1
|
Ramburrun P, Kumar P, Ndobe E, Choonara YE. Gellan-Xanthan Hydrogel Conduits with Intraluminal Electrospun Nanofibers as Physical, Chemical and Therapeutic Cues for Peripheral Nerve Repair. Int J Mol Sci 2021; 22:ijms222111555. [PMID: 34768986 PMCID: PMC8583980 DOI: 10.3390/ijms222111555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022] Open
Abstract
Optimal levels of functional recovery in peripheral nerve injuries remain elusive due to the architectural complexity of the neuronal environment. Commercial nerve repair conduits lack essential guidance cues for the regenerating axons. In this study, the regenerative potential of a biosimulated nerve repair system providing three types of regenerative cues was evaluated in a 10 mm sciatic nerve-gap model over 4 weeks. A thermo-ionically crosslinked gellan-xanthan hydrogel conduit loaded with electrospun PHBV-magnesium oleate-N-acetyl-cysteine (PHBV-MgOl-NAC) nanofibers was assessed for mechanical properties, nerve growth factor (NGF) release kinetics and PC12 viability. In vivo functional recovery was based on walking track analysis, gastrocnemius muscle mass and histological analysis. As an intraluminal filler, PHBV-MgOl-NAC nanofibers improved matrix resilience, deformation and fracture of the hydrogel conduit. NGF release was sustained over 4 weeks, governed by Fickian diffusion and Case-II relaxational release for the hollow conduit and the nanofiber-loaded conduit, respectively. The intraluminal fibers supported PC12 proliferation by 49% compared to the control, preserved up to 43% muscle mass and gradually improved functional recovery. The combined elements of physical guidance (nanofibrous scaffolding), chemical cues (N-acetyl-cysteine and magnesium oleate) and therapeutic cues (NGF and diclofenac sodium) offers a promising strategy for the regeneration of severed peripheral nerves.
Collapse
Affiliation(s)
- Poornima Ramburrun
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (P.R.); (P.K.)
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (P.R.); (P.K.)
| | - Elias Ndobe
- Department of Plastic and Reconstructive Surgery, Faculty of Health Sciences, School of Clinical Medicine, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa;
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (P.R.); (P.K.)
- Correspondence: ; Tel.: +27-11-717-2052
| |
Collapse
|
2
|
Park E, Lyon JG, Alvarado-Velez M, Betancur MI, Mokarram N, Shin JH, Bellamkonda RV. Enriching neural stem cell and anti-inflammatory glial phenotypes with electrical stimulation after traumatic brain injury in male rats. J Neurosci Res 2021; 99:1864-1884. [PMID: 33772860 PMCID: PMC8360147 DOI: 10.1002/jnr.24834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 12/26/2022]
Abstract
Traumatic brain injury (TBI) by an external physical impact results in compromised brain function via undesired neuronal death. Following the injury, resident and peripheral immune cells, astrocytes, and neural stem cells (NSCs) cooperatively contribute to the recovery of the neuronal function after TBI. However, excessive pro‐inflammatory responses of immune cells, and the disappearance of endogenous NSCs at the injury site during the acute phase of TBI, can exacerbate TBI progression leading to incomplete healing. Therefore, positive outcomes may depend on early interventions to control the injury‐associated cellular milieu in the early phase of injury. Here, we explore electrical stimulation (ES) of the injury site in a rodent model (male Sprague–Dawley rats) to investigate its overall effect on the constituent brain cell phenotype and composition during the acute phase of TBI. Our data showed that a brief ES for 1 hr on day 2 of TBI promoted anti‐inflammatory phenotypes of microglia as assessed by CD206 expression and increased the population of NSCs and Nestin+ astrocytes at 7 days post‐TBI. Also, ES effectively increased the number of viable neurons when compared to the unstimulated control group. Given the salience of microglia and neural stem cells for healing after TBI, our results strongly support the potential benefit of the therapeutic use of ES during the acute phase of TBI to regulate neuroinflammation and to enhance neuroregeneration.
Collapse
Affiliation(s)
- Eunyoung Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Johnathan G Lyon
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Melissa Alvarado-Velez
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Martha I Betancur
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Nassir Mokarram
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ravi V Bellamkonda
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
3
|
Luzhansky ID, Sudlow LC, Brogan DM, Wood MD, Berezin MY. Imaging in the repair of peripheral nerve injury. Nanomedicine (Lond) 2019; 14:2659-2677. [PMID: 31612779 PMCID: PMC6886568 DOI: 10.2217/nnm-2019-0115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022] Open
Abstract
Surgical intervention followed by physical therapy remains the major way to repair damaged nerves and restore function. Imaging constitutes promising, yet underutilized, approaches to improve surgical and postoperative techniques. Dedicated methods for imaging nerve regeneration will potentially provide surgical guidance, enable recovery monitoring and postrepair intervention, elucidate failure mechanisms and optimize preclinical procedures. Herein, we present an outline of promising innovations in imaging-based tracking of in vivo peripheral nerve regeneration. We emphasize optical imaging because of its cost, versatility, relatively low toxicity and sensitivity. We discuss the use of targeted probes and contrast agents (small molecules and nanoparticles) to facilitate nerve regeneration imaging and the engineering of grafts that could be used to track nerve repair. We also discuss how new imaging methods might overcome the most significant challenges in nerve injury treatment.
Collapse
Affiliation(s)
- Igor D Luzhansky
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- The Institute of Materials Science & Engineering, Washington University, St Louis, MO 63130, USA
| | - Leland C Sudlow
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David M Brogan
- Department of Orthopedic Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Matthew D Wood
- Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Mikhail Y Berezin
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- The Institute of Materials Science & Engineering, Washington University, St Louis, MO 63130, USA
| |
Collapse
|
4
|
Grasman JM, Ferreira JA, Kaplan DL. Tissue Models for Neurogenesis and Repair in 3D. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1803822. [PMID: 32440261 PMCID: PMC7241596 DOI: 10.1002/adfm.201803822] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Development and maturation of vascular and neuronal tissues occurs simultaneously in utero, and are regulated by significant crosstalk. We report on the development of a 3D tissue system to model neurogenesis and recapitulate developmental signaling conditions. Human umbilical vein endothelial cells (HUVECs) were seeded inside channels within collagen gels to represent nascent vascular networks. Axons extending from chicken dorsal root ganglia (DRGs) grew significantly longer and preferentially towards the HUVEC seeded channels with respect to unloaded channels. To replicate these findings without the vascular component, channels were loaded with brain-derived neurotrophic factor (BDNF), the principle signaling molecule in HUVEC-stimulated axonal growth, and axons likewise were significantly longer and grew preferentially towards the BDNF-loaded channels with respect to controls. This 3D tissue system was then used as an in vitro replicate for peripheral nerve injury, with neural repair observed within 2 weeks. These results demonstrate that our 3D tissue system can model neural network formation, repair after laceration injuries, and can be utilized to further study how these networks form and interact with other tissues, such as skin or skeletal muscle.
Collapse
Affiliation(s)
| | | | - David L. Kaplan
- Address Correspondence to: David L. Kaplan, Ph.D., Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA, 02155, Tel: 617-627-3251, Fax: 617-627-3231,
| |
Collapse
|
5
|
Development of an apoptosis-assisted decellularization method for maximal preservation of nerve tissue structure. Acta Biomater 2018; 77:116-126. [PMID: 29981947 DOI: 10.1016/j.actbio.2018.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/24/2018] [Accepted: 07/03/2018] [Indexed: 12/17/2022]
Abstract
Preservation of tissue structure is often a primary goal when optimizing tissue and organ decellularization methods. Many current protocols nonetheless rely on detergents that aid extraction of cellular components but also damage tissue architecture. It may be more beneficial to leverage an innate cellular process such as apoptosis and promote cell removal without the use of damaging reagents. During apoptosis, a cell detaches from the extracellular matrix, degrades its internal components, and fragments its contents for easier clearance. We have developed a method that leverages this process to achieve tissue decellularization using only mild wash buffers. We have demonstrated that treating peripheral nerve tissue with camptothecin induced both an early marker of apoptosis, cleaved caspase-3 expression, as well as a late stage marker, TUNEL+ DNA fragmentation. Clearance of the cellular components was then achieved in an apoptosis-dependent manner using a gentle wash in hypertonic phosphate buffered saline followed by DNase treatment. This wash paradigm did not significantly affect collagen or glycosaminoglycan content, but it was sufficient to remove any trace of the cytotoxic compound based on conditioned media experiments. The resulting acellular tissue graft was immunogenically tolerated in vivo and exhibited an intact basal lamina microarchitecture mimicking that of native, unprocessed nerve. Hence, ex vivo induction of apoptosis is a promising method to decellularize tissue without the use of harsh reagents while better preserving the benefits of native tissue such as tissue-specific composition and microarchitecture. STATEMENT OF SIGNIFICANCE Tissue decellularization has expanded the ability to generate non-immunogenic organ replacements for a broad range of health applications. Current technologies typically rely on the use of harsh agents for clearing cellular debris, altering the tissue structure and potentially diminishing the pro-regenerative effects. We have developed a method for effectively, yet gently, removing cellular components from peripheral nerve tissue while preserving the native tissue architecture. The novelty of this process is in the induction of programmed cell death - or apoptosis - via a general cytotoxin, thereby enabling antigen clearance using only hypertonic wash buffers. The resulting acellular nerve scaffolds are nearly identical to unprocessed tissue on a microscopic level and elicit low immune responses comparable to an isograft negative control in a model of subcutaneous implantation.
Collapse
|
6
|
Jiang J, Carlson MA, Teusink MJ, Wang H, MacEwan MR, Xie J. Expanding Two-Dimensional Electrospun Nanofiber Membranes in the Third Dimension By a Modified Gas-Foaming Technique. ACS Biomater Sci Eng 2015; 1:991-1001. [DOI: 10.1021/acsbiomaterials.5b00238] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | | | | | | | - Matthew R. MacEwan
- Department
of Neurosurgery, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | | |
Collapse
|
7
|
Gao Y, Wang YL, Kong D, Qu B, Su XJ, Li H, Pi HY. Nerve autografts and tissue-engineered materials for the repair of peripheral nerve injuries: a 5-year bibliometric analysis. Neural Regen Res 2015. [PMID: 26199621 PMCID: PMC4498331 DOI: 10.4103/1673-5374.158369] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
With advances in biomedical methods, tissue-engineered materials have developed rapidly as an alternative to nerve autografts for the repair of peripheral nerve injuries. However, the materials selected for use in the repair of peripheral nerve injuries, in particular multiple injuries and large-gap defects, must be chosen carefully. Various methods and materials for protecting the healthy tissue and repairing peripheral nerve injuries have been described, and each method or material has advantages and disadvantages. Recently, a large amount of research has been focused on tissue-engineered materials for the repair of peripheral nerve injuries. Using the keywords “pe-ripheral nerve injury”, “autotransplant”, “nerve graft”, and “biomaterial”, we retrieved publications using tissue-engineered materials for the repair of peripheral nerve injuries appearing in the Web of Science from 2010 to 2014. The country with the most total publications was the USA. The institutions that were the most productive in this field include Hannover Medical School (Germany), Washington University (USA), and Nantong University (China). The total number of publications using tissue-engineered materials for the repair of peripheral nerve injuries grad-ually increased over time, as did the number of Chinese publications, suggesting that China has made many scientific contributions to this field of research.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Yu-Ling Wang
- Department of Nursing, Chinese PLA General Hospital, Beijing, China
| | - Dan Kong
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Bo Qu
- Clinic Division, Department of Surgery, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Jing Su
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Huan Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Hong-Ying Pi
- Department of Nursing, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Li E, Ruan Y, Chen Q, Cui X, Lv L, Zheng P, Wang L. Streptococcal infection and immune response in children with Tourette's syndrome. Childs Nerv Syst 2015; 31:1157-63. [PMID: 25930720 DOI: 10.1007/s00381-015-2692-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 11/04/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND Streptococcal infection and basal ganglia inflammation are hypothesized to be involved in Tourette's syndrome (TS). There is a need for effective therapies for managing TS. We studied streptococcal infection and immunity in TS following immunomodulator (pidotimod) therapy. METHODS Blood samples from 58 patients with TS and 128 age-matched healthy controls enabled measurement of antistreptolysin O (ASO), T cells, natural killer (NK) cells, interleukin-6 (IL-6) and interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α). Forty-four patients with abnormal T cell numbers were divided into two groups and treated with pidotimod granules (pidotimod group, n = 20) or pidotimod plus dopaminergic receptor antagonists (combination group, n = 24). Yale Global Tic Severity Scale (YGTSS) scores and immunologic indices were assessed after treatment. RESULTS An ASO >1:200 was found in 22.4% of children with TS, 7.5% of controls, and 38.9% of children with both TS and attention deficit hyperactivity disorder (ADHD) compared to 15.0% of children with TS alone (P < 0.05). Children with TS showed decreased CD3(+) and CD4(+) T cells, CD4(+)/CD8(+) ratio, IL-6 and IL-8, increased NKC and TNF-α (P < 0.05) as compared to controls. ASO-positive children with TS had lower CD4(+) T cells as compared to ASO-negative children with TS, and lower IL-6 and IL-8 levels as compared to controls (P < 0.05). After 8 weeks of pidotimod treatment, IL-8 was increased compared to either tiapride hydrochloride or haloperidol and pidotimod (P < 0.05). CONCLUSIONS Streptococcal infection in TS patients is associated with immune and cytokine dysfunction, which can be potentially managed with immunomodulator therapy.
Collapse
Affiliation(s)
- Erzhen Li
- Neurology Department, Capital Institute of Pediatrics, Beijing, 100020, China,
| | | | | | | | | | | | | |
Collapse
|
9
|
Freidin M, Asche-Godin S, Abrams CK. Gene expression profiling studies in regenerating nerves in a mouse model for CMT1X: uninjured Cx32-knockout peripheral nerves display expression profile of injured wild type nerves. Exp Neurol 2015; 263:339-49. [PMID: 25447941 PMCID: PMC4262134 DOI: 10.1016/j.expneurol.2014.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/13/2014] [Accepted: 10/18/2014] [Indexed: 11/20/2022]
Abstract
X-linked Charcot-Marie-Tooth disease (CMT1X) is an inherited peripheral neuropathy caused by mutations in GJB1, the human gene for Connexin32 (Cx32). This present study uses Ilumina Ref8-v2 BeadArray to examine the expression profiles of injured and uninjured sciatic nerves at 5, 7, and 14 days post-crush injury (dpi) from Wild Type (WT) and Cx32-knockout (Cx32KO) mice to identify the genes and signaling pathways that are dysregulated in the absence of Schwann cell Cx32. Given the assumption that loss of Schwann cell Cx32 disrupts the regeneration and maintenance of myelinated nerve leading to a demyelinating neuropathy in CMT1X, we initially hypothesized that nerve crush injury would result in significant increases in differential gene expression in Cx32KO mice relative to WT nerves. However, microarray analysis revealed a striking collapse in the number of differentially expressed genes at 5 and 7 dpi in Cx32KO nerves relative to WT, while uninjured and 14 dpi time points showed large numbers of differentially regulated genes. Further comparisons within each genotype showed limited changes in Cx32KO gene expression following crush injury when compared to uninjured Cx32KO nerves. By contrast, WT nerves exhibited robust changes in gene expression at 5 and 7 dpi with no significant differences in gene expression by 14dpi relative to uninjured WT nerve samples. Taken together, these data suggest that the gene expression profile in uninjured Cx32KO sciatic nerve strongly resembles that of a WT nerve following injury and that loss of Schwann cell Cx32 leads to a basal state of gene expression similar to that of an injured WT nerve. These findings support a role for Cx32 in non-myelinating and regenerating populations of Schwann cells in normal axonal maintenance in re-myelination, and regeneration of peripheral nerve following injury. Disruption of Schwann cell-axonal communication in CMT1X may cause dysregulation of signaling pathways that are essential for the maintenance of intact myelinated peripheral nerves and to establish the necessary conditions for successful regeneration and remyelination following nerve injury.
Collapse
Affiliation(s)
- Mona Freidin
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Samantha Asche-Godin
- Department of Neurology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Charles K Abrams
- Department of Neurology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|
10
|
Srinivasan A, Tahilramani M, Bentley JT, Gore RK, Millard DC, Mukhatyar VJ, Joseph A, Haque AS, Stanley GB, English AW, Bellamkonda RV. Microchannel-based regenerative scaffold for chronic peripheral nerve interfacing in amputees. Biomaterials 2014; 41:151-65. [PMID: 25522974 DOI: 10.1016/j.biomaterials.2014.11.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/25/2014] [Accepted: 11/07/2014] [Indexed: 12/17/2022]
Abstract
Neurally controlled prosthetics that cosmetically and functionally mimic amputated limbs remain a clinical need because state of the art neural prosthetics only provide a fraction of a natural limb's functionality. Here, we report on the fabrication and capability of polydimethylsiloxane (PDMS) and epoxy-based SU-8 photoresist microchannel scaffolds to serve as viable constructs for peripheral nerve interfacing through in vitro and in vivo studies in a sciatic nerve amputee model where the nerve lacks distal reinnervation targets. These studies showed microchannels with 100 μm × 100 μm cross-sectional areas support and direct the regeneration/migration of axons, Schwann cells, and fibroblasts through the microchannels with space available for future maturation of the axons. Investigation of the nerve in the distal segment, past the scaffold, showed a high degree of organization, adoption of the microchannel architecture forming 'microchannel fascicles', reformation of endoneurial tubes and axon myelination, and a lack of aberrant and unorganized growth that might be characteristic of neuroma formation. Separate chronic terminal in vivo electrophysiology studies utilizing the microchannel scaffolds with permanently integrated microwire electrodes were conducted to evaluate interfacing capabilities. In all devices a variety of spontaneous, sensory evoked and electrically evoked single and multi-unit action potentials were recorded after five months of implantation. Together, these findings suggest that microchannel scaffolds are well suited for chronic implantation and peripheral nerve interfacing to promote organized nerve regeneration that lends itself well to stable interfaces. Thus this study establishes the basis for the advanced fabrication of large-electrode count, wireless microchannel devices that are an important step towards highly functional, bi-directional peripheral nerve interfaces.
Collapse
Affiliation(s)
- Akhil Srinivasan
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Mayank Tahilramani
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - John T Bentley
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Russell K Gore
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Daniel C Millard
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Vivek J Mukhatyar
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Anish Joseph
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Adel S Haque
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Garrett B Stanley
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Arthur W English
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ravi V Bellamkonda
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA.
| |
Collapse
|