heart catheterization (RHC) and serum biochemical analysis data ([Formula: see text]) for a pediatric PAH cohort with no sign of left ventricular dysfunction. Using RHC data, we computed an estimate of pulmonary vascular resistance (PVR), compliance, and ventricular-vascular coupling. We also compared how the early onset of interventricular decoupling (characterized as septal flattening) impacts serum NT-proBNP concentrations. Our data revealed correlated NT-proBNP expression with both the resistive and reactive components of RV afterload, an estimate of ventricular-vascular coupling, and a significant increase in biomarker expression in patients with a flattened interventricular septum. Furthermore, the strong correlation between PVR and NT-proBNP appears to break down under flat septum morphology. Over 80% of resistive RV afterload variance is reflected in serum NT-proBNP concentration in pediatric patients with PAH with no sign of left ventricular dysfunction. Reactive afterload appears to contribute to myocardial NT-proBNP release at advanced stages of PAH. Therefore, in mild-to-moderate PAH, resistive afterload is likely the greatest contributor to RV wall stress. These findings could also be used to estimate invasive RHC measurements from serum biochemical analysis, but more work is needed to improve correlations and overcome the issue of interventricular decoupling.
Collapse
Affiliation(s)
- Vitaly O Kheyfets
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA ; Department of Cardiology, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Jamie Dunning
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA ; Department of Cardiology, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Uyen Truong
- Department of Cardiology, Children's Hospital Colorado, Aurora, Colorado, USA
| | - D Dunbar Ivy
- Department of Cardiology, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Kendall A Hunter
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA ; Department of Cardiology, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Robin Shandas
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA ; Department of Cardiology, Children's Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
10
|
Urotensin II contributes to collagen synthesis and up-regulates Egr-1 expression in cultured pulmonary arterial smooth muscle cells through the ERK1/2 pathway. Biochem Biophys Res Commun 2015; 467:1076-82. [DOI: 10.1016/j.bbrc.2015.09.148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 09/27/2015] [Indexed: 12/18/2022]
|
11
|
Kheyfets V, Thirugnanasambandam M, Rios L, Evans D, Smith T, Schroeder T, Mueller J, Murali S, Lasorda D, Spotti J, Finol E. The role of wall shear stress in the assessment of right ventricle hydraulic workload. Pulm Circ 2015; 5:90-100. [PMID: 25992274 DOI: 10.1086/679703] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 07/22/2014] [Indexed: 11/03/2022] Open
Abstract
Pulmonary hypertension (PH) is a devastating disease affecting approximately 15-50 people per million, with a higher incidence in women. PH mortality is mostly attributed to right ventricle (RV) failure, which results from RV hypotrophy due to an overburdened hydraulic workload. The objective of this study is to correlate wall shear stress (WSS) with hemodynamic metrics that are generally accepted as clinical indicators of RV workload and are well correlated with disease outcome. Retrospective right heart catheterization data for 20 PH patients were analyzed to derive pulmonary vascular resistance (PVR), arterial compliance (C), and an index of wave reflections (Γ). Patient-specific contrast-enhanced computed tomography chest images were used to reconstruct the individual pulmonary arterial trees up to the seventh generation. Computational fluid dynamics analyses simulating blood flow at peak systole were conducted for each vascular model to calculate WSS distributions on the endothelial surface of the pulmonary arteries. WSS was found to be decreased proportionally with elevated PVR and reduced C. Spatially averaged WSS (SAWSS) was positively correlated with PVR (R (2) = 0.66), C (R (2) = 0.73), and Γ (R (2) = 0.5) and also showed promising preliminary correlations with RV geometric characteristics. Evaluating WSS at random cross sections in the proximal vasculature (main, right, and left pulmonary arteries), the type of data that can be acquired from phase-contrast magnetic resonance imaging, did not reveal the same correlations. In conclusion, we found that WSS has the potential to be a viable and clinically useful noninvasive metric of PH disease progression and RV health. Future work should be focused on evaluating whether SAWSS has prognostic value in the management of PH and whether it can be used as a rapid reactivity assessment tool, which would aid in selection of appropriate therapies.
Collapse
Affiliation(s)
- Vitaly Kheyfets
- Department of Biomedical Engineering, University of Texas, San Antonio, Texas, USA
| | | | - Lourdes Rios
- Department of Biological Sciences, University of Texas, San Antonio, Texas, USA
| | - Daniel Evans
- Department of Mechanical Engineering, University of Texas, San Antonio, Texas, USA
| | - Triston Smith
- Department of Cardiology, McGinnis Cardiovascular Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Theodore Schroeder
- Department of Radiology, McGinnis Cardiovascular Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Jeffrey Mueller
- Department of Radiology, McGinnis Cardiovascular Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Srinivas Murali
- Department of Cardiology, McGinnis Cardiovascular Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - David Lasorda
- Department of Cardiology, McGinnis Cardiovascular Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Jennifer Spotti
- Department of Cardiology, McGinnis Cardiovascular Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Ender Finol
- Department of Biomedical Engineering, University of Texas, San Antonio, Texas, USA
| |
Collapse
|
12
|
Tian L, Henningsen J, Salick MR, Crone WC, Gunderson M, Dailey SH, Chesler NC. Stretch calculated from grip distance accurately approximates mid-specimen stretch in large elastic arteries in uniaxial tensile tests. J Mech Behav Biomed Mater 2015; 47:107-113. [PMID: 25881308 DOI: 10.1016/j.jmbbm.2015.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/14/2015] [Accepted: 03/23/2015] [Indexed: 02/02/2023]
Abstract
The mechanical properties of vascular tissues affect hemodynamics and can alter disease progression. The uniaxial tensile test is a simple and effective method for determining the stress-strain relationship in arterial tissue ex vivo. To enable calculation of strain, stretch can be measured directly with image tracking of markers on the tissue or indirectly from the distance between the grips used to hold the specimen. While the imaging technique is generally considered more accurate, it also requires more analysis, and the grip distance method is more widely used. The purpose of this study is to compare the stretch of the testing specimen calculated from the grip distance method to that obtained from the imaging method for canine descending aortas and large proximal pulmonary arteries. Our results showed a significant difference in stretch between the two methods; however, this difference was consistently less than 2%. Therefore, the grip distance method is an accurate approximation of the stretch in large elastic arteries in the uniaxial tensile test.
Collapse
Affiliation(s)
- Lian Tian
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706-1609, USA
| | - Joseph Henningsen
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706-1609, USA
| | - Max R Salick
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI 53706-1609, USA
| | - Wendy C Crone
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI 53706-1609, USA
| | - McLean Gunderson
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison, Madison, WI 53792-3252, USA
| | - Seth H Dailey
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison, Madison, WI 53792-3252, USA
| | - Naomi C Chesler
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706-1609, USA.
| |
Collapse
|
13
|
Pulmonary artery relative area change is inversely related to ex vivo measured arterial elastic modulus in the canine model of acute pulmonary embolization. J Biomech 2014; 47:2904-10. [PMID: 25128393 DOI: 10.1016/j.jbiomech.2014.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 07/16/2014] [Accepted: 07/22/2014] [Indexed: 11/24/2022]
Abstract
A low relative area change (RAC) of the proximal pulmonary artery (PA) over the cardiac cycle is a good predictor of mortality from right ventricular failure in patients with pulmonary hypertension (PH). The relationship between RAC and local mechanical properties of arteries, which are known to stiffen in acute and chronic PH, is not clear, however. In this study, we estimated elastic moduli of three PAs (MPA, LPA and RPA: main, left and right PAs) at the physiological state using mechanical testing data and correlated these estimated elastic moduli to RAC measured in vivo with both phase-contrast magnetic resonance imaging (PC-MRI) and M-mode echocardiography (on RPA only). We did so using data from a canine model of acute PH due to embolization to assess the sensitivity of RAC to changes in elastic modulus in the absence of chronic PH-induced arterial remodeling. We found that elastic modulus increased with embolization-induced PH, presumably a consequence of increased collagen engagement, which corresponds well to decreased RAC. Furthermore, RAC was inversely related to elastic modulus. Finally, we found MRI and echocardiography yielded comparable estimates of RAC. We conclude that RAC of proximal PAs can be obtained from either MRI or echocardiography and a change in RAC indicates a change in elastic modulus of proximal PAs detectable even in the absence of chronic PH-induced arterial remodeling. The correlation between RAC and elastic modulus of proximal PAs may be useful for prognoses and to monitor the effects of therapeutic interventions in patients with PH.
Collapse
|
14
|
Prohl A, Ostermann C, Lohr M, Reinhold P. The bovine lung in biomedical research: visually guided bronchoscopy, intrabronchial inoculation and in vivo sampling techniques. J Vis Exp 2014. [PMID: 25046445 PMCID: PMC4211593 DOI: 10.3791/51557] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
There is an ongoing search for alternative animal models in research of respiratory medicine. Depending on the goal of the research, large animals as models of pulmonary disease often resemble the situation of the human lung much better than mice do. Working with large animals also offers the opportunity to sample the same animal repeatedly over a certain course of time, which allows long-term studies without sacrificing the animals. The aim was to establish in vivo sampling methods for the use in a bovine model of a respiratory Chlamydia psittaci infection. Sampling should be performed at various time points in each animal during the study, and the samples should be suitable to study the host response, as well as the pathogen under experimental conditions. Bronchoscopy is a valuable diagnostic tool in human and veterinary medicine. It is a safe and minimally invasive procedure. This article describes the intrabronchial inoculation of calves as well as sampling methods for the lower respiratory tract. Videoendoscopic, intrabronchial inoculation leads to very consistent clinical and pathological findings in all inoculated animals and is, therefore, well-suited for use in models of infectious lung disease. The sampling methods described are bronchoalveolar lavage, bronchial brushing and transbronchial lung biopsy. All of these are valuable diagnostic tools in human medicine and could be adapted for experimental purposes to calves aged 6-8 weeks. The samples obtained were suitable for both pathogen detection and characterization of the severity of lung inflammation in the host.
Collapse
Affiliation(s)
- Annette Prohl
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut
| | - Carola Ostermann
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut
| | - Markus Lohr
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut
| | - Petra Reinhold
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut;
| |
Collapse
|
15
|
Tian L, Wang Z, Lakes RS, Chesler NC. Comparison of approaches to quantify arterial damping capacity from pressurization tests on mouse conduit arteries. J Biomech Eng 2013; 135:54504. [PMID: 24231965 DOI: 10.1115/1.4024135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 04/04/2013] [Indexed: 11/08/2022]
Abstract
Large conduit arteries are not purely elastic, but viscoelastic, which affects not only the mechanical behavior but also the ventricular afterload. Different hysteresis loops such as pressure-diameter, pressure-luminal cross-sectional area (LCSA), and stress-strain have been used to estimate damping capacity, which is associated with the ratio of the dissipated energy to the stored energy. Typically, linearized methods are used to calculate the damping capacity of arteries despite the fact that arteries are nonlinearly viscoelastic. The differences in the calculated damping capacity between these hysteresis loops and the most common linear and correct nonlinear methods have not been fully examined. The purpose of this study was thus to examine these differences and to determine a preferred approach for arterial damping capacity estimation. Pressurization tests were performed on mouse extralobar pulmonary and carotid arteries in their physiological pressure ranges with pressure (P) and outer diameter (OD) measured. The P-inner diameter (ID), P-stretch, P-Almansi strain, P-Green strain, P-LCSA, and stress-strain loops (including the Cauchy and Piola-Kirchhoff stresses and Almansi and Green strains) were calculated using the P-OD data and arterial geometry. Then, the damping capacity was calculated from these loops with both linear and nonlinear methods. Our results demonstrate that the linear approach provides a reasonable approximation of damping capacity for all of the loops except the Cauchy stress-Almansi strain, for which the estimate of damping capacity was significantly smaller (22 ± 8% with the nonlinear method and 31 ± 10% with the linear method). Between healthy and diseased extralobar pulmonary arteries, both methods detected significant differences. However, the estimate of damping capacity provided by the linear method was significantly smaller (27 ± 11%) than that of the nonlinear method. We conclude that all loops except the Cauchy stress-Almansi strain loop can be used to estimate artery wall damping capacity in the physiological pressure range and the nonlinear method is recommended over the linear method.
Collapse
|
16
|
Wang Z, Lakes RS, Golob M, Eickhoff JC, Chesler NC. Changes in large pulmonary arterial viscoelasticity in chronic pulmonary hypertension. PLoS One 2013; 8:e78569. [PMID: 24223157 PMCID: PMC3819365 DOI: 10.1371/journal.pone.0078569] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 09/14/2013] [Indexed: 02/06/2023] Open
Abstract
Conduit pulmonary artery (PA) stiffening is characteristic of pulmonary arterial hypertension (PAH) and is an excellent predictor of mortality due to right ventricular (RV) overload. To better understand the impact of conduit PA stiffening on RV afterload, it is critical to examine the arterial viscoelastic properties, which require measurements of elasticity (energy storage behavior) and viscosity (energy dissipation behavior). Here we hypothesize that PAH leads to frequency-dependent changes in arterial stiffness (related to elasticity) and damping ratio (related to viscosity) in large PAs. To test our hypothesis, PAH was induced by the combination of chronic hypoxia and an antiangiogenic compound (SU5416) treatment in mice. Static and sinusoidal pressure-inflation tests were performed on isolated conduit PAs at various frequencies (0.01–20 Hz) to obtain the mechanical properties in the absence of smooth muscle contraction. Static mechanical tests showed significant stiffening of large PAs with PAH, as expected. In dynamic mechanical tests, structural stiffness (κ) increased and damping ratio (D) decreased at a physiologically relevant frequency (10 Hz) in hypertensive PAs. The dynamic elastic modulus (E), a material stiffness, did not increase significantly with PAH. All dynamic mechanical properties were strong functions of frequency. In particular, κ, E and D increased with increasing frequency in control PAs. While this behavior remained for D in hypertensive PAs, it reversed for κ and E. Since these novel dynamic mechanical property changes were found in the absence of changes in smooth muscle cell content or contraction, changes in collagen and proteoglycans and their interactions are likely critical to arterial viscoelasticity in a way that has not been previously described. The impact of these changes in PA viscoelasticity on RV afterload in PAH awaits further investigation.
Collapse
MESH Headings
- Angiogenesis Inhibitors/adverse effects
- Animals
- Blood Pressure
- Chronic Disease
- Collagen/chemistry
- Elastic Modulus
- Familial Primary Pulmonary Hypertension
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/complications
- Hypertension, Pulmonary/pathology
- Hypoxia/complications
- Hypoxia/pathology
- Indoles/adverse effects
- Male
- Mice
- Mice, Inbred C57BL
- Myocytes, Smooth Muscle/chemistry
- Myocytes, Smooth Muscle/pathology
- Proteoglycans/chemistry
- Pyrroles/adverse effects
- Stress, Mechanical
- Vascular Stiffness
- Ventricular Dysfunction, Right/chemically induced
- Ventricular Dysfunction, Right/complications
- Ventricular Dysfunction, Right/pathology
- Viscosity
Collapse
Affiliation(s)
- Zhijie Wang
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Roderic S. Lakes
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- Department of Engineering Physics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- Department of Material Science, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Mark Golob
- Department of Material Science, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Jens C. Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Naomi C. Chesler
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
17
|
Kheyfets VO, O'Dell W, Smith T, Reilly JJ, Finol EA. Considerations for numerical modeling of the pulmonary circulation--a review with a focus on pulmonary hypertension. J Biomech Eng 2013; 135:61011-15. [PMID: 23699723 PMCID: PMC3705788 DOI: 10.1115/1.4024141] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/25/2013] [Accepted: 04/04/2013] [Indexed: 12/12/2022]
Abstract
Both in academic research and in clinical settings, virtual simulation of the cardiovascular system can be used to rapidly assess complex multivariable interactions between blood vessels, blood flow, and the heart. Moreover, metrics that can only be predicted with computational simulations (e.g., mechanical wall stress, oscillatory shear index, etc.) can be used to assess disease progression, for presurgical planning, and for interventional outcomes. Because the pulmonary vasculature is susceptible to a wide range of pathologies that directly impact and are affected by the hemodynamics (e.g., pulmonary hypertension), the ability to develop numerical models of pulmonary blood flow can be invaluable to the clinical scientist. Pulmonary hypertension is a devastating disease that can directly benefit from computational hemodynamics when used for diagnosis and basic research. In the present work, we provide a clinical overview of pulmonary hypertension with a focus on the hemodynamics, current treatments, and their limitations. Even with a rich history in computational modeling of the human circulation, hemodynamics in the pulmonary vasculature remains largely unexplored. Thus, we review the tasks involved in developing a computational model of pulmonary blood flow, namely vasculature reconstruction, meshing, and boundary conditions. We also address how inconsistencies between models can result in drastically different flow solutions and suggest avenues for future research opportunities. In its current state, the interpretation of this modeling technology can be subjective in a research environment and impractical for clinical practice. Therefore, considerations must be taken into account to make modeling reliable and reproducible in a laboratory setting and amenable to the vascular clinic. Finally, we discuss relevant existing models and how they have been used to gain insight into cardiopulmonary physiology and pathology.
Collapse
Affiliation(s)
- V. O. Kheyfets
- Department of Biomedical Engineering,The University of Texas at San Antonio,AET 1.360, One UTSA Circle,San Antonio, TX 78249
| | - W. O'Dell
- Department of Radiation Oncology,University of Florida,Shands Cancer Center,P.O. Box 100385,2033 Mowry Road,Gainesville, FL 32610
| | - T. Smith
- Western Allegheny Health System,Allegheny General Hospital,Gerald McGinnis Cardiovascular Institute,320 East North Avenue,Pittsburgh, PA 15212
| | - J. J. Reilly
- Department of Medicine,The University of Pittsburgh,1218 Scaife Hall,3550 Terrace Street,Pittsburgh, PA 15261
| | - E. A. Finol
- Department of Biomedical Engineering,The University of Texas at San Antonio,AET 1.360, One UTSA Circle,San Antonio, TX 78249e-mail:
| |
Collapse
|
18
|
Wang Z, Lakes RS, Eickhoff JC, Chesler NC. Effects of collagen deposition on passive and active mechanical properties of large pulmonary arteries in hypoxic pulmonary hypertension. Biomech Model Mechanobiol 2013; 12:1115-25. [PMID: 23377784 DOI: 10.1007/s10237-012-0467-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/20/2012] [Indexed: 02/03/2023]
Abstract
Proximal pulmonary artery (PA) stiffening is a strong predictor of mortality in pulmonary hypertension. Collagen accumulation is mainly responsible for PA stiffening in hypoxia-induced pulmonary hypertension (HPH) in mouse models. We hypothesized that collagen cross-linking and the type I isoform are the main determinants of large PA mechanical changes during HPH, which we tested by exposing mice that resist type I collagen degradation (Col1a1[Formula: see text] and littermate controls (Col1a1[Formula: see text] to hypoxia for 10 days with or without [Formula: see text]-aminopropionitrile (BAPN) treatment to prevent cross-link formation. Static and dynamic mechanical tests were performed on isolated PAs with smooth muscle cells (SMC) in passive and active states. Percentages of type I and III collagen were quantified by histology; total collagen content and cross-linking were measured biochemically. In the SMC passive state, for both genotypes, hypoxia tended to increase PA stiffness and damping capacity, and BAPN treatment limited these increases. These changes were correlated with collagen cross-linking ([Formula: see text]). In the SMC active state, hypoxia increased PA dynamic stiffness and BAPN had no effect in Col1a1[Formula: see text] mice ([Formula: see text]). PA stiffness did not change in Col1a1[Formula: see text] mice. Similarly, damping capacity did not change for either genotype. Type I collagen accumulated more in Col1a1[Formula: see text] mice, whereas type III collagen increased more in Col1a1[Formula: see text] mice during HPH. In summary, PA passive mechanical properties (both static and dynamic) are related to collagen cross-linking. Type I collagen turnover is critical to large PA remodeling during HPH when collagen metabolism is not mutated and type III collagen may serve as a reserve.
Collapse
Affiliation(s)
- Zhijie Wang
- Department of Biomedical Engineering, University of Wisconsin at Madison, 2145 ECB; 1550 Engineering Drive, Madison, WI, 53706-1609, USA
| | | | | | | |
Collapse
|
19
|
Tao M, Mauro CR, Yu P, Favreau JT, Nguyen B, Gaudette GR, Ozaki CK. A simplified murine intimal hyperplasia model founded on a focal carotid stenosis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 182:277-87. [PMID: 23159527 DOI: 10.1016/j.ajpath.2012.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/28/2012] [Accepted: 10/02/2012] [Indexed: 10/27/2022]
Abstract
Murine models offer a powerful tool for unraveling the mechanisms of intimal hyperplasia and vascular remodeling, although their technical complexity increases experimental variability and limits widespread application. We describe a simple and clinically relevant mouse model of arterial intimal hyperplasia and remodeling. Focal left carotid artery (LCA) stenosis was created by placing 9-0 nylon suture around the artery using an external 35-gauge mandrel needle (middle or distal location), which was then removed. The effect of adjunctive diet-induced obesity was defined. Flowmetry, wall strain analyses, biomicroscopy, and histology were completed. LCA blood flow sharply decreased by ∼85%, followed by a responsive right carotid artery increase of ∼71%. Circumferential strain decreased by ∼2.1% proximal to the stenosis in both dietary groups. At 28 days, morphologic adaptations included proximal LCA intimal hyperplasia, which was exacerbated by diet-induced obesity. The proximal and distal LCA underwent outward and negative inward remodeling, respectively, in the mid-focal stenosis (remodeling indexes, 1.10 and 0.53). A simple, defined common carotid focal stenosis yields reproducible murine intimal hyperplasia and substantial differentials in arterial wall adaptations. This model offers a tool for investigating mechanisms of hemodynamically driven intimal hyperplasia and arterial wall remodeling.
Collapse
Affiliation(s)
- Ming Tao
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
During the progression of pulmonary hypertension (PH), proximal pulmonary arteries (PAs) undergo remodeling such that they become thicker and the elastic modulus increases. Both of these changes increase the vascular stiffness. The increase in pulmonary vascular stiffness contributes to increased right ventricular (RV) afterload, which causes RV hypertrophy and eventually failure. Studies have found that proximal PA stiffness or its inverse, compliance, is strongly related to morbidity and mortality in patients with PH. Therefore, accurate in vivo measurement of PA stiffness is useful for prognoses in patients with PH. It is also important to understand the structural changes in PAs that occur with PH that are responsible for stiffening. Here, we briefly review the most common parameters used to quantify stiffness and in vivo and in vitro methods for measuring PA stiffness in human and animal models. For in vivo approaches, we review invasive and noninvasive approaches that are based on measurements of pressure and inner or outer diameter or cross-sectional area. For in vitro techniques, we review several different testing methods that mimic one, two or several aspects of physiological loading (e.g., uniaxial and biaxial testing, dynamic inflation-force testing). Many in vivo and in vitro measurement methods exist in the literature, and it is important to carefully choose an appropriate method to measure PA stiffness accurately. Therefore, advantages and disadvantages of each approach are discussed.
Collapse
Affiliation(s)
- Lian Tian
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Naomi C. Chesler
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|