1
|
Salniccia F, de Vidania S, Martinez-Caro L. Peripheral and central changes induced by neural mobilization in animal models of neuropathic pain: a systematic review. Front Neurol 2024; 14:1289361. [PMID: 38249743 PMCID: PMC10797109 DOI: 10.3389/fneur.2023.1289361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Neural mobilization (NM) is a physiotherapy technique involving the passive mobilization of limb nerve structures with the aim to attempt to restore normal movement and structural properties. In recent years, human studies have shown pain relief in various neuropathic diseases and other pathologies as a result of this technique. Improvement in the range of motion (ROM), muscle strength and endurance, limb function, and postural control were considered beneficial effects of NM. To determine which systems generate these effects, it is necessary to conduct studies using animal models. The objective of this study was to gather information on the physiological effects of NM on the peripheral and central nervous systems (PNS and CNS) in animal models. Methods The search was performed in Medline, Pubmed and Web of Science and included 8 studies according to the inclusion criteria. Results The physiological effects found in the nervous system included the analgesic, particularly the endogenous opioid pathway, the inflammatory, by modulation of cytokines, and the immune system. Conclusion On the basis of these results, we can conclude that NM physiologically modifies the peripheral and central nervous systems in animal models.
Collapse
Affiliation(s)
- Federico Salniccia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Spain
| | - Silvia de Vidania
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Spain
| | - Leticia Martinez-Caro
- Facultad de Ciencias de la Salud, Universidad Internacional de La Rioja, Logroño, Spain
- Facultad de Ciencias Sociales Aplicadas y de la Comunicación, UNIE Universidad y Empresa, Madrid, Spain
| |
Collapse
|
2
|
Continuous Passive Motion Promotes and Maintains Chondrogenesis in Autologous Endothelial Progenitor Cell-Loaded Porous PLGA Scaffolds during Osteochondral Defect Repair in a Rabbit Model. Int J Mol Sci 2019; 20:ijms20020259. [PMID: 30634691 PMCID: PMC6358980 DOI: 10.3390/ijms20020259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/27/2018] [Accepted: 01/02/2019] [Indexed: 11/19/2022] Open
Abstract
Continuous passive motion (CPM) is widely used after total knee replacement. In this study, we investigated the effect of CPM combined with cell-based construct-transplantation in osteochondral tissue engineering. We created osteochondral defects (3 mm in diameter and 3 mm in depth) in the medial femoral condyle of 36 knees and randomized them into three groups: ED (empty defect), EPC/PLGA (endothelial progenitor cells (EPCs) seeded in the poly lactic-co-glycolic acid (PLGA) scaffold), or EPC/PLGA/CPM (EPC/PLGA scaffold complemented with CPM starting one day after transplantation). We investigated the effects of CPM and the EPC/PLGA constructs on tissue restoration in weight-bearing sites by histological observation and micro-computed tomography (micro-CT) evaluation 4 and 12 weeks after implantation. After CPM, the EPC/PLGA construct exhibited early osteochondral regeneration and prevention of subchondral bone overgrowth and cartilage degeneration. CPM did not alter the microenvironment created by the construct; it up-regulated the expression of the extracellular matrix components (glycosaminoglycan and collagen), down-regulated bone formation, and induced the biosynthesis of lubricin, which appeared in the EPC/PLGA/CPM group after 12 weeks. CPM can provide promoting signals during osteochondral tissue engineering and achieve a synergistic effect when combined with EPC/PLGA transplantation, so it should be considered a non-invasive treatment to be adopted in clinical practices.
Collapse
|
3
|
Wang HC, Lin YT, Lin TH, Chang NJ, Lin CC, Hsu HC, Yeh ML. Intra-articular injection of N-acetylglucosamine and hyaluronic acid combined with PLGA scaffolds for osteochondral repair in rabbits. PLoS One 2018; 13:e0209747. [PMID: 30596714 PMCID: PMC6312252 DOI: 10.1371/journal.pone.0209747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/11/2018] [Indexed: 01/08/2023] Open
Abstract
Repairing damaged articular cartilage is particularly challenging because of the limited ability of cartilage to perform self-repair. Intra-articular injections of N-acetylglucosamine (GlcNAc) comprise a method of repairing full-thickness articular cartilage defects in the rabbit knee joint model. To date, the effects of administration of GlcNAc and hyaluronic acid (HA) have been investigated only in the context of osteoarthritis treatment. Therefore, we evaluated the therapeutic effects of using cell-free porous poly lactic-co-glycolic acid (PLGA) graft implants and intra-articular injections of GlcNAc or HA in a rabbit model of osteochondral regeneration to investigate whether they have the potential for inducing osteochondral regeneration when used alone or simultaneously. Twenty-four rabbits were randomized into one of four groups: the scaffold-only group (PLGA), the scaffold with intra-articular injections of GlcNAc (PLGA+G) group, twice per week for four weeks; the scaffold with intra-articular injections of HA group (PLGA+HA) group, once per week for three weeks; and the scaffold with intra-articular injections of GlcNAc and HA (PLGA+G+HA) group, once per week for three weeks. Knees were evaluated at 4 and 12 weeks after surgery. At the end of testing, only the PLGA+G+HA group exhibited significant bone reconstruction, chondrocyte clustering, and good interactions with adjacent surfaces at 4 weeks. Additionally, the PLGA+G+HA group demonstrated essentially original hyaline cartilage structures that appeared to have sound chondrocyte orientation, considerable glycosaminoglycan levels, and reconstruction of the bone structure at 12 weeks. Moreover, the PLGA+G+HA group showed organized osteochondral integration and significantly higher bone volume per tissue volume and trabecular thickness. However, there were no significant differences between the PLGA+G and PLGA+HA groups except for gap formation on subchondral bone in the PLGA+G group. This study demonstrated that PLGA implantation combined with intra-articular injections of GlcNAc and HA allowed for cartilage and bone regeneration and significantly promoted osteochondral regeneration in rabbits without supplementation of exogenous growth factors. And the combination of this two supplements with PLGA scaffold could also prolong injection interval and better performance than either of them alone for the reconstruction of osteochondral tissue in the knee joints of rabbits.
Collapse
Affiliation(s)
- Hsueh-Chun Wang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ting Lin
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Hsiang Lin
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Nai-Jen Chang
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Chan Lin
- Laboratory Animal Center, Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Horng-Chaung Hsu
- Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Long Yeh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
4
|
Galeano-Garces C, Camilleri ET, Riester SM, Dudakovic A, Larson DR, Qu W, Smith J, Dietz AB, Im HJ, Krych AJ, Larson AN, Karperien M, van Wijnen AJ. Molecular Validation of Chondrogenic Differentiation and Hypoxia Responsiveness of Platelet-Lysate Expanded Adipose Tissue-Derived Human Mesenchymal Stromal Cells. Cartilage 2017; 8:283-299. [PMID: 28618870 PMCID: PMC5625857 DOI: 10.1177/1947603516659344] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To determine the optimal environmental conditions for chondrogenic differentiation of human adipose tissue-derived mesenchymal stromal/stem cells (AMSCs). In this investigation we specifically investigate the role of oxygen tension and 3-dimensional (3D) culture systems. DESIGN Both AMSCs and primary human chondrocytes were cultured for 21 days in chondrogenic media under normoxic (21% oxygen) or hypoxic (2% oxygen) conditions using 2 distinct 3D culture methods (high-density pellets and poly-ε-caprolactone [PCL] scaffolds). Histologic analysis of chondro-pellets and the expression of chondrocyte-related genes as measured by reverse transcriptase quantitative polymerase chain reaction were used to evaluate the efficiency of differentiation. RESULTS AMSCs are capable of expressing established cartilage markers including COL2A1, ACAN, and DCN when grown in chondrogenic differentiation media as determined by gene expression and histologic analysis of cartilage markers. Expression of several cartilage-related genes was enhanced by low oxygen tension, including ACAN and HAPLN1. The pellet culture environment also promoted the expression of hypoxia-inducible cartilage markers compared with cells grown on 3D scaffolds. CONCLUSIONS Cell type-specific effects of low oxygen and 3D environments indicate that mesenchymal cell fate and differentiation potential is remarkably sensitive to oxygen. Genetic programming of AMSCs to a chondrocytic phenotype is effective under hypoxic conditions as evidenced by increased expression of cartilage-related biomarkers and biosynthesis of a glycosaminoglycan-positive matrix. Lower local oxygen levels within cartilage pellets may be a significant driver of chondrogenic differentiation.
Collapse
Affiliation(s)
- Catalina Galeano-Garces
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA,Department of Developmental Bioengineering, University of Twente, Enschede, Netherlands
| | | | - Scott M. Riester
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Dirk R. Larson
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Wenchun Qu
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Jay Smith
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Allan B. Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Aaron J. Krych
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - A. Noelle Larson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Marcel Karperien
- Department of Developmental Bioengineering, University of Twente, Enschede, Netherlands
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA,Andre J. van Wijnen, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
5
|
Chang NJ, Lin CC, Shie MY, Yeh ML, Li CF, Liang PI, Lee KW, Shen PH, Chu CJ. Positive effects of cell-free porous PLGA implants and early loading exercise on hyaline cartilage regeneration in rabbits. Acta Biomater 2015; 28:128-137. [PMID: 26407650 DOI: 10.1016/j.actbio.2015.09.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 11/24/2022]
Abstract
UNLABELLED The regeneration of hyaline cartilage remains clinically challenging. Here, we evaluated the therapeutic effects of using cell-free porous poly(lactic-co-glycolic acid) (PLGA) graft implants (PGIs) along with early loading exercise to repair a full-thickness osteochondral defect. Rabbits were randomly allocated to a treadmill exercise (TRE) group or a sedentary (SED) group and were prepared as either a PGI model or an empty defect (ED) model. TRE was performed as a short-term loading exercise; SED was physical inactivity in a free cage. The knees were evaluated at 6 and 12 weeks after surgery. At the end of testing, none of the knees developed synovitis, formed osteophytes, or became infected. Macroscopically, the PGI-TRE group regenerated a smooth articular surface, with transparent new hyaline-like tissue soundly integrated with the neighboring cartilage, but the other groups remained distinct at the margins with fibrous or opaque tissues. In a micro-CT analysis, the synthesized bone volume/tissue volume (BV/TV) was significantly higher in the PGI-TRE group, which also had integrating architecture in the regeneration site. The thickness of the trabecular (subchondral) bone was improved in all groups from 6 to 12 weeks. Histologically, remarkable differences in the cartilage regeneration were visible. At week 6, compared with SED groups, the TRE groups manifested modest inflammatory cells with pro-inflammatory cytokines (i.e., TNF-α and IL-6), improved collagen alignment and higher glycosaminoglycan (GAG) content, particularly in the PGI-TRE group. At week 12, the PGI-TRE group had the best regeneration outcomes, showing the formation of hyaline-like cartilage, the development of columnar rounded chondrocytes that expressed enriched levels of collagen type II and GAG, and functionalized trabecular bone with osteocytes. In summary, the combination of implanting cell-free PLGA and performing an early loading exercise can significantly promote the full-thickness osteochondral regeneration in rabbit knee joint models. STATEMENT OF SIGNIFICANCE Promoting effective hyaline cartilage regeneration rather than fibrocartilage scar tissue remains clinically challenging. To address the obstacle, we fabricated a spongy cell-free PLGA scaffold, and designed a reasonable exercise program to generate combined therapeutic effects. First, the implanting scaffold generates an affordable mechanical structure to bear the loading forces and bridge with the host to offer a space in the full-thickness osteochondral regeneration in rabbit knee joint. After implantation, rabbits were performed by an early treadmill exercise 15 min/day, 5 days/week for 2 weeks that directly exerts in situ endogenous growth factor and anti-inflammatory effects in the reparative site. The advanced therapeutic strategy showed that neo-hyaline cartilage formation with enriched collagen type II, higher glycosaminoglycan, integrating subchondral bone formation and modest inflammation.
Collapse
Affiliation(s)
- Nai-Jen Chang
- Department of Sports Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., Kaohsiung City 807, Taiwan.
| | - Chih-Chan Lin
- Laboratory Animal Center, Department of Medical Research, Chi-Mei Medical Center, 901 Zhonghua Rd., Yongkang Dist., Tainan City 701, Taiwan
| | - Ming-You Shie
- 3D Printing Medical Research Center, China Medical University Hospital, 2 Yude Rd., North Dist., Taichung City 404, Taiwan
| | - Ming-Long Yeh
- Department of Biomedical Engineering, National Cheng Kung University, 1 University Rd., Tainan City 701, Taiwan
| | - Chien-Feng Li
- Division of Clinical Pathology, Department of Pathology, Chi-Mei Medical Center, 901 Zhonghua Rd., Yongkang Dist., Tainan City 701, Taiwan
| | - Peir-In Liang
- Department of Pathology, Kaohsiung Medical University Hospital, 100 Shih-Chuan 1st Rd., Kaohsiung City 807, Taiwan
| | - Kuan-Wei Lee
- Department of Sports Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., Kaohsiung City 807, Taiwan
| | - Pei-Hsun Shen
- Department of Sports Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., Kaohsiung City 807, Taiwan
| | - Chih-Jou Chu
- Department of Sports Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., Kaohsiung City 807, Taiwan
| |
Collapse
|
6
|
Yan LP, Oliveira JM, Oliveira AL, Reis RL. Current Concepts and Challenges in Osteochondral Tissue Engineering and Regenerative Medicine. ACS Biomater Sci Eng 2015; 1:183-200. [DOI: 10.1021/ab500038y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Le-Ping Yan
- 3B’s
Research Group−Biomaterials, Biodegradables and Biomimetics,
Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, University of Minho, AvePark, S. Cláudio
de Barco, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M. Oliveira
- 3B’s
Research Group−Biomaterials, Biodegradables and Biomimetics,
Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, University of Minho, AvePark, S. Cláudio
de Barco, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana L. Oliveira
- 3B’s
Research Group−Biomaterials, Biodegradables and Biomimetics,
Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, University of Minho, AvePark, S. Cláudio
de Barco, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
- CBQF−Center
for Biotechnology and Fine Chemistry, School of Biotechnology, Portuguese Catholic University, Porto 4200−072, Portugal
| | - Rui L. Reis
- 3B’s
Research Group−Biomaterials, Biodegradables and Biomimetics,
Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, University of Minho, AvePark, S. Cláudio
de Barco, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
7
|
Dresing I, Zeiter S, Auer J, Alini M, Eglin D. Evaluation of a press-fit osteochondral poly(ester-urethane) scaffold in a rabbit defect model. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1691-1700. [PMID: 24668269 DOI: 10.1007/s10856-014-5192-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 03/08/2014] [Indexed: 06/03/2023]
Abstract
The purpose of this study was to evaluate the impact on osteochondral healing of press-fitted multiphasic osteochondral scaffolds consisting of poly(ester-urethane) (PUR) and hydroxyapatite into a cylindric osteochondral defect in the distal non-weight bearing femoral trochlear ridge of the rabbit. Two scaffolds were investigated, one with and one without an intermediate microporous membrane between the cartilage and the bone compartment of the scaffold. A control group without a scaffold placed into the defect was included. After 12 weeks macroscopic and histomorphological analyses were performed. The scaffold was easily press-fitted and provided a stable matrix for tissue repair. The membrane did not demonstrate a detrimental effect on tissue healing compared with the scaffold without membrane. However, the control group had statistically superior healing as reflected by histological differences in the cartilage and subchondral bone compartment between control group and each scaffold group. A more detailed analysis revealed that the difference was localized in the bone compartment healing. The present study demonstrates that an elastomeric PUR scaffold can easily be press-fitted into an osteochondral defect and provides a stable matrix for tissue repair. However, the multi-phasic scaffold did not provide a clear advantage for tissue healing. Future investigations should refine especially the bone phase of the implant to increase its stiffness, biocompatibility and osteoconductive activity. A more precise fabrication technique would be necessary for the matching of tissue organisation.
Collapse
Affiliation(s)
- Iska Dresing
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland
| | | | | | | | | |
Collapse
|