1
|
Bulbul Z, El Rassi I, Hamade R, Tamim H, Bitar F. Three-dimensional printing of mitral valve models using echocardiographic data improves the knowledge of cardiology fellow physicians in training. Front Cardiovasc Med 2023; 10:1307994. [PMID: 38124899 PMCID: PMC10731368 DOI: 10.3389/fcvm.2023.1307994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Background High fidelity three-dimensional Mitral valve models (3D MVM) printed from echocardiography are currently being used in preparation for surgical repair. Aim We hypothesize that printed 3DMVM could have relevance to cardiologists in training by improving their understanding of normal anatomy and pathology. Methods Sixteen fellow physicians in pediatric and adult cardiology training were recruited. 3D echocardiography (3DE) video clips of six mitral valves (one normal and five pathological) were displayed and the fellows were asked to name the prolapsing segments in each. Following that, three still images of 3D MVMs in different projections: enface, profile and tilted corresponding to the same MVs seen in the clip were presented on a screen. Participating physicians were presented with a comprehensive questionnaire aimed at assessing whether the 3D MVM has improved their understanding of valvular anatomy. Finally, a printed 3D MVM of each of the valves was handed out, and the same questionnaire was re-administered to identify any further improvement in the participants' perception of the anatomy. Results The correct diagnosis using the echocardiography video clip of the Mitral valve was attained by 45% of the study participants. Both pediatric and adult trainees, regardless of the year of training demonstrated improved understanding of the anatomy of MV after observing the corresponding model image. Significant improvement in their understanding was noted after participants had seen and physically examined the printed model. Conclusion Printed 3D MVM has a beneficial impact on the cardiology trainees' understanding of MV anatomy and pathology compared to 3DE images.
Collapse
Affiliation(s)
- Ziad Bulbul
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| | - Issam El Rassi
- Pediatric Cardiac Surgery, Al Jalila Hospital, Dubai, United Arab Emirates
| | - Ramsey Hamade
- Department of Mechanical Engineering, American University of Beirut, Beirut, Lebanon
| | - Hani Tamim
- Department of Biostatistics, American University of Beirut, Beirut, Lebanon
| | - Fadi Bitar
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
2
|
Schwarz EL, Pegolotti L, Pfaller MR, Marsden AL. Beyond CFD: Emerging methodologies for predictive simulation in cardiovascular health and disease. BIOPHYSICS REVIEWS 2023; 4:011301. [PMID: 36686891 PMCID: PMC9846834 DOI: 10.1063/5.0109400] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/12/2022] [Indexed: 01/15/2023]
Abstract
Physics-based computational models of the cardiovascular system are increasingly used to simulate hemodynamics, tissue mechanics, and physiology in evolving healthy and diseased states. While predictive models using computational fluid dynamics (CFD) originated primarily for use in surgical planning, their application now extends well beyond this purpose. In this review, we describe an increasingly wide range of modeling applications aimed at uncovering fundamental mechanisms of disease progression and development, performing model-guided design, and generating testable hypotheses to drive targeted experiments. Increasingly, models are incorporating multiple physical processes spanning a wide range of time and length scales in the heart and vasculature. With these expanded capabilities, clinical adoption of patient-specific modeling in congenital and acquired cardiovascular disease is also increasing, impacting clinical care and treatment decisions in complex congenital heart disease, coronary artery disease, vascular surgery, pulmonary artery disease, and medical device design. In support of these efforts, we discuss recent advances in modeling methodology, which are most impactful when driven by clinical needs. We describe pivotal recent developments in image processing, fluid-structure interaction, modeling under uncertainty, and reduced order modeling to enable simulations in clinically relevant timeframes. In all these areas, we argue that traditional CFD alone is insufficient to tackle increasingly complex clinical and biological problems across scales and systems. Rather, CFD should be coupled with appropriate multiscale biological, physical, and physiological models needed to produce comprehensive, impactful models of mechanobiological systems and complex clinical scenarios. With this perspective, we finally outline open problems and future challenges in the field.
Collapse
Affiliation(s)
- Erica L. Schwarz
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Luca Pegolotti
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Martin R. Pfaller
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Alison L. Marsden
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
3
|
Park MH, Pandya PK, Zhu Y, Mullis DM, Wang H, Imbrie-Moore AM, Wilkerson R, Marin-Cuartas M, Woo YJ. A Novel Rheumatic Mitral Valve Disease Model with Ex Vivo Hemodynamic and Biomechanical Validation. Cardiovasc Eng Technol 2023; 14:129-140. [PMID: 35941509 PMCID: PMC9905378 DOI: 10.1007/s13239-022-00641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 07/08/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Rheumatic heart disease is a major cause of mitral valve (MV) dysfunction, particularly in disadvantaged areas and developing countries. There lacks a critical understanding of the disease biomechanics, and as such, the purpose of this study was to generate the first ex vivo porcine model of rheumatic MV disease by simulating the human pathophysiology and hemodynamics. METHODS Healthy porcine valves were altered with heat treatment, commissural suturing, and cyanoacrylate tissue coating, all of which approximate the pathology of leaflet stiffening and thickening as well as commissural fusion. Hemodynamic data, echocardiography, and high-speed videography were collected in a paired manner for control and model valves (n = 4) in an ex vivo left heart simulator. Valve leaflets were characterized in an Instron tensile testing machine to understand the mechanical changes of the model (n = 18). RESULTS The model showed significant differences indicative of rheumatic disease: increased regurgitant fractions (p < 0.001), reduced effective orifice areas (p < 0.001), augmented transmitral mean gradients (p < 0.001), and increased leaflet stiffness (p = 0.025). CONCLUSION This work represents the creation of the first ex vivo model of rheumatic MV disease, bearing close similarity to the human pathophysiology and hemodynamics, and it will be used to extensively study both established and new treatment techniques, benefitting the millions of affected victims.
Collapse
Affiliation(s)
- Matthew H Park
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Pearly K Pandya
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Danielle M Mullis
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
| | - Annabel M Imbrie-Moore
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Robert Wilkerson
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
| | - Mateo Marin-Cuartas
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
- University Department of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Rego BV, Khalighi AH, Lai EK, Gorman RC, Gorman JH, Sacks MS. In vivo assessment of mitral valve leaflet remodelling following myocardial infarction. Sci Rep 2022; 12:18012. [PMID: 36289435 PMCID: PMC9606267 DOI: 10.1038/s41598-022-22790-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
Each year, more than 40,000 people undergo mitral valve (MV) repair surgery domestically to treat regurgitation caused by myocardial infarction (MI). Although continual MV tissue remodelling following repair is believed to be a major contributor to regurgitation recurrence, the effects of the post-MI state on MV remodelling remain poorly understood. This lack of understanding limits our ability to predict the remodelling of the MV both post-MI and post-surgery to facilitate surgical planning. As a necessary first step, the present study was undertaken to noninvasively quantify the effects of MI on MV remodelling in terms of leaflet geometry and deformation. MI was induced in eight adult Dorset sheep, and real-time three-dimensional echocardiographic (rt-3DE) scans were collected pre-MI as well as at 0, 4, and 8 weeks post-MI. A previously validated image-based morphing pipeline was used to register corresponding open- and closed-state scans and extract local in-plane strains throughout the leaflet surface at systole. We determined that MI induced permanent changes in leaflet dimensions in the diastolic configuration, which increased with time to 4 weeks, then stabilised. MI substantially affected the systolic shape of the MV, and the range of stretch experienced by the MV leaflet at peak systole was substantially reduced when referred to the current time-point. Interestingly, when we referred the leaflet strains to the pre-MI configuration, the systolic strains remained very similar throughout the post-MI period. Overall, we observed that post-MI ventricular remodeling induced permanent changes in the MV leaflet shape. This predominantly affected the MV's diastolic configuration, leading in turn to a significant decrease in the range of stretch experienced by the leaflet when referenced to the current diastolic configuration. These findings are consistent with our previous work that demonstrated increased plastic (i.e. non-recoverable) leaflet deformations post-MI, that was completely accounted for by the associated changes in collagen fiber structure. Moreover, we demonstrated through noninvasive methods that the state of the MV leaflet can elucidate the progression and extent of MV adaptation following MI and is thus highly relevant to the design of current and novel patient specific minimally invasive surgical repair strategies.
Collapse
Affiliation(s)
- Bruno V Rego
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Amir H Khalighi
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Eric K Lai
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael S Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
5
|
Development of 3D Printed Mitral Valve Constructs for Transcatheter Device Modeling of Tissue and Device Deformation. Ann Biomed Eng 2022; 50:426-439. [PMID: 35220528 PMCID: PMC8917041 DOI: 10.1007/s10439-022-02927-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/06/2022] [Indexed: 11/29/2022]
Abstract
Transcatheter mitral valve repair (TMVR) therapies offer a minimally invasive alternative to surgical mitral valve (MV) repair for patients with prohibitive surgical risks. Pre-procedural planning and associated medical device modeling is primarily performed in silico, which does not account for the physical interactions between the implanted TMVR device and surrounding tissue and may result in poor outcomes. We developed 3D printed tissue mimics for modeling TMVR therapies. Structural properties of the mitral annuli, leaflets, and chordae were replicated from multi-material blends. Uniaxial tensile testing was performed on the resulting composites and their mechanical properties were compared to those of their target native components. Mimics of the MV annulus printed in homogeneous strips approximated the tangent moduli of the native mitral annulus at 2% and 6% strain. Mimics of the valve leaflets printed in layers of different stiffnesses approximated the force–strain and stress–strain behavior of native MV leaflets. Finally, mimics of the chordae printed as reinforced cylinders approximated the force–strain and stress–strain behavior of native chordae. We demonstrated that multi-material 3D printing is a viable approach to the development of tissue phantoms, and that printed patient-specific geometries can approximate the local deformation force which may act upon devices used for TMVR therapies.
Collapse
|
6
|
Galili L, White Zeira A, Marom G. Numerical biomechanics modelling of indirect mitral annuloplasty treatments for functional mitral regurgitation. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211464. [PMID: 35242347 PMCID: PMC8753151 DOI: 10.1098/rsos.211464] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/14/2021] [Indexed: 05/03/2023]
Abstract
Mitral valve regurgitation (MR) is a common valvular heart disease where an improper closure leads to leakage from the left ventricle into the left atrium. There is a need for less-invasive treatments such as percutaneous repairs for a large inoperable patient population. The aim of this study is to compare several indirect mitral annuloplasty (IMA) percutaneous repair techniques by finite-element analyses. Two types of generic IMA devices were considered, based on coronary sinus vein shortening (IMA-CS) to reduce the annulus perimeter and based on shortening of the anterior-posterior diameter (IMA-AP). The disease, its treatments, and the heart function post-repair were modelled by modifying the living heart human model (Dassault Systèmes). A functional MR pathology that represents ischaemic MR was generated and the IMA treatments were simulated in it, followed by heart function simulations with the devices and leakage quantification from blood flow simulations. All treatments were able to reduce leakage, the IMA-AP device achieved better sealing, and there was a correlation between the IMA-CS device length and the reduction in leakage. The results of this study can help in bringing IMA-AP to market, expanding the use of IMA devices, and optimizing future designs of such devices.
Collapse
Affiliation(s)
- Lee Galili
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adi White Zeira
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gil Marom
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
7
|
Mufarrih SH, Mahmood F, Qureshi NQ, Yunus R, Quraishi I, Baribeau V, Sharkey A, Matyal R, Khabbaz KR. Three-Dimensional Printing of Patient-Specific Heart Valves: Separating Facts From Fiction and Myth From Reality. J Cardiothorac Vasc Anesth 2021; 36:2643-2655. [PMID: 34654635 DOI: 10.1053/j.jvca.2021.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/05/2021] [Accepted: 09/08/2021] [Indexed: 11/11/2022]
Abstract
The development of prosthetic heart valves by Dr. Charles Hufnagel in 1952 was a major clinical innovation; however, it was not an ideal solution. Mechanical prosthetic heart valves are rigid, immunogenic, require anticoagulation, do not grow with the patient, and have a finite life.1 An ideal prosthetic valve should overcome all these limitations. Considering the prevalence of valvular heart disorders, there is considerable interest in the creation of patient-specific heart valves. Following the introduction of three-dimensional (3D) printing in 1986 by Chuck Hill, rapid advances in multimodality 3D imaging and modeling have led to a generation of tangible replicas of patient-specific anatomy. The science of organogenesis has gained importance for a multitude of valid reasons: as an alternate source of organs, for realistic drug testing, as an alternative to animal testing, and for transplants that grow with the patient. What scientists imagined to be seemingly impossible in the past now seems just a step away from becoming a reality. However, due to the disruptive nature of this technology, often there are commercially-motivated claims of originality and overstatement of the scope and applicability of 3D printing. It often is difficult to separate fact from fiction and myth from reality. In this manuscript, the authors have reviewed the historic perspective, status of the basic techniques of organogenesis with specific reference to heart valves, and their potential.
Collapse
Affiliation(s)
- Syed Hamza Mufarrih
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| | - Feroze Mahmood
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| | - Nada Qaisar Qureshi
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| | - Rayaan Yunus
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| | - Ibrahim Quraishi
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| | - Vincent Baribeau
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| | - Aidan Sharkey
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| | - Robina Matyal
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Kamal R Khabbaz
- Department of Surgery, Division of Cardiothoracic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| |
Collapse
|
8
|
What Can We Learn from the Past by Means of Very Long-Term Follow-Up after Aortic Valve Replacement? J Clin Med 2021; 10:jcm10173925. [PMID: 34501375 PMCID: PMC8432120 DOI: 10.3390/jcm10173925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Studies on very long-term outcomes after aortic valve replacement are sparse. Methods: In this retrospective cohort study, long-term outcomes during 25.1 ± 2.8 years of follow-up were determined in 673 patients who underwent aortic valve replacement with or without concomitant coronary artery bypass surgery for severe aortic stenosis and/or regurgitation. Independent predictors of decreased long-term survival were determined. Cumulative incidence rates of major adverse events in patients with a mechanical versus those with a biologic prosthesis were assessed, as well as of major bleeding events in patients with a mechanical prosthesis under the age of 60 versus those above the age of 60. Results: Impaired left ventricular function, severe prosthesis–patient mismatch, and increased aortic cross-clamp time were independent predictors of decreased long-term survival. Left ventricular hypertrophy, a mechanical or biologic prosthesis, increased cardiopulmonary bypass time, new-onset postoperative atrial fibrillation, and the presence of symptoms did not independently predict decreased long-term survival. The risk of major bleeding events was higher in patients with a mechanical in comparison with those with a biologic prosthesis. Younger age (under 60 years) did not protect patients with a mechanical prosthesis against major bleeding events. Conclusions: Very long-term outcome data are invaluable for careful decision-making on aortic valve replacement.
Collapse
|
9
|
Adventures in Heart Valve Function A Personal Thank You to Dr. Ajit P. Yoganathan. Cardiovasc Eng Technol 2021; 12:651-653. [PMID: 34145557 DOI: 10.1007/s13239-021-00555-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 01/19/2023]
|
10
|
Marom G, Plitman Mayo R, Again N, Raanani E. Numerical Biomechanics Models of the Interaction Between a Novel Transcatheter Mitral Valve Device and the Subvalvular Apparatus. INNOVATIONS-TECHNOLOGY AND TECHNIQUES IN CARDIOTHORACIC AND VASCULAR SURGERY 2021; 16:327-333. [PMID: 33818178 PMCID: PMC8414811 DOI: 10.1177/1556984521999362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Objective Mitral valve regurgitation (MR) is a common valvular heart disease where
improper closing causes leakage. Currently, no transcatheter mitral valve
device is commercially available. Raanani (co-author) and colleagues have
previously proposed a unique rotational implantation, ensuring anchoring by
metallic arms that pull the chordae tendineae. This technique is now being
implemented in a novel device design. The aim of this study is to quantify
the rotational implantation effect on the mitral annulus kinematics and on
the stresses in the chordae and papillary muscles. Methods Finite element analysis of the rotational step of the implantation in a whole
heart model is employed to compare 5 arm designs with varying diameters
(25.9 mm to 32.4 mm) and rotation angles (up to 140°). The arm rotation that
grabs the chordae was modeled when the valve was in systolic
configuration. Results An increase in the rotation angle results in reduced mitral annulus
perimeters. Larger rotation angles led to higher chordae stresses with the
29.8 mm experiencing the maximum stresses. The calculated chordae stresses
suggest that arm diameter should be <27.8 mm and the rotation angle
<120°. Conclusions The upper limit of this diameter range is preferred in order to reduce the
stresses in the papillary muscles while grabbing more chords. The findings
of this study can help improving the design and performance of this unique
device and procedural technique.
Collapse
Affiliation(s)
- Gil Marom
- 26745 School of Mechanical Engineering, Tel Aviv University, Israel
| | | | - Nadav Again
- The Sheba Fund for Health Services and Research, Tel Hashomer, Israel
| | - Ehud Raanani
- 26744 Leviev Cardiothoracic and Vascular Center, Chaim Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
11
|
Wang X, Liu J, Jing H, Li B, Sun Z, Li B, Kong D, Leng X, Wang Z. Biofabrication of poly(l-lactide-co-ε-caprolactone)/silk fibroin scaffold for the application as superb anti-calcification tissue engineered prosthetic valve. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111872. [PMID: 33579497 DOI: 10.1016/j.msec.2021.111872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/16/2020] [Accepted: 01/03/2021] [Indexed: 12/20/2022]
Abstract
In this study, electrospun scaffolds were fabricated by blending poly(l-lactide-co-ε-caprolactone) (PLCL) and silk fibroin (SF) with different ratios, and further the feasibility of electrospun PLCL/SF scaffolds were evaluated for application of tissue engineered heart valve (TEHV). Scanning electron microscopy (SEM) results showed that the surface of PLCL/SF electrospun scaffolds was smooth and uniform while the mechanical properties were appropriate as valve prosthesis. In vitro cytocompatibility evaluation results demonstrated that all of the PLCL/SF electrospun scaffolds were cytocompatible and valvular interstitial cells (VICs) cultured on PLCL/SF scaffolds of 80/20 & 70/30 ratios exhibited the best cytocompatibility. The in vitro osteogenic differentiation of VICs including alkaline phosphatase (ALP) activity and quantitative polymerase chain reaction (qPCR) assays indicated that PLCL/SF scaffolds of 80/20 & 90/10 ratios behaved better anti-calcification ability. In the in vivo calcification evaluation model of rat subdermal implantation, PLCL/SF scaffolds of 80/20 & 90/10 ratios presented better anti-calcification ability, which was consistent with the in vitro results. Moreover, PLCL/SF scaffolds of 80/20 & 70/30 ratios showed significantly enhanced cell infiltration and M2 macrophage with higher CD206+/CD68+ ratio. Collectively, our data demonstrated that electrospun scaffolds with the PLCL/SF ratio of 80/20 hold great potential as TEHV materials.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Jing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin 300385, China.
| | - Huimin Jing
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Binhan Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Zhiting Sun
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Boxuan Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Xigang Leng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Zhihong Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
12
|
Hydrodynamic Noise of Pulsating Jets through Bileaflet Mechanical Mitral Valve. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1024096. [PMID: 32566648 PMCID: PMC7277049 DOI: 10.1155/2020/1024096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/18/2020] [Indexed: 11/18/2022]
Abstract
Experimental research results of hydrodynamic noise of pulsating flow through a bileaflet mechanical mitral valve are presented. The pulsating flow of pure water corresponds to the diastolic mode of the cardiac rhythm heart. The valve was located between the model of the left atrium and the model of the left ventricle of the heart. A coordinate device, on which a block of miniature sensors of absolute pressure and pressure fluctuations was installed, was located inside the model of the left ventricle. It is found that the hydrodynamic noise of the pulsating side jet of the semiclosed valve is higher than for the open valve. The pressure fluctuation levels gradually decrease with the removal from the mitral valve. It is established that at the second harmonic of the pulsating flow frequency, the spectral levels of the hydrodynamic noise of the semiclosed bileaflet mechanical mitral valve are almost 5 times higher than the open valve. With the removal from the mitral valve, spectral levels of hydrodynamic noise are decreased, especially strongly at the frequency of the pulsating water flow and its higher harmonics.
Collapse
|
13
|
Abstract
Heart valve diseases are common disorders with five million annual diagnoses being made in the United States alone. All heart valve disorders alter cardiac hemodynamic performance; therefore, treatments aim to restore normal flow. This paper reviews the state-of-the-art clinical and engineering advancements in heart valve treatments with a focus on hemodynamics. We review engineering studies and clinical literature on the experience with devices for aortic valve treatment, as well as the latest advancements in mitral valve treatments and the pulmonic and tricuspid valves on the right side of the heart. Upcoming innovations will potentially revolutionize treatment of heart valve disorders. These advancements, and more gradual enhancements in the procedural techniques and imaging modalities, could improve the quality of life of patients suffering from valvular disease who currently cannot be treated.
Collapse
Affiliation(s)
- Gil Marom
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv Israel
- To whom correspondence should be addressed. E-mail:
| | - Shmuel Einav
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Bartel T, Rivard A, Jimenez A, Mestres CA, Müller S. Medical three-dimensional printing opens up new opportunities in cardiology and cardiac surgery. Eur Heart J 2019; 39:1246-1254. [PMID: 28329105 DOI: 10.1093/eurheartj/ehx016] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/11/2017] [Indexed: 11/12/2022] Open
Abstract
Advanced percutaneous and surgical procedures in structural and congenital heart disease require precise pre-procedural planning and continuous quality control. Although current imaging modalities and post-processing software assists with peri-procedural guidance, their capabilities for spatial conceptualization remain limited in two- and three-dimensional representations. In contrast, 3D printing offers not only improved visualization for procedural planning, but provides substantial information on the accuracy of surgical reconstruction and device implantations. Peri-procedural 3D printing has the potential to set standards of quality assurance and individualized healthcare in cardiovascular medicine and surgery. Nowadays, a variety of clinical applications are available showing how accurate 3D computer reformatting and physical 3D printouts of native anatomy, embedded pathology, and implants are and how they may assist in the development of innovative therapies. Accurate imaging of pathology including target region for intervention, its anatomic features and spatial relation to the surrounding structures is critical for selecting optimal approach and evaluation of procedural results. This review describes clinical applications of 3D printing, outlines current limitations, and highlights future implications for quality control, advanced medical education and training.
Collapse
Affiliation(s)
- Thomas Bartel
- Heart & Vascular Institute, Cleveland Clinic Abu Dhabi, PO Box 112412, Abu Dhabi, United Arab Emirates
| | - Andrew Rivard
- Imaging Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Alejandro Jimenez
- Heart & Vascular Institute, Cleveland Clinic Abu Dhabi, PO Box 112412, Abu Dhabi, United Arab Emirates
| | - Carlos A Mestres
- Heart & Vascular Institute, Cleveland Clinic Abu Dhabi, PO Box 112412, Abu Dhabi, United Arab Emirates
| | - Silvana Müller
- Department of Internal Medicine III, Cardiology Division, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
15
|
Movafaghi S, Wang W, Bark DL, Dasi LP, Popat KC, Kota AK. Hemocompatibility of Super-Repellent surfaces: Current and Future. MATERIALS HORIZONS 2019; 6:1596-1610. [PMID: 31903188 PMCID: PMC6941870 DOI: 10.1039/c9mh00051h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Virtually all blood-contacting medical implants and devices initiate immunological events in the form of thrombosis and inflammation. Typically, patients receiving such implants are also given large doses of anticoagulants, which pose a high risk and a high cost to the patient. Thus, the design and development of surfaces with improved hemocompatibility and reduced dependence on anticoagulation treatments is paramount for the success of blood-contacting medical implants and devices. In the past decade, the hemocompatibility of super-repellent surfaces (i.e., surfaces that are extremely repellent to liquids) has been extensively investigated because such surfaces greatly reduce the blood-material contact area, which in turn reduces the area available for protein adsorption and blood cell or platelet adhesion, thereby offering the potential for improved hemocompatibility. In this review, we critically examine the progress made in characterizing the hemocompatibility of super-repellent surfaces, identify the unresolved challenges and highlight the opportunities for future research on developing medical implants and devices with super-repellent surfaces.
Collapse
Affiliation(s)
- Sanli Movafaghi
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Wei Wang
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - David L Bark
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Lakshmi P Dasi
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Ketul C Popat
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Arun K Kota
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- Department of Chemical & Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
16
|
Sacks M, Drach A, Lee CH, Khalighi A, Rego B, Zhang W, Ayoub S, Yoganathan A, Gorman RC, Gorman Iii JH. On the simulation of mitral valve function in health, disease, and treatment. J Biomech Eng 2019; 141:2731932. [PMID: 31004145 PMCID: PMC6611349 DOI: 10.1115/1.4043552] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/26/2019] [Indexed: 12/19/2022]
Abstract
The mitral valve (MV) is the heart valve that regulates blood ?ow between the left atrium and left ventricle (LV). In situations where the MV fails to fully cover the left atrioventricular ori?ce during systole, the resulting regurgitation causes pulmonary congestion, leading to heart failure and/or stroke. The causes of MV insuf?ciency can be either primary (e.g. myxomatous degeneration) where the valvular tissue is organically diseased, or secondary (typically inducded by ischemic cardiomyopathy) termed ischemic mitral regurgitation (IMR), is brought on by adverse LV remodeling. IMR is present in up to 40% of patients and more than doubles the probability of cardiovascular morbidity after 3.5 years. There is now agreement that adjunctive procedures are required to treat IMR caused by lea?et tethering. However, there is no consensus regarding the best procedure. Multicenter registries and randomized trials would be necessary to prove which procedure is superior. Given the number of proposed procedures and the complexity and duration of such studies, it is highly unlikely that IMR procedure optimization will be achieved by prospective clinical trials. There is thus an urgent need for cell and tissue physiologically based quantitative assessments of MV function to better design surgical solutions and associated therapies. Novel computational approaches directed towards optimized surgical repair procedures can substantially reduce the need for such trial-and-error approaches. We present the details of our MV modeling techniques, with an emphasis on what is known and investigated at various length scales.
Collapse
Affiliation(s)
- Michael Sacks
- aWillerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Andrew Drach
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Chung-Hao Lee
- Department of Mechanical and Aerospace Engineering, University of Oklahoma, Norman, OK
| | - Amir Khalighi
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Bruno Rego
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Will Zhang
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Salma Ayoub
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Ajit Yoganathan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Joseph H Gorman Iii
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
17
|
Rego BV, Khalighi AH, Drach A, Lai EK, Pouch AM, Gorman RC, Gorman JH, Sacks MS. A noninvasive method for the determination of in vivo mitral valve leaflet strains. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e3142. [PMID: 30133180 DOI: 10.1002/cnm.3142] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/21/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Assessment of mitral valve (MV) function is important in many diagnostic, prognostic, and surgical planning applications for treatment of MV disease. Yet, to date, there are no accepted noninvasive methods for determination of MV leaflet deformation, which is a critical metric of MV function. In this study, we present a novel, completely noninvasive computational method to estimate MV leaflet in-plane strains from clinical-quality real-time three-dimensional echocardiography (rt-3DE) images. The images were first segmented to produce meshed medial-surface leaflet geometries of the open and closed states. To establish material point correspondence between the two states, an image-based morphing pipeline was implemented within a finite element (FE) modeling framework in which MV closure was simulated by pressurizing the open-state geometry, and local corrective loads were applied to enforce the actual MV closed shape. This resulted in a complete map of local systolic leaflet membrane strains, obtained from the final FE mesh configuration. To validate the method, we utilized an extant in vitro database of fiducially labeled MVs, imaged in conditions mimicking both the healthy and diseased states. Our method estimated local anisotropic in vivo strains with less than 10% error and proved to be robust to changes in boundary conditions similar to those observed in ischemic MV disease. Next, we applied our methodology to ovine MVs imaged in vivo with rt-3DE and compared our results to previously published findings of in vivo MV strains in the same type of animal as measured using surgically sutured fiducial marker arrays. In regions encompassed by fiducial markers, we found no significant differences in circumferential(P = 0.240) or radial (P = 0.808) strain estimates between the marker-based measurements and our novel noninvasive method. This method can thus be used for model validation as well as for studies of MV disease and repair.
Collapse
Affiliation(s)
- Bruno V Rego
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Amir H Khalighi
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Andrew Drach
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Eric K Lai
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alison M Pouch
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael S Sacks
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
18
|
Abstract
Mitral regurgitation is the most common valvular disease and significant (moderate/severe) mitral regurgitation is found in 2.3% of the population older than 65 years. New transcatheter minimally invasive technologies are being developed to address mitral valve disease in patients deemed too high a risk for conventional open-heart surgery. There are several features of the mitral valve (saddle-shaped noncalcified annulus with irregular leaflet geometry) that make a transcatheter approach to repair or replacing the valve more challenging compared with the aortic valve. Several devices are under investigation for transcatheter mitral valve replacement, and also for mitral valve repair targeting the mitral valve leaflets, chordae tendinae, and mitral annulus. The MitraClip device is the only Food and Drug Administration-approved device to treat mitral regurgitation by targeting the mitral leaflets. There are eight minimally invasive devices being studied in humans that target the mitral annulus, and at least two devices being studied in animal models. There are 5 devices in clinical trials for minimally invasive approaches targeting the chordae tendinae. More than 10 different transcatheter mitral valves are in various stages of development and clinical trials. These transcatheter mitral valves can be delivered either through a transseptal, transapical, transaortic, or left atriotomy approach. It seems likely that transcatheter treatment approaches to mitral valve disease will become more common, at least in the sick and elderly patient population.
Collapse
Affiliation(s)
- Kelly Kohorst
- 1 Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mias Pretorius
- 1 Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
19
|
Kheradvar A, Zareian R, Kawauchi S, Goodwin RL, Rugonyi S. Animal Models for Heart Valve Research and Development. ACTA ACUST UNITED AC 2018; 24:55-62. [PMID: 30631375 DOI: 10.1016/j.ddmod.2018.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Valvular heart disease is the third-most common cause of heart problems in the United States. Malfunction of the valves can be acquired or congenital and each may lead either to stenosis or regurgitation, or even both in some cases. Heart valve disease is a progressive disease, which is irreversible and may be fatal if left untreated. Pharmacological agents cannot currently prevent valvular calcification or help repair damaged valves, as valve tissue is unable to regenerate spontaneously. Thus, heart valve replacement/repair is the only current available treatment. Heart valve research and development is currently focused on two parallel paths; first, research that aims to understand the underlying mechanisms for heart valve disease to emerge with an ultimate goal to devise medical treatment; and second, efforts to develop repair and replacement options for a diseased valve. Studies that focus on developmental malformation, genetic and disease epigenetics usually employ small animal models that are easy to access for in vivo imaging that minimally disturbs their environment during early stages of development. Alternatively, studies that aim to develop novel device for replacement and repair of diseased valves often employ large animals whose heart size and anatomy closely replicate human's. This paper aims to briefly review the current state-of-the-art animal models, and justification to use an animal model for a particular heart valve related project.
Collapse
|
20
|
Post-operative ventricular flow dynamics following atrioventricular valve surgical and device therapies: A review. Med Eng Phys 2018; 54:1-13. [DOI: 10.1016/j.medengphy.2018.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/17/2017] [Accepted: 01/28/2018] [Indexed: 01/26/2023]
|
21
|
Drach A, Khalighi AH, Sacks MS. A comprehensive pipeline for multi-resolution modeling of the mitral valve: Validation, computational efficiency, and predictive capability. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:10.1002/cnm.2921. [PMID: 28776326 PMCID: PMC5797517 DOI: 10.1002/cnm.2921] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 05/18/2023]
Abstract
Multiple studies have demonstrated that the pathological geometries unique to each patient can affect the durability of mitral valve (MV) repairs. While computational modeling of the MV is a promising approach to improve the surgical outcomes, the complex MV geometry precludes use of simplified models. Moreover, the lack of complete in vivo geometric information presents significant challenges in the development of patient-specific computational models. There is thus a need to determine the level of detail necessary for predictive MV models. To address this issue, we have developed a novel pipeline for building attribute-rich computational models of MV with varying fidelity directly from the in vitro imaging data. The approach combines high-resolution geometric information from loaded and unloaded states to achieve a high level of anatomic detail, followed by mapping and parametric embedding of tissue attributes to build a high-resolution, attribute-rich computational models. Subsequent lower resolution models were then developed and evaluated by comparing the displacements and surface strains to those extracted from the imaging data. We then identified the critical levels of fidelity for building predictive MV models in the dilated and repaired states. We demonstrated that a model with a feature size of about 5 mm and mesh size of about 1 mm was sufficient to predict the overall MV shape, stress, and strain distributions with high accuracy. However, we also noted that more detailed models were found to be needed to simulate microstructural events. We conclude that the developed pipeline enables sufficiently complex models for biomechanical simulations of MV in normal, dilated, repaired states.
Collapse
Affiliation(s)
- Andrew Drach
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Amir H Khalighi
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Michael S Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
22
|
Gao H, Qi N, Feng L, Ma X, Danton M, Berry C, Luo X. Modelling mitral valvular dynamics-current trend and future directions. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33:e2858. [PMID: 27935265 PMCID: PMC5697636 DOI: 10.1002/cnm.2858] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/30/2016] [Accepted: 11/26/2016] [Indexed: 05/19/2023]
Abstract
Dysfunction of mitral valve causes morbidity and premature mortality and remains a leading medical problem worldwide. Computational modelling aims to understand the biomechanics of human mitral valve and could lead to the development of new treatment, prevention and diagnosis of mitral valve diseases. Compared with the aortic valve, the mitral valve has been much less studied owing to its highly complex structure and strong interaction with the blood flow and the ventricles. However, the interest in mitral valve modelling is growing, and the sophistication level is increasing with the advanced development of computational technology and imaging tools. This review summarises the state-of-the-art modelling of the mitral valve, including static and dynamics models, models with fluid-structure interaction, and models with the left ventricle interaction. Challenges and future directions are also discussed.
Collapse
Affiliation(s)
- Hao Gao
- School of Mathematics and StatisticsUniversity of GlasgowUK
| | - Nan Qi
- School of Mathematics and StatisticsUniversity of GlasgowUK
| | - Liuyang Feng
- School of Mathematics and StatisticsUniversity of GlasgowUK
| | | | - Mark Danton
- Department of Cardiac SurgeryRoyal Hospital for ChildrenGlasgowUK
| | - Colin Berry
- Institute of Cardiovascular and Medical SciencesUniversity of GlasgowUK
| | - Xiaoyu Luo
- School of Mathematics and StatisticsUniversity of GlasgowUK
| |
Collapse
|
23
|
Bozkurt S, Preston-Maher GL, Torii R, Burriesci G. Design, Analysis and Testing of a Novel Mitral Valve for Transcatheter Implantation. Ann Biomed Eng 2017; 45:1852-1864. [PMID: 28374279 PMCID: PMC5527080 DOI: 10.1007/s10439-017-1828-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/25/2017] [Indexed: 12/31/2022]
Abstract
Mitral regurgitation is a common mitral valve dysfunction which may lead to heart failure. Because of the rapid aging of the population, conventional surgical repair and replacement of the pathological valve are often unsuitable for about half of symptomatic patients, who are judged high-risk. Transcatheter valve implantation could represent an effective solution. However, currently available aortic valve devices are inapt for the mitral position. This paper presents the design, development and hydrodynamic assessment of a novel bi-leaflet mitral valve suitable for transcatheter implantation. The device consists of two leaflets and a sealing component made from bovine pericardium, supported by a self-expanding wireframe made from superelastic NiTi alloy. A parametric design procedure based on numerical simulations was implemented to identify design parameters providing acceptable stress levels and maximum coaptation area for the leaflets. The wireframe was designed to host the leaflets and was optimised numerically to minimise the stresses for crimping in an 8 mm sheath for percutaneous delivery. Prototypes were built and their hydrodynamic performances were tested on a cardiac pulse duplicator, in compliance with the ISO5840-3:2013 standard. The numerical results and hydrodynamic tests show the feasibility of the device to be adopted as a transcatheter valve implant for treating mitral regurgitation.
Collapse
Affiliation(s)
- Selim Bozkurt
- UCL Mechanical Engineering, Cardiovascular Engineering Laboratory, University College London, London, WC1E 7JE, UK
| | - Georgia L Preston-Maher
- UCL Mechanical Engineering, Cardiovascular Engineering Laboratory, University College London, London, WC1E 7JE, UK
| | - Ryo Torii
- UCL Mechanical Engineering, Cardiovascular Engineering Laboratory, University College London, London, WC1E 7JE, UK
| | - Gaetano Burriesci
- UCL Mechanical Engineering, Cardiovascular Engineering Laboratory, University College London, London, WC1E 7JE, UK. .,Ri.MED Foundation, Bioengineering Group, Palermo, Italy.
| |
Collapse
|
24
|
Jeevan RR, Murari BM. Engineering challenges and the future prospects of transcatheter mitral valve replacement technologies: a comprehensive review of case studies. Expert Rev Med Devices 2017; 14:297-307. [PMID: 28281857 DOI: 10.1080/17434440.2017.1305267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Catheter based Interventional procedures have become an indispensable treatment option for patients contraindicated for surgical heart valve replacement . The broad spectrum of disease that affect the mitral valve have increased the need for a transcatheter mitral valve replacement (TMVR) device. As complex as the mitral valve anatomy is, so are challenges in the development of a TMVR device. Areas covered: This review article analyses the challenges in the development of the TMVR device from an engineering perspective of material and device design. The major sections in this paper discusses the engineering challenges in the development of TMVR device, material & design considerations, surface coating, present and future of TMVR, delivery catheter specifications and commercial prospects of the TMVR. This article highlights the current status in the development of each of the devices based on the outcome clinical trials and case studies. The literature analysis was carried out using the keywords search. Expert commentary: This section concludes with the need for collaborative efforts from the medical and engineering expertise for the successful development of TMVR device. Overcoming the anatomical challenges with engineering innovations would create new frontier in TMVR technologies.
Collapse
Affiliation(s)
- Ranjitha Rebecca Jeevan
- a Department of Sensor and Biomedical Technology, School of Electronics Engineering , VIT University , Vellore , Tamil Nadu , India
| | - Bhaskar Mohan Murari
- a Department of Sensor and Biomedical Technology, School of Electronics Engineering , VIT University , Vellore , Tamil Nadu , India
| |
Collapse
|
25
|
|
26
|
Vukicevic M, Mosadegh B, Min JK, Little SH. Cardiac 3D Printing and its Future Directions. JACC Cardiovasc Imaging 2017; 10:171-184. [PMID: 28183437 PMCID: PMC5664227 DOI: 10.1016/j.jcmg.2016.12.001] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/15/2022]
Abstract
Three-dimensional (3D) printing is at the crossroads of printer and materials engineering, noninvasive diagnostic imaging, computer-aided design, and structural heart intervention. Cardiovascular applications of this technology development include the use of patient-specific 3D models for medical teaching, exploration of valve and vessel function, surgical and catheter-based procedural planning, and early work in designing and refining the latest innovations in percutaneous structural devices. In this review, we discuss the methods and materials being used for 3D printing today. We discuss the basic principles of clinical image segmentation, including coregistration of multiple imaging datasets to create an anatomic model of interest. With applications in congenital heart disease, coronary artery disease, and surgical and catheter-based structural disease, 3D printing is a new tool that is challenging how we image, plan, and carry out cardiovascular interventions.
Collapse
Affiliation(s)
- Marija Vukicevic
- Department of Cardiology, Weill Cornell Medicine, Houston Methodist Research Institute, Houston, Texas
| | - Bobak Mosadegh
- Department of Radiology and Medicine, Weill Cornell Medicine, New-York Presbyterian, New York, New York
| | - James K Min
- Department of Radiology and Medicine, Weill Cornell Medicine, New-York Presbyterian, New York, New York
| | - Stephen H Little
- Department of Cardiology, Weill Cornell Medicine, Houston Methodist Research Institute, Houston, Texas.
| |
Collapse
|
27
|
Schoen FJ. Morphology, Clinicopathologic Correlations, and Mechanisms in Heart Valve Health and Disease. Cardiovasc Eng Technol 2016; 9:126-140. [PMID: 27502286 DOI: 10.1007/s13239-016-0277-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
Abstract
The clinical and pathological features of the most frequent intrinsic structural diseases that affect the heart valves are well established, but heart valve disease mechanisms are poorly understood, and effective treatment options are evolving. Major advances in the understanding of the structure, function and biology of native valves and the pathobiology, biomaterials and biomedical engineering, and the clinical management of valvular heart disease have occurred over the past several decades. This communication reviews contemporary considerations relative to the pathology of valvular heart disease, including (1) clinical significance and epidemiology of valvular heart disease; (2) functional and dynamic valvular macro-, micro- and ultrastructure; (3) causes, morphology and mechanisms of human valvular heart disease; and (4) pathologic considerations in valve replacement, repair and, potentially, regeneration of the heart valves.
Collapse
Affiliation(s)
- Frederick J Schoen
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
28
|
Vukicevic M, Puperi DS, Jane Grande-Allen K, Little SH. 3D Printed Modeling of the Mitral Valve for Catheter-Based Structural Interventions. Ann Biomed Eng 2016; 45:508-519. [DOI: 10.1007/s10439-016-1676-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/07/2016] [Indexed: 11/30/2022]
|
29
|
Abstract
PURPOSE OF REVIEW Recent methodological advances in computational simulations are enabling increasingly realistic simulations of hemodynamics and physiology, driving increased clinical utility. We review recent developments in the use of computational simulations in pediatric and congenital heart disease, describe the clinical impact in modeling in single-ventricle patients, and provide an overview of emerging areas. RECENT FINDINGS Multiscale modeling combining patient-specific hemodynamics with reduced order (i.e., mathematically and computationally simplified) circulatory models has become the de-facto standard for modeling local hemodynamics and 'global' circulatory physiology. We review recent advances that have enabled faster solutions, discuss new methods (e.g., fluid structure interaction and uncertainty quantification), which lend realism both computationally and clinically to results, highlight novel computationally derived surgical methods for single-ventricle patients, and discuss areas in which modeling has begun to exert its influence including Kawasaki disease, fetal circulation, tetralogy of Fallot (and pulmonary tree), and circulatory support. SUMMARY Computational modeling is emerging as a crucial tool for clinical decision-making and evaluation of novel surgical methods and interventions in pediatric cardiology and beyond. Continued development of modeling methods, with an eye towards clinical needs, will enable clinical adoption in a wide range of pediatric and congenital heart diseases.
Collapse
|