1
|
Fang Z, Bi S, Brown JD, Chen J, Pan T. Microfluidics in the eye: a review of glaucoma implants from an engineering perspective. LAB ON A CHIP 2023; 23:4736-4772. [PMID: 37847237 DOI: 10.1039/d3lc00407d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Glaucoma is a progressive optic neuropathy in the eye, which is a leading cause of irreversible blindness worldwide and currently affects over 70 million individuals. Clinically, intraocular pressure (IOP) reduction is the only proven treatment to halt the progression of glaucoma. Microfluidic devices such as glaucoma drainage devices (GDDs) and minimally invasive glaucoma surgery (MIGS) devices are routinely used by ophthalmologists to manage elevated IOP, by creating an artificial pathway for the over-accumulated aqueous humor (AH) in a glaucomatous eye, when the natural pathways are severely blocked. Herein, a detailed modelling and analysis of both the natural microfluidic pathways of the AH in the eye and artificial microfluidic pathways formed additionally by the various glaucoma implants are conducted to provide an insight into the causes of the IOP abnormality and the improvement schemes of current implant designs. The mechanisms of representative glaucoma implants have been critically reviewed from the perspective of microfluidics, and we have categorized the current implants into four groups according to the targeted drainage sites of the AH, namely Schlemm's canal, suprachoroidal space, subconjunctival space, and ocular surface. In addition, we propose to divide the development and evolution of glaucoma implant designs into three technological waves, which include microtube (1st), microvalve (2nd) and microsystem (3rd). With the emerging trends of minimal invasiveness and artificial intelligence in the development of medical implants, we envision that a comprehensive glaucoma treatment microsystem is on the horizon, which is featured with active and wireless control of IOP, real-time continuous monitoring of IOP and aqueous rate, etc. The current review could potentially cast light on the unmatched needs, challenges, and future directions of the microfluidic structural and functional designs of glaucoma implants, which would enable an enhanced safety profile, reduced complications, increased efficacy of lowering IOP and reduced IOP fluctuations, closed-loop and on-demand control of IOP, etc.
Collapse
Affiliation(s)
- Zecong Fang
- Bionic Sensing and Intelligence Center (BSIC), Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
| | - Shuzhen Bi
- Center for Intelligent Medical Equipment and Devices (iMED), University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | | | - Junyi Chen
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China
| | - Tingrui Pan
- Bionic Sensing and Intelligence Center (BSIC), Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
- Center for Intelligent Medical Equipment and Devices (iMED), University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
2
|
Lubricin as a tool for controlling adhesion in vivo and ex vivo. Biointerphases 2021; 16:020802. [PMID: 33736436 DOI: 10.1116/6.0000779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The ability to prevent or minimize the accumulation of unwanted biological materials on implantable medical devices is important in maintaining the long-term function of implants. To address this issue, there has been a focus on materials, both biological and synthetic, that have the potential to prevent device fouling. In this review, we introduce a glycoprotein called lubricin and report on its emergence as an effective antifouling coating material. We outline the versatility of lubricin coatings on different surfaces, describe the physical properties of its monolayer structures, and highlight its antifouling properties in improving implant compatibility as well as its use in treatment of ocular diseases and arthritis. This review further describes synthetic polymers mimicking the lubricin structure and function. We also discuss the potential future use of lubricin and its synthetic mimetics as antiadhesive biomaterials for therapeutic applications.
Collapse
|
3
|
Kwon S, Kim SH, Khang D, Lee JY. Potential Therapeutic Usage of Nanomedicine for Glaucoma Treatment. Int J Nanomedicine 2020; 15:5745-5765. [PMID: 32821099 PMCID: PMC7418176 DOI: 10.2147/ijn.s254792] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022] Open
Abstract
Glaucoma is a group of diseases characterized by progressive degeneration of retinal ganglion cells, leading to irreversible blindness. Currently, intraocular pressure reduction is the only established treatment available for glaucoma. With this treatment, the progression of the disease can only be delayed and there is no recovery. In addition, the commercially available eye drops have the disadvantage of low compliance and short therapeutic time, while glaucoma surgery always has the risk of failure due to wound fibrosis. Nanotechnology can overcome the limitations of the current treatment through the encapsulation and conjugation of drugs used for lowering intraocular pressure and antifibrotic agents using biodegradable or biocompatible nanoparticles for the sustained release of the drugs to protect the damaged ocular cells. Furthermore, using nanotechnology, treatment can be administered in various forms, including eye drops, contact lens, and ocular inserts, according to the convenience of the patients. Despite the promising results of delaying the progression of glaucoma, the regeneration of damaged ocular cells, including trabecular meshwork and retinal ganglion cells, is another critical hurdle to overcome. Bone marrow-derived mesenchymal stem cells and Müller glia cells can secrete neurogenic factors that trigger the regeneration of associated cells, including trabecular meshwork and retinal ganglion cells. In conclusion, this review highlights the potential therapeutic applications of nanotechnology- and stem cell-based methods that can be employed for the protection and regeneration of ocular cells.
Collapse
Affiliation(s)
- Song Kwon
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea
| | - Sung Hyun Kim
- Department of Ophthalmology, Gil Medical Center, Gachon University, College of Medicine, Incheon 21565, South Korea
| | - Dongwoo Khang
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea.,Department of Gachon Advanced Institute for Health Science & Technology (GAIHST), Gachon University, Incheon 21999, South Korea.,Department of Physiology, School of Medicine, Gachon University, Incheon 21999, South Korea
| | - Jong Yeon Lee
- Department of Ophthalmology, Gil Medical Center, Gachon University, College of Medicine, Incheon 21565, South Korea
| |
Collapse
|
4
|
Parikh KS, Josyula A, Omiadze R, Ahn JY, Ha Y, Ensign LM, Hanes J, Pitha I. Nano-structured glaucoma drainage implant safely and significantly reduces intraocular pressure in rabbits via post-operative outflow modulation. Sci Rep 2020; 10:12911. [PMID: 32737340 PMCID: PMC7395089 DOI: 10.1038/s41598-020-69687-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022] Open
Abstract
Glaucoma is a leading cause of irreversible vision loss predicted to affect more than 100 million people by 2040. Intraocular pressure (IOP) reduction prevents development of glaucoma and vision loss from glaucoma. Glaucoma surgeries reduce IOP by facilitating aqueous humor outflow through a vent fashioned from the wall of the eye (trabeculectomy) or a glaucoma drainage implant (GDI), but surgeries lose efficacy overtime, and the five-year failure rates for trabeculectomy and tube shunts are 25-45%. The majority of surgical failures occur due to fibrosis around the vent. Alternatively, surgical procedures can shunt aqueous humor too well, leading to hypotony. Electrospinning is an appealing manufacturing platform for GDIs, as it allows for incorporation of biocompatible polymers into nano- or micro-fibers that can be configured into devices of myriad combinations of dimensions and conformations. Here, small-lumen, nano-structured glaucoma shunts were manufactured with or without a degradable inner core designed to modulate aqueous humor outflow to provide immediate IOP reduction, prevent post-operative hypotony, and potentially offer significant, long-term IOP reduction. Nano-structured shunts were durable, leak-proof, and demonstrated biocompatibility and patency in rabbit eyes. Importantly, both designs prevented hypotony and significantly reduced IOP for 27 days in normotensive rabbits, demonstrating potential for clinical utility.
Collapse
Affiliation(s)
- Kunal S Parikh
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Center for Bioengineering Innovation & Design, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Aditya Josyula
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Revaz Omiadze
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Ju Young Ahn
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Youlim Ha
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Laura M Ensign
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Justin Hanes
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Departments of Environmental Health Sciences, Oncology, and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Ian Pitha
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, 21287, USA.
| |
Collapse
|
5
|
Abstract
Glaucoma is the second leading cause of blindness worldwide. Even though significant advances have been made in its management, currently available antiglaucoma therapies suffer from considerable drawbacks. Typically, the success and efficacy of glaucoma medications are undermined by their limited bioavailability to target tissues and the inadequate adherence demonstrated by patients with glaucoma. The latter is due to a gradual decrease in tolerability of lifelong topical therapies and the significant burden to patients of prescribed stepwise antiglaucoma regimens with frequent dosing which impact quality of life. On the other hand, glaucoma surgery is restricted by the inability of antifibrotic agents to efficiently control the wound healing process without causing severe collateral damage and long-term complications. Evolution of the treatment paradigm for patients with glaucoma will ideally include prevention of retinal ganglion cell degeneration by the successful delivery of neurotrophic factors, anti-inflammatory drugs, and gene therapies. Nanotechnology-based treatments may surpass the limitations of currently available glaucoma therapies through optimized targeted drug delivery, increased bioavailability, and controlled release. This review addresses the recent advances in glaucoma treatment strategies employing nanotechnology, including medical and surgical management, neuroregeneration, and neuroprotection.
Collapse
|
6
|
Juliana FR, Kesse S, Boakye-Yiadom KO, Veroniaina H, Wang H, Sun M. Promising Approach in the Treatment of Glaucoma Using Nanotechnology and Nanomedicine-Based Systems. Molecules 2019; 24:E3805. [PMID: 31652593 PMCID: PMC6833088 DOI: 10.3390/molecules24203805] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 12/14/2022] Open
Abstract
Glaucoma is considered a leading cause of blindness with the human eye being one of the body's most delicate organs. Ocular diseases encompass diverse diseases affecting the anterior and posterior ocular sections, respectively. The human eye's peculiar and exclusive anatomy and physiology continue to pose a significant obstacle to researchers and pharmacologists in the provision of efficient drug delivery. Though several traditional invasive and noninvasive eye therapies exist, including implants, eye drops, and injections, there are still significant complications that arise which may either be their low bioavailability or the grave ocular adverse effects experienced thereafter. On the other hand, new nanoscience technology and nanotechnology serve as a novel approach in ocular disease treatment. In order to interact specifically with ocular tissues and overcome ocular challenges, numerous active molecules have been modified to react with nanocarriers. In the general population of glaucoma patients, disease growth and advancement cannot be contained by decreasing intraocular pressure (IOP), hence a spiking in future research for novel drug delivery systems and target therapeutics. This review focuses on nanotechnology and its therapeutic and diagnostic prospects in ophthalmology, specifically glaucoma. Nanotechnology and nanomedicine history, the human eye anatomy, research frontiers in nanomedicine and nanotechnology, its imaging modal quality, diagnostic and surgical approach, and its possible application in glaucoma will all be further explored below. Particular focus will be on the efficiency and safety of this new therapy and its advances.
Collapse
Affiliation(s)
| | - Samuel Kesse
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Kofi Oti Boakye-Yiadom
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Hanitrarimalala Veroniaina
- State Key Laboratory of Modern Chinese Medicine, China Pharmaceutical University, Nanjing 210009, China.
| | - Huihui Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Meihao Sun
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
7
|
Cardigos J, Ferreira Q, Crisóstomo S, Moura-Coelho N, Cunha JP, Pinto LA, Ferreira JT. Nanotechnology-Ocular Devices for Glaucoma Treatment: A Literature Review. Curr Eye Res 2018; 44:111-117. [PMID: 30309248 DOI: 10.1080/02713683.2018.1536218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Nanotechnology enabled the development of materials and devices with great utility in different fields of medicine. By using engineered-based nano-devices and structures, human biological systems may be controlled and repaired at a molecular scale, ultimately leading to a biological benefit. In particular, in the field of glaucoma treatment, nanotechnology may, for example, enhance drug residence time on the ocular surface and ocular bioavailability, as well as improve surgical success by both optimizing postoperative scarring and providing a wider safety window. Further studies are still needed to entirely explain the pharmacodynamics of nanotechnology-based therapeutic approaches and prove their biological consequences in human eyes. This review aims to summarize the literature concerning the advances in nanotechnology, specifically regarding ocular devices applied to the treatment of glaucoma.
Collapse
Affiliation(s)
- Joana Cardigos
- a Departamento de Oftalmologia , Centro Hospitalar Lisboa Central , Lisboa , Portugal
| | | | - Sara Crisóstomo
- a Departamento de Oftalmologia , Centro Hospitalar Lisboa Central , Lisboa , Portugal
| | - Nuno Moura-Coelho
- a Departamento de Oftalmologia , Centro Hospitalar Lisboa Central , Lisboa , Portugal
| | - João Paulo Cunha
- a Departamento de Oftalmologia , Centro Hospitalar Lisboa Central , Lisboa , Portugal.,c NOVA Medical School/Faculdade de Ciências Médicas da Universidade Nova de Lisboa , Lisboa , Portugal
| | - Luís Abegão Pinto
- d Departamento de Oftalmologia , Centro Hospitalar Lisboa Norte , Lisboa , Portugal.,e Centro de Estudos das Ciências da Visão , Faculdade de Medicina da Universidade de Lisboa , Lisboa , Portugal
| | - Joana Tavares Ferreira
- a Departamento de Oftalmologia , Centro Hospitalar Lisboa Central , Lisboa , Portugal.,c NOVA Medical School/Faculdade de Ciências Médicas da Universidade Nova de Lisboa , Lisboa , Portugal
| |
Collapse
|
8
|
Abstract
Glaucoma is the second leading cause of blindness worldwide, and the antiglaucoma treatments currently available suffer from various complications. Nanotechnology-based treatments show a great deal of promise in overcoming these complications and form the basis for next-generation glaucoma treatment strategies, with the help of applications such as controlled release, targeted delivery, increased bioavailability, diffusion limitations, and biocompatibility. Significant progress has been made in nanomedicine in the efficiency of antiglaucoma medications, nanofabrication systems such as microelectromechanical systems that remove the limitations of nanodevices, and tissue regeneration vesicles for developing glaucoma treatments not based on intraocular pressure. With the use of these advanced technologies, the prevention of glaucoma-induced blindness will be possible in the near future. Herein, we reviewed the recent advances in nanotechnology-based treatment strategies for glaucoma.
Collapse
Affiliation(s)
- Sibel Cetinel
- From the Chemical and Materials Engineering and Ingenuity Lab, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|