1
|
Liu L, Yoon CW, Yuan Z, Guo T, Qu Y, He P, Yu X, Zhu Z, Limsakul P, Wang Y. Cellular and molecular imaging of CAR-T cell-based immunotherapy. Adv Drug Deliv Rev 2023; 203:115135. [PMID: 37931847 PMCID: PMC11052581 DOI: 10.1016/j.addr.2023.115135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Chimeric Antigen Receptor T cell (CAR-T) therapy has emerged as a transformative therapeutic strategy for hematological malignancies. However, its efficacy in treating solid tumors remains limited. An in-depth and comprehensive understanding of CAR-T cell signaling pathways and the ability to track CAR-T cell biodistribution and activation in real-time within the tumor microenvironment will be instrumental in designing the next generation of CAR-T cells for solid tumor therapy. This review summarizes the signaling network and the cellular and molecular imaging tools and platforms that are utilized in CAR-T cell-based immune therapies, covering both in vitro and in vivo studies. Firstly, we provide an overview of the existing understanding of the activation and cytotoxic mechanisms of CAR-T cells, compared to the mechanism of T cell receptor (TCR) signaling pathways. We further describe the commonly employed tools for live cell imaging, coupled with recent research progress, with a focus on genetically encoded fluorescent proteins (FPs) and biosensors. We then discuss the utility of diverse in vivo imaging modalities, including fluorescence and bioluminescence imaging, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and photoacoustic (PA) imaging, for noninvasive monitoring of CAR-T cell dynamics within tumor tissues, thereby providing critical insights into therapy's strengths and weaknesses. Lastly, we discuss the current challenges and future directions of CAR-T cell therapy from the imaging perspective. We foresee that a comprehensive and integrative approach to CAR-T cell imaging will enable the development of more effective treatments for solid tumors in the future.
Collapse
Affiliation(s)
- Longwei Liu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Chi Woo Yoon
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zhou Yuan
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Tianze Guo
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yunjia Qu
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Peixiang He
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xi Yu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ziyue Zhu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Praopim Limsakul
- Division of Physical Science, Faculty of Science and Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Yingxiao Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA; Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Kim H, Choi G, Suk ME, Kim TJ. Resource for FRET-Based Biosensor Optimization. Front Cell Dev Biol 2022; 10:885394. [PMID: 35794864 PMCID: PMC9251444 DOI: 10.3389/fcell.2022.885394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
After the development of Cameleon, the first fluorescence resonance energy transfer (FRET)-based calcium indicator, a variety of FRET-based genetically encoded biosensors (GEBs) have visualized numerous target players to monitor their cell physiological dynamics spatiotemporally. Many attempts have been made to optimize GEBs, which require labor-intensive effort, novel approaches, and precedents to develop more sensitive and versatile biosensors. However, researchers face considerable trial and error in upgrading biosensors because examples and methods of improving FRET-based GEBs are not well documented. In this review, we organize various optimization strategies after assembling the existing cases in which the non-fluorescent components of biosensors are upgraded. In addition, promising areas to which optimized biosensors can be applied are briefly discussed. Therefore, this review could serve as a resource for researchers attempting FRET-based GEB optimization.
Collapse
Affiliation(s)
- Heonsu Kim
- Institute of Systems Biology, Pusan National University, Busan, South Korea
| | - Gyuho Choi
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Myung Eun Suk
- Department of Mechanical Engineering, IT Convergence College of Materials and Components Engineering, Dong-Eui University, Busan, South Korea
- *Correspondence: Myung Eun Suk, ; Tae-Jin Kim,
| | - Tae-Jin Kim
- Institute of Systems Biology, Pusan National University, Busan, South Korea
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
- Department of Biological Sciences, Pusan National University, Busan, South Korea
- *Correspondence: Myung Eun Suk, ; Tae-Jin Kim,
| |
Collapse
|
3
|
Raymond SJ, Cecchi NJ, Alizadeh HV, Callan AA, Rice E, Liu Y, Zhou Z, Zeineh M, Camarillo DB. Physics-Informed Machine Learning Improves Detection of Head Impacts. Ann Biomed Eng 2022; 50:1534-1545. [PMID: 35303171 DOI: 10.1007/s10439-022-02911-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/01/2022] [Indexed: 12/26/2022]
Abstract
In this work we present a new physics-informed machine learning model that can be used to analyze kinematic data from an instrumented mouthguard and detect impacts to the head. Monitoring player impacts is vitally important to understanding and protecting from injuries like concussion. Typically, to analyze this data, a combination of video analysis and sensor data is used to ascertain the recorded events are true impacts and not false positives. In fact, due to the nature of using wearable devices in sports, false positives vastly outnumber the true positives. Yet, manual video analysis is time-consuming. This imbalance leads traditional machine learning approaches to exhibit poor performance in both detecting true positives and preventing false negatives. Here, we show that by simulating head impacts numerically using a standard Finite Element head-neck model, a large dataset of synthetic impacts can be created to augment the gathered, verified, impact data from mouthguards. This combined physics-informed machine learning impact detector reported improved performance on test datasets compared to traditional impact detectors with negative predictive value and positive predictive values of 88 and 87% respectively. Consequently, this model reported the best results to date for an impact detection algorithm for American football, achieving an F1 score of 0.95. In addition, this physics-informed machine learning impact detector was able to accurately detect true and false impacts from a test dataset at a rate of 90% and 100% relative to a purely manual video analysis workflow. Saving over 12 h of manual video analysis for a modest dataset, at an overall accuracy of 92%, these results indicate that this model could be used in place of, or alongside, traditional video analysis to allow for larger scale and more efficient impact detection in sports such as American Football.
Collapse
Affiliation(s)
- Samuel J Raymond
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| | - Nicholas J Cecchi
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | | | - Ashlyn A Callan
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Eli Rice
- Stanford Center for Clinical Research, Stanford University, Stanford, CA, 94305, USA
| | - Yuzhe Liu
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Zhou Zhou
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Michael Zeineh
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - David B Camarillo
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.,Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA.,Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
4
|
Zhou J, Chen J, Huang Y, Gao X, Zhou C, Meng X, Sun J. Signaling Dynamics of TSHR-Specific CAR-T Cells Revealed by FRET-Based Biosensors. Front Cell Dev Biol 2022; 10:845319. [PMID: 35252208 PMCID: PMC8893275 DOI: 10.3389/fcell.2022.845319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/31/2022] [Indexed: 12/05/2022] Open
Abstract
Although most patients with thyroid cancers have good prognosis and long-term survival, some patients are refractory to traditional therapeutic approaches and face a high risk of mortality. CAR-T therapy provides an attractive strategy to treat these patients. Considering the limited expression in thyroid tissues, thyroid-stimulating hormone receptor (TSHR) has been considered as a promising candidate as CAR-T target. However, it is still a challenge to find the optimal CAR design for the treatment of thyroid cancers. Dynamic signaling cascade is initiated by CAR molecules during CAR-T cell activation. The development of FRET-based biosensors enables us to detect the signaling dynamics of key kinases during CAR-T cell activation with high spatiotemporal resolution. Here using the ZAP70 and ERK biosensors, we visualized the dynamics of ZAP70 and ERK activities in TSHR-specific CAR-T cells upon antigen stimulation. We first constructed several TSHR-targeting CARs for the treatment of advanced thyroid cancers. The TSHR CAR-T cells with CD28 or 4-1BB co-stimulatory signaling domains exhibited potent cytotoxicity in vitro. By FRET imaging, we observed rapid increase of ZAP70 and ERK activities in TSHR CAR-T cells upon target cell binding. Even though CD28-based CAR-T cells had similar ZAP70 activation dynamics as 4-1BB-based CAR-T cells, they displayed slightly enhanced ERK activation, which may contribute to their faster anti-tumor kinetics in vivo. These results demonstrated the efficacy of TSHR CAR-T cells to treat advanced thyroid cancers. Our study indicated the potential of applying FRET biosensors to optimize the design of CAR for effective CAR-T therapy.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Breast and Thyroid Surgery, People’s Hospital of Dongxihu District Wuhan City and Union Dongxihu Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jiangqing Chen
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Department of Cell Biology, Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yanjie Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiaofei Gao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Chun Zhou
- School of Public Health, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianhui Meng
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Department of Cell Biology, Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Jie Sun
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Department of Cell Biology, Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| |
Collapse
|
5
|
Bagheri Y, Ali AA, Keshri P, Chambers J, Gershenson A, You M. Imaging Membrane Order and Dynamic Interactions in Living Cells with a DNA Zipper Probe. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yousef Bagheri
- Department of Chemistry University of Massachusetts Amherst MA 01003 USA
| | - Ahsan Ausaf Ali
- Department of Chemistry University of Massachusetts Amherst MA 01003 USA
| | - Puspam Keshri
- Department of Chemistry University of Massachusetts Amherst MA 01003 USA
| | - James Chambers
- Institute for Applied Life Sciences University of Massachusetts Amherst MA 01003 USA
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology University of Massachusetts Amherst MA 01003 USA
| | - Mingxu You
- Department of Chemistry University of Massachusetts Amherst MA 01003 USA
| |
Collapse
|
6
|
Bagheri Y, Ali AA, Keshri P, Chambers J, Gershenson A, You M. Imaging Membrane Order and Dynamic Interactions in Living Cells with a DNA Zipper Probe. Angew Chem Int Ed Engl 2022; 61:e202112033. [PMID: 34767659 PMCID: PMC8792286 DOI: 10.1002/anie.202112033] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/19/2021] [Indexed: 02/03/2023]
Abstract
The cell membrane is a dynamic and heterogeneous structure composed of distinct sub-compartments. Within these compartments, preferential interactions occur among various lipids and proteins. Currently, it is still challenging to image these short-lived membrane complexes, especially in living cells. In this work, we present a DNA-based probe, termed "DNA Zipper", which allows the membrane order and pattern of transient interactions to be imaged in living cells using standard fluorescence microscopes. By fine-tuning the length and binding affinity of DNA duplex, these probes can precisely extend the duration of membrane lipid interactions via dynamic DNA hybridization. The correlation between membrane order and the activation of T-cell receptor signaling has also been studied. These programmable DNA probes function after a brief cell incubation, which can be easily adapted to study lipid interactions and membrane order during different membrane signaling events.
Collapse
Affiliation(s)
- Yousef Bagheri
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003 (USA)
| | - Ahsan Ausaf Ali
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003 (USA)
| | - Puspam Keshri
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003 (USA)
| | - James Chambers
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003 (USA)
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, MA 01003 (USA)
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003 (USA)
| |
Collapse
|
7
|
Liu L, Limsakul P, Meng X, Huang Y, Harrison RES, Huang TS, Shi Y, Yu Y, Charupanit K, Zhong S, Lu S, Zhang J, Chien S, Sun J, Wang Y. Integration of FRET and sequencing to engineer kinase biosensors from mammalian cell libraries. Nat Commun 2021; 12:5031. [PMID: 34413312 PMCID: PMC8376904 DOI: 10.1038/s41467-021-25323-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/30/2021] [Indexed: 01/01/2023] Open
Abstract
The limited sensitivity of Förster Resonance Energy Transfer (FRET) biosensors hinders their broader applications. Here, we develop an approach integrating high-throughput FRET sorting and next-generation sequencing (FRET-Seq) to identify sensitive biosensors with varying substrate sequences from large-scale libraries directly in mammalian cells, utilizing the design of self-activating FRET (saFRET) biosensor. The resulting biosensors of Fyn and ZAP70 kinases exhibit enhanced performance and enable the dynamic imaging of T-cell activation mediated by T cell receptor (TCR) or chimeric antigen receptor (CAR), revealing a highly organized ZAP70 subcellular activity pattern upon TCR but not CAR engagement. The ZAP70 biosensor elucidates the role of immunoreceptor tyrosine-based activation motif (ITAM) in affecting ZAP70 activation to regulate CAR functions. A saFRET biosensor-based high-throughput drug screening (saFRET-HTDS) assay further enables the identification of an FDA-approved cancer drug, Sunitinib, that can be repurposed to inhibit ZAP70 activity and autoimmune-disease-related T-cell activation.
Collapse
Affiliation(s)
- Longwei Liu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA
| | - Praopim Limsakul
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA
- Center of Excellence for Trace Analysis and Biosensor, Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Xianhui Meng
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, P.R. China
| | - Yan Huang
- Department of Chemistry and Chemical Engineering, Hunan University, Changsha, P.R. China
| | - Reed E S Harrison
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA
| | - Tse-Shun Huang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA
- BioLegend, San Diego, CA, USA
| | - Yiwen Shi
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA
| | - Yiyan Yu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA
| | - Krit Charupanit
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Sheng Zhong
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA
| | - Shaoying Lu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, CA, USA
| | - Shu Chien
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA
- Department of Medicine, University of California, San Diego, CA, USA
| | - Jie Sun
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, P.R. China.
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA.
| |
Collapse
|
8
|
Murphy KJ, Reed DA, Trpceski M, Herrmann D, Timpson P. Quantifying and visualising the nuances of cellular dynamics in vivo using intravital imaging. Curr Opin Cell Biol 2021; 72:41-53. [PMID: 34091131 DOI: 10.1016/j.ceb.2021.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022]
Abstract
Intravital imaging is a powerful technology used to quantify and track dynamic changes in live cells and tissues within an intact environment. The ability to watch cell biology in real-time 'as it happens' has provided novel insight into tissue homeostasis, as well as disease initiation, progression and response to treatment. In this minireview, we highlight recent advances in the field of intravital microscopy, touching upon advances in awake versus anaesthesia-based approaches, as well as the integration of biosensors into intravital imaging. We also discuss current challenges that, in our opinion, need to be overcome to further advance the field of intravital imaging at the single-cell, subcellular and molecular resolution to reveal nuances of cell behaviour that can be targeted in complex disease settings.
Collapse
Affiliation(s)
- Kendelle J Murphy
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2010, Australia
| | - Daniel A Reed
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2010, Australia
| | - Michael Trpceski
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia
| | - David Herrmann
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2010, Australia.
| | - Paul Timpson
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2010, Australia.
| |
Collapse
|
9
|
Margarido AS, Bornes L, Vennin C, van Rheenen J. Cellular Plasticity during Metastasis: New Insights Provided by Intravital Microscopy. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037267. [PMID: 31615867 DOI: 10.1101/cshperspect.a037267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Metastasis is a highly dynamic process during which cancer and microenvironmental cells undergo a cascade of events required for efficient dissemination throughout the body. During the metastatic cascade, tumor cells can change their state and behavior, a phenomenon commonly defined as cellular plasticity. To monitor cellular plasticity during metastasis, high-resolution intravital microscopy (IVM) techniques have been developed and allow us to visualize individual cells by repeated imaging in animal models. In this review, we summarize the latest technological advancements in the field of IVM and how they have been applied to monitor metastatic events. In particular, we highlight how longitudinal imaging in native tissues can provide new insights into the plastic physiological and developmental processes that are hijacked by cancer cells during metastasis.
Collapse
Affiliation(s)
- Andreia S Margarido
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Laura Bornes
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Claire Vennin
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Jacco van Rheenen
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| |
Collapse
|
10
|
Zhang X, Mariano CF, Ando Y, Shen K. Bioengineering tools for probing intracellular events in T lymphocytes. WIREs Mech Dis 2020; 13:e1510. [PMID: 33073545 DOI: 10.1002/wsbm.1510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 11/11/2022]
Abstract
T lymphocytes are the central coordinator and executor of many immune functions. The activation and function of T lymphocytes are mediated through the engagement of cell surface receptors and regulated by a myriad of intracellular signaling network. Bioengineering tools, including imaging modalities and fluorescent probes, have been developed and employed to elucidate the cellular events throughout the functional lifespan of T cells. A better understanding of these events can broaden our knowledge in the immune systems biology, as well as accelerate the development of effective diagnostics and immunotherapies. Here we review the commonly used and recently developed techniques and probes for monitoring T lymphocyte intracellular events, following the order of intracellular events in T cells from activation, signaling, metabolism to apoptosis. The techniques introduced here can be broadly applied to other immune cells and cell systems. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Immune System Diseases > Biomedical Engineering Infectious Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Chelsea F Mariano
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Yuta Ando
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Keyue Shen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA.,USC Stem Cell, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
11
|
Wan R, Wu J, Ouyang M, Lei L, Wei J, Peng Q, Harrison R, Wu Y, Cheng B, Li K, Zhu C, Tang L, Wang Y, Lu S. Biophysical basis underlying dynamic Lck activation visualized by ZapLck FRET biosensor. SCIENCE ADVANCES 2019; 5:eaau2001. [PMID: 31223643 PMCID: PMC6584686 DOI: 10.1126/sciadv.aau2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 05/15/2019] [Indexed: 05/25/2023]
Abstract
Lck plays crucial roles in TCR signaling. We developed a new and sensitive FRET biosensor (ZapLck) to visualize Lck kinase activity with high spatiotemporal resolutions in live cells. ZapLck revealed that 62% of Lck signal was preactivated in T-cells. In Lck-deficient JCam T-cells, Lck preactivation was abolished, which can be restored to 51% by reconstitution with wild-type Lck (LckWT) but not a putatively inactive mutant LckY394F. LckWT also showed a stronger basal Lck-Lck interaction and a slower diffusion rate than LckY394F. Interestingly, aggregation of TCR receptors by antibodies in JCam cells led to a strong activation of reconstituted LckY394F similar to LckWT. Both activated LckY394F and LckWT diffused more slowly and displayed increased Lck-Lck interaction at a similar level. Therefore, these results suggest that a phosphorylatable Y394 is necessary for the basal-level interaction and preactivation of LckWT, while antibody-induced TCR aggregation can trigger the full activation of LckY394F.
Collapse
Affiliation(s)
- Rongxue Wan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jenny Wu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mingxing Ouyang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lei Lei
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jiaming Wei
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Qin Peng
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Reed Harrison
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yiqian Wu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Binbin Cheng
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kaitao Li
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Cheng Zhu
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaoying Lu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
12
|
Ouyang M, Wan R, Qin Q, Peng Q, Wang P, Wu J, Allen M, Shi Y, Laub S, Deng L, Lu S, Wang Y. Sensitive FRET Biosensor Reveals Fyn Kinase Regulation by Submembrane Localization. ACS Sens 2019; 4:76-86. [PMID: 30588803 DOI: 10.1021/acssensors.8b00896] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fyn kinase plays crucial roles in hematology and T cell signaling; however, there are currently limited tools to visualize the dynamic Fyn activity in live cells. Here we developed and characterized a highly sensitive Fyn biosensor based on fluorescence resonance energy transfer (FRET) to monitor Fyn kinase activity in live cells. Our results show that Fyn kinase activity can be induced in both mouse embryonic fibroblasts (MEFs) and T cells by ligand engagement. Two different motifs were further introduced to target the biosensor at the cellular membrane microdomains in MEFs, revealing that the Fyn-tagged biosensor had 70% greater response to growth factor stimulation than the Lyn-tagged version. This suggests that the plasma membrane microdomains can be categorized into different functional subdomains. Further experiments show that while the membrane accessibility is necessary for Fyn activation, the localization of Fyn outside of its microdomains causes its hyperactivity, indicating that membrane microdomains provide a suppressive microenvironment for Fyn regulation in MEFs. Interestingly, a relatively high Fyn activity can be observed at perinuclear regions, further supporting the notion that the membrane microenvironment has a significant impact on the local molecular functions. Our work hence highlights a novel Fyn FRET biosensor for live cell imaging and its application in revealing an intricate submembrane regulation of Fyn in live MEFs.
Collapse
Affiliation(s)
- Mingxing Ouyang
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Rongxue Wan
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Qin Qin
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
| | - Qin Peng
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
| | - Pengzhi Wang
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
| | - Jenny Wu
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
| | - Molly Allen
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
| | - Yiwen Shi
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
| | - Shannon Laub
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Shaoying Lu
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
| | - Yingxiao Wang
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
| |
Collapse
|
13
|
Nobis M, Warren SC, Lucas MC, Murphy KJ, Herrmann D, Timpson P. Molecular mobility and activity in an intravital imaging setting - implications for cancer progression and targeting. J Cell Sci 2018; 131:131/5/jcs206995. [PMID: 29511095 DOI: 10.1242/jcs.206995] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Molecular mobility, localisation and spatiotemporal activity are at the core of cell biological processes and deregulation of these dynamic events can underpin disease development and progression. Recent advances in intravital imaging techniques in mice are providing new avenues to study real-time molecular behaviour in intact tissues within a live organism and to gain exciting insights into the intricate regulation of live cell biology at the microscale level. The monitoring of fluorescently labelled proteins and agents can be combined with autofluorescent properties of the microenvironment to provide a comprehensive snapshot of in vivo cell biology. In this Review, we summarise recent intravital microscopy approaches in mice, in processes ranging from normal development and homeostasis to disease progression and treatment in cancer, where we emphasise the utility of intravital imaging to observe dynamic and transient events in vivo We also highlight the recent integration of advanced subcellular imaging techniques into the intravital imaging pipeline, which can provide in-depth biological information beyond the single-cell level. We conclude with an outlook of ongoing developments in intravital microscopy towards imaging in humans, as well as provide an overview of the challenges the intravital imaging community currently faces and outline potential ways for overcoming these hurdles.
Collapse
Affiliation(s)
- Max Nobis
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Sean C Warren
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Morghan C Lucas
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Kendelle J Murphy
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - David Herrmann
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Paul Timpson
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| |
Collapse
|
14
|
Abstract
Early Ca2+ signaling is characterized by occurrence of Ca2+ microdomains formed by opening of single or clusters of Ca2+ channels, thereby initiating first signaling and subsequently activating global Ca2+ signaling mechanisms. However, only few data are available focusing on the first seconds and minutes of Ca2+ microdomain formation and related signaling pathways in activated T-lymphocytes. In this review, we condense current knowledge on Ca2+ microdomain formation in T-lymphocytes and early Ca2+ signaling, function of Ca2+ microdomains, and microdomain organization. Interestingly, considering the first seconds of T cell activation, a triphasic Ca2+ signal is becoming apparent: (i) initial Ca2+ microdomains occurring in the first second of T cell activation, (ii) amplification of Ca2+ microdomains by recruitment of further channels in the next 5-10 s, and (iii) a transition to global Ca2+ increase. Apparently, the second messenger nicotinic acid adenine dinucleotide phosphate is the first second messenger involved in initiation of Ca2+ microdomains. Ryanodine receptors type 1 act as initial Ca2+ release channels in CD4+ T-lymphocytes. Regarding the temporal correlation of Ca2+ microdomains with other molecular events of T cell activation, T cell receptor-dependent microdomain organization of signaling molecules Grb2 and Src homology [SH2] domain-containing leukocyte protein of 65 kDa was observed within the first 20 s. In addition, fast cytoskeletal changes are initiated. Furthermore, the involvement of additional Ca2+ channels and organelles, such as the Ca2+ buffering mitochondria, is discussed. Future research developments will comprise analysis of the causal relation between these temporally coordinated signaling events. Taken together, high-resolution Ca2+ imaging techniques applied to T cell activation in the past years paved the way to detailed molecular understanding of initial Ca2+ signaling mechanisms in non-excitable cells.
Collapse
Affiliation(s)
- Insa M A Wolf
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|