1
|
Wang S, Yang J, Zhen C, Wang H, Shang P. Electromagnetic fields regulate iron metabolism: From mechanisms to applications. J Adv Res 2025:S2090-1232(25)00288-7. [PMID: 40311754 DOI: 10.1016/j.jare.2025.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 04/06/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Electromagnetic fields (EMFs), as a form of physical therapy, have been widely applied in biomedicine. Iron, the most abundant trace metal in living organisms, plays a critical role in various physiological processes, and imbalances in its metabolism are closely associated with the development and progression of numerous diseases. Numerous studies have demonstrated that EMF exposureinduces significant changes in both systemic and cellular iron metabolism. AIM OF REVIEW This review aims to summarize the evidence and potential biophysical mechanisms underlying the role of EMFs in regulating iron metabolism, thereby enhancing the understanding of their biological mechanisms and expanding their potential applications in biomedical fields. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we have synthesized research findings and proposed the hypothesis that the biophysical mechanisms of EMFs regulate iron metabolism involve the special electromagnetic properties of iron-containing proteins and iron-enriched tissues, as well as the modulation of membrane structure and function, ion channels, and the generation and activity of Reactive Oxygen Species (ROS). Then, the review summarizes the latest advances in the effects of EMFs on iron metabolism and their safety, as well as their impact on immunoregulation, cardiovascular diseases, neurological diseases, orthopedic diseases, diabetes, liver injury, and cancer.
Collapse
Affiliation(s)
- Shenghang Wang
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| | - Jiancheng Yang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Chenxiao Zhen
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Huiru Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China.
| |
Collapse
|
2
|
Xie W, Song C, Guo R, Zhang X. Static magnetic fields in regenerative medicine. APL Bioeng 2024; 8:011503. [PMID: 38486824 PMCID: PMC10939708 DOI: 10.1063/5.0191803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
All organisms on Earth live in the weak but ubiquitous geomagnetic field. Human beings are also exposed to magnetic fields generated by multiple sources, ranging from permanent magnets to magnetic resonance imaging (MRI) in hospitals. It has been shown that different magnetic fields can generate various effects on different tissues and cells. Among them, stem cells appear to be one of the most sensitive cell types to magnetic fields, which are the fundamental units of regenerative therapies. In this review, we focus on the bioeffects of static magnetic fields (SMFs), which are related to regenerative medicine. Most reports in the literature focus on the influence of SMF on bone regeneration, wound healing, and stem cell production. Multiple aspects of the cellular events, including gene expression, cell signaling pathways, reactive oxygen species, inflammation, and cytoskeleton, have been shown to be affected by SMFs. Although no consensus yet, current evidence indicates that moderate and high SMFs could serve as a promising physical tool to promote bone regeneration, wound healing, neural differentiation, and dental regeneration. All in vivo studies of SMFs on bone regeneration and wound healing have shown beneficial effects, which unravel the great potential of SMFs in these aspects. More mechanistic studies, magnetic field parameter optimization, and clinical investigations on human bodies will be imperative for the successful clinical applications of SMFs in regenerative medicine.
Collapse
Affiliation(s)
| | - Chao Song
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Ruowen Guo
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Xin Zhang
- Author to whom correspondence should be addressed:. Tel.: 86–551-65593356
| |
Collapse
|
3
|
Ghosh A, Orasugh JT, Ray SS, Chattopadhyay D. Prospects of 2D graphdiynes and their applications in desalination and wastewater remediation. RSC Adv 2023; 13:18568-18604. [PMID: 37346946 PMCID: PMC10281012 DOI: 10.1039/d3ra01370g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
Water is an indispensable part of human life that affects health and food intake. Water pollution caused by rapid industrialization, agriculture, and other human activities affects humanity. Therefore, researchers are prudent and cautious regarding the use of novel materials and technologies for wastewater remediation. Graphdiyne (GDY), an emerging 2D nanomaterial, shows promise in this direction. Graphdiyne has a highly symmetrical π-conjugated structure consisting of uniformly distributed pores; hence, it is favorable for applications such as oil-water separation and organic-pollutant removal. The acetylenic linkage in GDY can strongly interact with metal ions, rendering GDY applicable to heavy-metal adsorption. In addition, GDY membranes that exhibit 100% salt rejection at certain pressures are potential candidates for wastewater treatment and water reuse via desalination. This review provides deep insights into the structure, properties, and synthesis methods of GDY, owing to which it is a unique, promising material. In the latter half of the article, various applications of GDY in desalination and wastewater treatment have been detailed. Finally, the prospects of these materials have been discussed succinctly.
Collapse
Affiliation(s)
- Adrija Ghosh
- Department of Polymer Science and Technology, University of Calcutta Kolkata-700009 India
| | - Jonathan Tersur Orasugh
- Department of Chemical Sciences, University of Johannesburg Doorfontein Johannesburg 2028 South Africa
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research Pretoria 0001 South Africa
| | - Suprakas Sinha Ray
- Department of Chemical Sciences, University of Johannesburg Doorfontein Johannesburg 2028 South Africa
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research Pretoria 0001 South Africa
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University of Calcutta Kolkata-700009 India
- Center for Research in Nanoscience and Nanotechnology, Acharya Prafulla Chandra Roy Sikhsha Prangan, University of Calcutta JD-2, Sector-III, Saltlake City Kolkata-700098 WB India
| |
Collapse
|
4
|
Wang J, Shang P. Static magnetic field: A potential tool of controlling stem cells fates for stem cell therapy in osteoporosis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:91-102. [PMID: 36596343 DOI: 10.1016/j.pbiomolbio.2022.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/10/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Osteoporosis is a kind of bone diseases characterized by dynamic imbalance of bone formation and bone absorption, which is prone to fracture, and seriously endangers human health. At present, there is a lack of highly effective drugs for it, and the existing measures all have some side effects. In recent years, mesenchymal stem cell therapy has brought a certain hope for osteoporosis, while shortcomings such as homing difficulty and unstable therapeutic effects limit its application widely. Therefore, it is extremely urgent to find effective and reliable means/drugs for adjuvant stem cell therapy or develop new research techniques. It has been reported that static magnetic fields(SMFs) has a certain alleviating and therapeutic effect on varieties of bone diseases, also promotes the proliferation and osteogenic differentiation of mesenchymal stem cells derived from different tissues to a certain extent. Basing on the above background, this article focuses on the key words "static/constant magnetic field, mesenchymal stem cell, osteoporosis", combined literature and relevant contents were studied to look forward that SMFs has unique advantages in the treatment of osteoporosis with mesenchymal stem cells, which can be used as an application tool to promote the progress of stem cell therapy in clinical application.
Collapse
Affiliation(s)
- Jianping Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
5
|
Wu H, Li C, Masood M, Zhang Z, González-Almela E, Castells-Garcia A, Zou G, Xu X, Wang L, Zhao G, Yu S, Zhu P, Wang B, Qin D, Liu J. Static Magnetic Fields Regulate T-Type Calcium Ion Channels and Mediate Mesenchymal Stem Cells Proliferation. Cells 2022; 11:cells11152460. [PMID: 35954307 PMCID: PMC9368660 DOI: 10.3390/cells11152460] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
The static magnetic fields (SMFs) impact on biological systems, induce a variety of biological responses, and have been applied to the clinical treatment of diseases. However, the underlying mechanisms remain largely unclear. In this report, by using human mesenchymal stem cells (MSCs) as a model, we investigated the biological effect of SMFs at a molecular and cellular level. We showed that SMF exposure promotes MSC proliferation and activates the expression of transcriptional factors such as FOS (Fos Proto-Oncogene, AP-1 Transcription Factor Subunit) and EGR1 (Early Growth Response 1). In addition, the expression of signal-transduction proteins p-ERK1/2 and p-JNK oscillate periodically with SMF exposure time. Furthermore, we found that the inhibition of the T-type calcium ion channels negates the biological effects of SMFs on MSCs. Together, we revealed that the SMFs regulate T-type calcium ion channels and mediate MSC proliferation via the MAPK signaling pathways.
Collapse
Affiliation(s)
- Haokaifeng Wu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Chuang Li
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Muqaddas Masood
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China
| | - Zhen Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | | | | | | | - Xiaoduo Xu
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Luqin Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | | | - Shengyong Yu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China
| | - Bo Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
- Correspondence: (D.Q.); (J.L.)
| | - Jing Liu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Bioland Laboratory, Guangzhou 510005, China
- Correspondence: (D.Q.); (J.L.)
| |
Collapse
|
6
|
Mayrovitz HN, Astudillo A, Shams E. Finger skin blood perfusion during exposure of ulnar and median nerves to the static magnetic field of a rare-earth magnet: A randomized pilot study. Electromagn Biol Med 2021; 40:1-10. [PMID: 33283550 DOI: 10.1080/15368378.2020.1856682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
This pilot study's goal was to investigate the impacts of static magnetic fields (SMF) on finger skin blood perfusion (SBP) when exposing the ulnar artery and ulnar and medial nerves to a rare earth concentric magnet for 30 minutes. Control SBP was measured in 4th fingers of adults (n = 12, age 26.0 ± 1.4 years) for 15 minutes using laser-Doppler. Then, active-magnets were placed over one arm's ulnar and median nerves at the wrist and sham-magnets placed at corresponding sites on the other arm. Devices were randomly assigned and placed by an investigator "blinded" to device type. The maximum SMF perpendicular to skin was 0.28 T measured 2 mm from magnet surface. The tangential field at this distance was 0.20 T. SBP was analyzed and tested for differential effects attributable to magnets compared to shams in each of the 5-minute intervals over the full 45-minute experiment. Results showed no statistically significant difference between SBP measured on the magnet-treated side compared to the sham side. Magnet and sham side SBP values (mean ± SEM, arbitrary units) prior to device placement were 0.568 ± 0.128 vs. 0.644 ± 0.115, p = .859 and during device placement were 0.627 ± 0.135 vs. 0.645 ± 0.117, p = .857. In conclusion, these findings have failed to uncover any significant effects of the static magnetic field on skin blood perfusion in the young healthy adult population evaluated. Its potential for altering SBP in more mature persons or those with underlying conditions affecting blood flow has not been evaluated but represents the next target of research inquiry. ClinicalTrials.gov registration number is NCT04539704.
Collapse
Affiliation(s)
- Harvey N Mayrovitz
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University , Ft. Lauderdale, FL, USA
| | - Andrea Astudillo
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University , Ft. Lauderdale, FL, USA
| | - Elham Shams
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University , Ft. Lauderdale, FL, USA
| |
Collapse
|
7
|
A Static Magnetic Field Inhibits the Migration and Telomerase Function of Mouse Breast Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7472618. [PMID: 32462015 PMCID: PMC7240788 DOI: 10.1155/2020/7472618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/27/2020] [Accepted: 03/14/2020] [Indexed: 12/16/2022]
Abstract
Static magnetic field (SMF) has a potential as a cancer therapeutic modality due to its specific inhibitory effects on the proliferation of multiple cancer cells. However, the underlying mechanism remains unclear, and just a few studies have examined the effects of SMF on metastasis, an important concern in cancer treatment. In this study, we evaluated the effects of moderate SMF (~150 mT) on the proliferation and migration of 4T1 breast cancer cells. Our results showed that SMF treatment accelerated cell proliferation but inhibited cell migration. Further, SMF treatment shortened the telomere length, decreased telomerase activity, and inhibited the expression of the cancer-specific marker telomerase reverse transcriptase (TERT), which may be related to expression upregulation of e2f1, a transcription repressor of TERT and positive regulator of the mitotic cell cycle. Our results revealed that SMF repressed both, cell migration and telomerase function. The telomerase network is responsive to SMF and may be involved in SMF-mediated cancer-specific effects; moreover, it may function as a therapeutic target in magnetic therapy of cancers.
Collapse
|
8
|
Amiri M, Salavati-Niasari M, Akbari A. Magnetic nanocarriers: Evolution of spinel ferrites for medical applications. Adv Colloid Interface Sci 2019; 265:29-44. [PMID: 30711796 DOI: 10.1016/j.cis.2019.01.003] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 01/30/2023]
Abstract
A valuable site-directed application in the field of nanomedicine is targeted drug delivery using magnetic metal oxide nanoparticles by applying an external magnetic field at the target tissue. The magnetic property of these structures allows controlling the orientation and location of particles by changing the direction of the applied external magnetic field. Pharmaceutical design and research in the field of nanotechnology offer novel solutions for diagnosis and therapies. This review summarizes magnetic nanoparticles and magnetic spinel ferrit's properties, remarkable approaches in magnetic liposomes, magnetic polymeric nanoparticles, MRI, hyperthermia and especially magnetic drug delivery systems, which have recently developed in the field of magnetic nanoparticles and their medicinal applications. Here, we discuss spinel ferrite (SF) as magnetic materials that are a significant class of composite metal oxides. They contain ferric ions and have the general structural formula M2+Fe23+O4 (where M = Co,Ni,Zn,etc.). This structure indicates unique multifunctional properties, such as excellent magnetic characteristics, high specific surface area, surface active sites, high chemical stability, tuneable shape and size, and options for functionalization. The review assesses the current efforts on synthesis, properties and medical application of magnetic spinel ferrites nanoparticles based on cobalt, nickel and zinc. Based on this review, it can be concluded that MNPs and SFNPs have unlimited ability in biomedical applications. However, the practical application of SFNPs on a huge scale still needs to be considered and evaluated.
Collapse
|
9
|
He Y, Yu L, Liu J, Li Y, Wu Y, Huang Z, Wu D, Wang H, Wu Z, Qiu G. Enhanced osteogenic differentiation of human bone–derived mesenchymal stem cells in 3‐dimensional printed porous titanium scaffolds by static magnetic field through up‐regulating Smad4. FASEB J 2019; 33:6069-6081. [DOI: 10.1096/fj.201802195r] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yu He
- Department of Orthopaedic SurgeryPeking Union Medical College and Chinese Academy of Medical Sciences Beijing China
| | - Lingjia Yu
- Department of Orthopaedic SurgeryPeking Union Medical College and Chinese Academy of Medical Sciences Beijing China
| | - Jieying Liu
- Central LaboratoryPeking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing China
| | - Yaqian Li
- Central LaboratoryPeking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing China
| | - Yuanhao Wu
- Central LaboratoryPeking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing China
| | - Zhenfei Huang
- Department of Orthopaedic SurgeryPeking Union Medical College and Chinese Academy of Medical Sciences Beijing China
| | - Di Wu
- Department of Orthopaedic SurgeryPeking Union Medical College and Chinese Academy of Medical Sciences Beijing China
| | - Hai Wang
- Department of Orthopaedic SurgeryPeking Union Medical College and Chinese Academy of Medical Sciences Beijing China
| | - Zhihong Wu
- Central LaboratoryPeking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing China
- Beijing Key Laboratory for Genetic Research of Bone and Joint Disease Beijing China
| | - Guixing Qiu
- Department of Orthopaedic SurgeryPeking Union Medical College and Chinese Academy of Medical Sciences Beijing China
| |
Collapse
|
10
|
Marycz K, Kornicka K, Röcken M. Static Magnetic Field (SMF) as a Regulator of Stem Cell Fate - New Perspectives in Regenerative Medicine Arising from an Underestimated Tool. Stem Cell Rev Rep 2019; 14:785-792. [PMID: 30225821 PMCID: PMC6223715 DOI: 10.1007/s12015-018-9847-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissue engineering and stem cell-based therapies are one of the most rapidly developing fields in medical sciences. Therefore, much attention has been paid to the development of new drug-delivery systems characterized by low cytotoxicity, high efficiency and controlled release. One of the possible strategies to achieve these goals is the application of magnetic field and/or magnetic nanoparticles, which have been shown to exert a wide range of effects on cellular metabolism. Static magnetic field (SMF) has been commonly used in medicine as a tool to increase wound healing, bone regeneration and as a component of magnetic resonance technique. However, recent data shed light on deeper mechanism of SMF action on physiological properties of different cell populations, including stem cells. In the present review, we focused on SMF effects on stem cell biology and its possible application as a tool for controlled drug delivery. We also highlighted the perspectives, in which SMF can be used in future therapies in tissue engineering due to its easy application and a wide range of possible effects on cells and organisms.
Collapse
Affiliation(s)
- Krzysztof Marycz
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, Wrocław, Poland. .,Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany.
| | - K Kornicka
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, Wrocław, Poland
| | - M Röcken
- Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany
| |
Collapse
|
11
|
Mo WC, Zhang ZJ, Wang DL, Liu Y, Bartlett PF, He RQ. Shielding of the Geomagnetic Field Alters Actin Assembly and Inhibits Cell Motility in Human Neuroblastoma Cells. Sci Rep 2016; 6:22624. [PMID: 27029216 PMCID: PMC4814845 DOI: 10.1038/srep22624] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 02/17/2016] [Indexed: 12/28/2022] Open
Abstract
Accumulating evidence has shown that absence of the geomagnetic field (GMF), the so-called hypomagnetic field (HMF) environment, alters the biological functions in seemingly non-magnetosensitive cells and organisms, which indicates that the GMF could be sensed by non-iron-rich and non-photo-sensing cells. The underlying mechanisms of the HMF effects on those cells are closely related to their GMF sensation but remain poorly understood so far. Previously, we found that the HMF represses expressions of genes associated with cell migration and cytoskeleton assembly in human neuroblastoma cells (SH-SY5Y cell line). Here, we measured the HMF-induced changes on cell morphology, adhesion, motility and actin cytoskeleton in SH-SY5Y cells. The HMF inhibited cell adhesion and migration accompanied with a reduction in cellular F-actin amount. Moreover, following exposure to the HMF, the number of cell processes was reduced and cells were smaller in size and more round in shape. Furthermore, disordered kinetics of actin assembly in vitro were observed during exposure to the HMF, as evidenced by the presence of granule and meshed products. These results indicate that elimination of the GMF affects assembly of the motility-related actin cytoskeleton, and suggest that F-actin is a target of HMF exposure and probably a mediator of GMF sensation.
Collapse
Affiliation(s)
- Wei-Chuan Mo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zi-Jian Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dong-Liang Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Perry F Bartlett
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rong-Qiao He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.,Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 10069, China
| |
Collapse
|