1
|
Francés-Herrero E, Lorenzo-Rebenaque L, Casto-Rebollo C, Vicente JS, Sebastian-Leon P, Bueno-Fernandez C, Rodríguez-Eguren A, Gómez-Álvarez M, Faus A, Diaz-Gimeno P, Marco-Jiménez F, Cervelló I. Oviductal extracellular matrix hydrogels enhance in vitro culture of rabbit embryos and reduce deficiencies during assisted reproductive technologies. Sci Rep 2024; 14:27579. [PMID: 39528559 PMCID: PMC11554825 DOI: 10.1038/s41598-024-77583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
In vitro embryo culture often falls short of mimicking the physiological dynamism occurring in the reproductive tract, prompting developmental plasticity in mammalian embryos with consequential genotypic and phenotypic deviations. Recent research highlights the potential of biological derivatives in in vitro culture to mitigate these effects, being the extracellular matrix (ECM) one of the most important components in retaining structural and biological signals derived from the native source tissue. Current bioengineering techniques could provide ECM-based biomaterials mimicking the native environment and offering optimal embryonic development. Rabbit oviducts (n = 24) were decellularized and solubilized to create tissue-specific ECM (OviECM) hydrogels. Following physicochemical characterization, these hydrogels were applied as coatings for the in vitro culture of two-cell embryos over 48 h, along with embryos cultured under In vitro control conditions (n = 218/group), which were subsequently transferred to recipient females. A subset of embryos was recovered on day 6 for transcriptomic analysis (n = 75-80/group), while the remaining embryos were used to assess implantation and birth rates. Rabbit weights were monitored over 20 weeks post-delivery, with blood tests conducted at weeks 8 and 20. Bayesian inference methods were used for statistical analysis. Differences were considered relevant if P ≥ 0.8 (80%). No differences in embryo development and morphology were detected between the OviECM coating and In vitro control conditions. However, embryos cultured on these coatings exhibited upregulation of pathways involved in antigen presentation and immune system activation, as well as, increased cellular response to external stimulus and intracellular protein transport. The implantation and live birth rates were significantly higher in the coating group than in the In vitro control group (30.8% vs. 26.1% and 21.2% vs. 18.1%, respectively). During the first 20 weeks of life, the animals from the coating group showed higher weights than the In vitro control group P0 > 0.8. The animals of both experimental groups showed normal blood parameters. Implementation of OviECM coatings allows for improving in vitro conditions and decreases postnatal phenotypic deviations after assisted reproductive technology (ART). This study could initiate a new embryo culture techniques era to guarantee that ART is utilized in the most efficient and safest possible practice.
Collapse
Affiliation(s)
- Emilio Francés-Herrero
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, Universitat de València, 46010, Valencia, Valencia, Spain
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026, Valencia, Valencia, Spain
| | - Laura Lorenzo-Rebenaque
- Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Valencia, Spain
| | - Cristina Casto-Rebollo
- Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Valencia, Spain
| | - José Salvador Vicente
- Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Valencia, Spain
| | - Patricia Sebastian-Leon
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026, Valencia, Valencia, Spain
| | - Clara Bueno-Fernandez
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, Universitat de València, 46010, Valencia, Valencia, Spain
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026, Valencia, Valencia, Spain
| | - Adolfo Rodríguez-Eguren
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026, Valencia, Valencia, Spain
| | - María Gómez-Álvarez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026, Valencia, Valencia, Spain
| | - Amparo Faus
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026, Valencia, Valencia, Spain
| | - Patricia Diaz-Gimeno
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026, Valencia, Valencia, Spain
| | - Francisco Marco-Jiménez
- Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Valencia, Spain
| | - Irene Cervelló
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026, Valencia, Valencia, Spain.
| |
Collapse
|
2
|
Di Berardino C, Peserico A, Camerano Spelta Rapini C, Liverani L, Capacchietti G, Russo V, Berardinelli P, Unalan I, Damian-Buda AI, Boccaccini AR, Barboni B. Bioengineered 3D ovarian model for long-term multiple development of preantral follicle: bridging the gap for poly(ε-caprolactone) (PCL)-based scaffold reproductive applications. Reprod Biol Endocrinol 2024; 22:95. [PMID: 39095895 PMCID: PMC11295475 DOI: 10.1186/s12958-024-01266-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Assisted Reproductive Technologies (ARTs) have been validated in human and animal to solve reproductive problems such as infertility, aging, genetic selection/amplification and diseases. The persistent gap in ART biomedical applications lies in recapitulating the early stage of ovarian folliculogenesis, thus providing protocols to drive the large reserve of immature follicles towards the gonadotropin-dependent phase. Tissue engineering is becoming a concrete solution to potentially recapitulate ovarian structure, mostly relying on the use of autologous early follicles on natural or synthetic scaffolds. Based on these premises, the present study has been designed to validate the use of the ovarian bioinspired patterned electrospun fibrous scaffolds fabricated with poly(ε-caprolactone) (PCL) for multiple preantral (PA) follicle development. METHODS PA follicles isolated from lamb ovaries were cultured on PCL scaffold adopting a validated single-follicle protocol (Ctrl) or simulating a multiple-follicle condition by reproducing an artificial ovary engrafted with 5 or 10 PA (AO5PA and AO10PA). The incubations were protracted for 14 and 18 days before assessing scaffold-based microenvironment suitability to assist in vitro folliculogenesis (ivF) and oogenesis at morphological and functional level. RESULTS The ivF outcomes demonstrated that PCL-scaffolds generate an appropriate biomimetic ovarian microenvironment supporting the transition of multiple PA follicles towards early antral (EA) stage by supporting follicle growth and steroidogenic activation. PCL-multiple bioengineering ivF (AO10PA) performed in long term generated, in addition, the greatest percentage of highly specialized gametes by enhancing meiotic competence, large chromatin remodeling and parthenogenetic developmental competence. CONCLUSIONS The study showcased the proof of concept for a next-generation ART use of PCL-patterned scaffold aimed to generate transplantable artificial ovary engrafted with autologous early-stage follicles or to advance ivF technologies holding a 3D bioinspired matrix promoting a physiological long-term multiple PA follicle protocol.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy.
| | - Alessia Peserico
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Chiara Camerano Spelta Rapini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
- DGS SpA, Via Paolo di Dono 73, 00142, Rome, Italy
| | - Giulia Capacchietti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Valentina Russo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Paolo Berardinelli
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Irem Unalan
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Andrada-Ioana Damian-Buda
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| |
Collapse
|
3
|
Ferronato GDA, Vit FF, da Silveira JC. 3D culture applied to reproduction in females: possibilities and perspectives. Anim Reprod 2024; 21:e20230039. [PMID: 38510565 PMCID: PMC10954237 DOI: 10.1590/1984-3143-ar2023-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/13/2023] [Indexed: 03/22/2024] Open
Abstract
In vitro cell culture is a well-established technique present in numerous laboratories in diverse areas. In reproduction, gametes, embryos, and reproductive tissues, such as the ovary and endometrium, can be cultured. These cultures are essential for embryo development studies, understanding signaling pathways, developing drugs for reproductive diseases, and in vitro embryo production (IVP). Although many culture systems are successful, they still have limitations to overcome. Three-dimensional (3D) culture systems can be close to physiological conditions, allowing greater interaction between cells and cells with the surrounding environment, maintenance of the cells' natural morphology, and expression of genes and proteins such as in vivo. Additionally, three-dimensional culture systems can stimulated extracellular matrix generating responses due to the mechanical force produced. Different techniques can be used to perform 3D culture systems, such as hydrogel matrix, hanging drop, low attachment surface, scaffold, levitation, liquid marble, and 3D printing. These systems demonstrate satisfactory results in follicle culture, allowing the culture from the pre-antral to antral phase, maintaining the follicular morphology, and increasing the development rates of embryos. Here, we review some of the different techniques of 3D culture systems and their applications to the culture of follicles and embryos, bringing new possibilities to the future of assisted reproduction.
Collapse
Affiliation(s)
| | - Franciele Flores Vit
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | | |
Collapse
|
4
|
Belda-Perez R, Heras S, Cimini C, Romero-Aguirregomezcorta J, Valbonetti L, Colosimo A, Colosimo BM, Santoni S, Barboni B, Bernabò N, Coy P. Advancing bovine in vitro fertilization through 3D printing: the effect of the 3D printed materials. Front Bioeng Biotechnol 2023; 11:1260886. [PMID: 37929185 PMCID: PMC10621798 DOI: 10.3389/fbioe.2023.1260886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023] Open
Abstract
Nowadays there is an increasing demand for assisted reproductive technologies due to the growth of infertility problems. Naturally, fertilization occurs in the oviduct, where the oviductal epithelial cells (OECs) secrete many molecules that affect the embryo's metabolism and protect it from oxidative stress. When the OECs are grown in 3D culture systems, they maintain a great part of their functional characteristics, making them an excellent model for in vitro fertilization (IVF) studies. In this work, we aimed to evaluate the suitability of different 3D-printing processes in conjunction with the corresponding set of commercially available biomaterials: extrusion-based processing using polylactic acid (PLA) and polycaprolactone (PCL) and stereolithography or digital-light processing using polyethylene-glycol-diacrylate (PEGDA) with different stiffness (PEGDA500, PEGDA200, PEGDA PhotoInk). All the 3D-printed scaffolds were used to support IVF process in a bovine embryo assay. Following fertilization, embryo development and quality were assessed in terms of cleavage, blastocyst rate at days 7 and 8, total cell number (TCN), inner cell mass/trophectoderm ratio (ICN/TE), and apoptotic cell ratio (ACR). We found a detrimental effect on cleavage and blastocyst rates when the IVF was performed on any medium conditioned by most of the materials available for digital-light processing (PEGDA200, PEGDA500). The observed negative effect could be possibly due to some leaked compound used to print and stabilize the scaffolds, which was not so evident however with PEGDA PhotoInk. On the other hand, all the extrusion-based processable materials did not cause any detrimental effect on cleavage or blastocyst rates. The principal component analysis reveals that embryos produced in presence of 3D-printed scaffolds produced via extrusion exhibit the highest similarity with the control embryos considering cleavage, blastocyst rates, TCN, ICN/TE and ACR per embryo. Conversely, all the photo-cross linkable materials or medium conditioned by PLA, lead to the highest dissimilarities. Since the use of PCL scaffolds, as well as its conditioned medium, bring to embryos that are more similar to the control group. Our results suggest that extrusion-based 3D printing of PCL could be the best option to be used for new IVF devices, possibly including the support of OECs, to enhance bovine embryo development.
Collapse
Affiliation(s)
- Ramses Belda-Perez
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Physiology of Reproduction Group, Department of Physiology, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, Spain
| | - Sonia Heras
- Physiology of Reproduction Group, Department of Physiology, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, Spain
| | - Costanza Cimini
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Jon Romero-Aguirregomezcorta
- Physiology of Reproduction Group, Department of Physiology, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, Spain
| | - Luca Valbonetti
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNRIBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Alessia Colosimo
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Silvia Santoni
- Department of Mechanical Engineering, Politecnico di Milano, Milano, Italy
| | - Barbara Barboni
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Nicola Bernabò
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNRIBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Pilar Coy
- Physiology of Reproduction Group, Department of Physiology, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, Spain
| |
Collapse
|
5
|
Leonel ECR, Dadashzadeh A, Moghassemi S, Vlieghe H, Wyns C, Orellana R, Amorim CA. New Solutions for Old Problems: How Reproductive Tissue Engineering Has Been Revolutionizing Reproductive Medicine. Ann Biomed Eng 2023; 51:2143-2171. [PMID: 37468688 DOI: 10.1007/s10439-023-03321-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Acquired disorders and congenital defects of the male and female reproductive systems can have profound impacts on patients, causing sexual and endocrine dysfunction and infertility, as well as psychosocial consequences that affect their self-esteem, identity, sexuality, and relationships. Reproductive tissue engineering (REPROTEN) is a promising approach to restore fertility and improve the quality of life of patients with reproductive disorders by developing, replacing, or regenerating cells, tissues, and organs from the reproductive and urinary systems. In this review, we explore the latest advancements in REPROTEN techniques and their applications for addressing degenerative conditions in male and female reproductive organs. We discuss current research and clinical outcomes and highlight the potential of 3D constructs utilizing biomaterials such as scaffolds, cells, and biologically active molecules. Our review offers a comprehensive guide for researchers and clinicians, providing insights into how to reestablish reproductive tissue structure and function using innovative surgical approaches and biomaterials. We highlight the benefits of REPROTEN for patients, including preservation of fertility and hormonal production, reconstruction of uterine and cervical structures, and restoration of sexual and urinary functions. Despite significant progress, REPROTEN still faces ethical and technical challenges that need to be addressed. Our review underscores the importance of continued research in this field to advance the development of effective and safe REPROTEN approaches for patients with reproductive disorders.
Collapse
Affiliation(s)
- Ellen C R Leonel
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
| | - Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
| | - Christine Wyns
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Renan Orellana
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Christiani A Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium.
| |
Collapse
|
6
|
Di Berardino C, Liverani L, Peserico A, Capacchietti G, Russo V, Bernabò N, Tosi U, Boccaccini AR, Barboni B. When Electrospun Fiber Support Matters: In Vitro Ovine Long-Term Folliculogenesis on Poly (Epsilon Caprolactone) (PCL)-Patterned Fibers. Cells 2022; 11:cells11121968. [PMID: 35741097 PMCID: PMC9222101 DOI: 10.3390/cells11121968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/17/2022] [Indexed: 12/14/2022] Open
Abstract
Current assisted reproduction technologies (ART) are insufficient to cover the slice of the population needing to restore fertility, as well as to amplify the reproductive performance of domestic animals or endangered species. The design of dedicated reproductive scaffolds has opened the possibility to better recapitulate the reproductive 3D ovarian environment, thus potentially innovating in vitro folliculogenesis (ivF) techniques. To this aim, the present research has been designed to compare ovine preantral follicles in vitro culture on poly(epsilon-caprolactone) (PCL)-based electrospun scaffolds designed with different topology (Random vs. Patterned fibers) with a previously validated system. The ivF performances were assessed after 14 days under 3D-oil, Two-Step (7 days in 3D-oil and on scaffold), or One-Step PCL protocols (14 days on PCL-scaffold) by assessing morphological and functional outcomes. The results show that Two- and One-Step PCL ivF protocols, when performed on patterned scaffolds, were both able to support follicle growth, antrum formation, and the upregulation of follicle marker genes leading to a greater oocyte meiotic competence than in the 3D-oil system. In conclusion, the One-Step approach could be proposed as a practical and valid strategy to support a synergic follicle-oocyte in vitro development, providing an innovative tool to enhance the availability of matured gametes on an individual basis for ART purposes.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
- Correspondence:
| | - Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Giulia Capacchietti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Umberto Tosi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Aldo Roberto Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| |
Collapse
|
7
|
ABSTRACTS (BY NUMBER). Tissue Eng Part A 2022. [DOI: 10.1089/ten.tea.2022.29025.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
8
|
Charoensombut N, Kawabata K, Kim J, Chang M, Kimura T, Kishida A, Ushida T, Furukawa KS. Internal radial perfusion bioreactor promotes decellularized and recellularization of rat uterine tissue. J Biosci Bioeng 2021; 133:83-88. [PMID: 34674960 DOI: 10.1016/j.jbiosc.2021.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/31/2021] [Accepted: 09/12/2021] [Indexed: 12/12/2022]
Abstract
The advances in infertility treatment technologies such as in vitro fertilization (IVF) help many infertile women to be able to get pregnant. However, these infertility treatments cannot be applied to women who are suffering from absolute uterine factor. Fabrication of functional scaffold in tissue engineering approach is believed to play an important role for uterine regeneration and uterus replacement for treating absolute uterine factor infertility. In this research, we developed an internal radial perfusion bioreactor to promote decellularization and recellularization for fabrication of functional engineered uterine tissue. As a result, the DNA contents of the decellularized uterine tissue with high hydrostatic pressure followed by 7 days internal perfusion washing decreased by 90% compared to native tissue. Collagen and proteoglycan contents in the pressurized uterine tissue with the internal perfusion bioreactor, static (control) and shaking treatment with high hydrostatic pressure showed no significant change compared to the native tissue. The newly developed perfusion bioreactor also enabled to recellularize in the decellularized tissue with statistically significant increase of DNA by 614% compared to non-seeded cell groups. Vimentin and 4',6-diamidino-2-phenylindole (DAPI) was homogeneously expressed in the seeded endometrial stromal cells in the recellularized tissue fabricated using the bioreactor. With the developed internal radial perfusion bioreactor, we are the first group to successfully recellularized uterine tissue in all layers including epithelium, endometrium and myometrium. These results showed that the internal perfusion bioreactor has potential to be utilized for fabrication of functional engineered tissue to promote tissue regeneration.
Collapse
Affiliation(s)
- Narintadeach Charoensombut
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Kinyoshi Kawabata
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Jeonghyun Kim
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Minki Chang
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-1 Kanda, Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-1 Kanda, Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Takashi Ushida
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan; Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Katsuko S Furukawa
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan; Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.
| |
Collapse
|
9
|
Evans EPP, Scholten JTM, Mzyk A, Reyes-San-Martin C, Llumbet AE, Hamoh T, Arts EGJM, Schirhagl R, Cantineau AEP. Male subfertility and oxidative stress. Redox Biol 2021; 46:102071. [PMID: 34340027 PMCID: PMC8342954 DOI: 10.1016/j.redox.2021.102071] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 02/08/2023] Open
Abstract
To date 15% of couples are suffering from infertility with 45-50% of males being responsible. With an increase in paternal age as well as various environmental and lifestyle factors worsening these figures are expected to increase. As the so-called free radical theory of infertility suggests, free radicals or reactive oxygen species (ROS) play an essential role in this process. However, ROS also fulfill important functions for instance in sperm maturation. The aim of this review article is to discuss the role reactive oxygen species play in male fertility and how these are influenced by lifestyle, age or disease. We will further discuss how these ROS are measured and how they can be avoided during in-vitro fertilization.
Collapse
Affiliation(s)
- Emily P P Evans
- Department of Biomedical Engineering, Groningen University University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW, Groningen, the Netherlands
| | - Jorien T M Scholten
- Department of Biomedical Engineering, Groningen University University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW, Groningen, the Netherlands
| | - Aldona Mzyk
- Department of Biomedical Engineering, Groningen University University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW, Groningen, the Netherlands; Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059, Krakow, Poland
| | - Claudia Reyes-San-Martin
- Department of Biomedical Engineering, Groningen University University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW, Groningen, the Netherlands
| | - Arturo E Llumbet
- Department of Biomedical Engineering, Groningen University University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW, Groningen, the Netherlands; Laboratory of Genomic of Germ Cells, Biomedical Sciences Institute, Faculty of Medicine, University of Chile. Independencia, 1027, Independencia Santiago, Chile
| | - Thamir Hamoh
- Department of Biomedical Engineering, Groningen University University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW, Groningen, the Netherlands
| | - Eus G J M Arts
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Romana Schirhagl
- Department of Biomedical Engineering, Groningen University University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW, Groningen, the Netherlands.
| | - Astrid E P Cantineau
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
10
|
Regenerative Medicine Approaches in Bioengineering Female Reproductive Tissues. Reprod Sci 2021; 28:1573-1595. [PMID: 33877644 DOI: 10.1007/s43032-021-00548-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
Diseases, disorders, and dysfunctions of the female reproductive tract tissues can result in either infertility and/or hormonal imbalance. Current treatment options are limited and often do not result in tissue function restoration, requiring alternative therapeutic approaches. Regenerative medicine offers potential new therapies through the bioengineering of female reproductive tissues. This review focuses on some of the current technologies that could address the restoration of functional female reproductive tissues, including the use of stem cells, biomaterial scaffolds, bio-printing, and bio-fabrication of tissues or organoids. The use of these approaches could also be used to address issues in infertility. Strategies such as cell-based hormone replacement therapy could provide a more natural means of restoring normal ovarian physiology. Engineering of reproductive tissues and organs could serve as a powerful tool for correcting developmental anomalies. Organ-on-a-chip technologies could be used to perform drug screening for personalized medicine approaches and scientific investigations of the complex physiological interactions between the female reproductive tissues and other organ systems. While some of these technologies have already been developed, others have not been translated for clinical application. The continuous evolution of biomaterials and techniques, advances in bioprinting, along with emerging ideas for new approaches, shows a promising future for treating female reproductive tract-related disorders and dysfunctions.
Collapse
|
11
|
Development of Decellularized Oviductal Hydrogels as a Support for Rabbit Embryo Culture. Reprod Sci 2021; 28:1644-1658. [PMID: 33511539 DOI: 10.1007/s43032-020-00446-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/20/2020] [Indexed: 02/08/2023]
Abstract
The oviducts (fallopian tubes in mammals) function as the site of fertilization and provide necessary support for early embryonic development, mainly via embryonic exposure to the tubal microenvironment. The main objective of this study was to create an oviduct-specific extracellular matrix (oviECM) hydrogel rich in bioactive components that mimics the native environment, thus optimizing the developmental trajectories of cultured embryos. Rabbit oviducts were decellularized through SDS treatment and enzymatic digestion, and the acellular tissue was converted into oviductal pre-gel extracellular matrix (ECM) solutions. Incubation of these solutions at 37 °C resulted in stable hydrogels with a fibrous structure based on scanning electron microscopy. Histological staining, DNA quantification and colorimetric assays confirmed that the decellularized tissue and hydrogels contained no cellular or nuclear components but retained important components of the ECM, e.g. hyaluronic acid, glycoproteins and collagens. To evaluate the ability of oviECM hydrogels to maintain early embryonic development, two-cell rabbit embryos were cultured on oviECM-coated surfaces and compared to those cultured with standard techniques. Embryo development was similar in both conditions, with 95.9% and 98% of the embryos reaching the late morula/early blastocyst stage by 48 h under standard culture and oviECM conditions, respectively. Metabolomic analysis of culture media in the presence or absence of embryos, however, revealed that the oviECM coating may include signalling molecules and release compounds beneficial to embryo metabolism.
Collapse
|
12
|
Campo H, López-Martínez S, Cervelló I. Decellularization Methods of Uterus in Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1345:141-152. [PMID: 34582020 DOI: 10.1007/978-3-030-82735-9_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new field of investigation which aims to design tissues and organs similar to their native origin has been developed recently, named as regenerative medicine (tissue engineering and bio-engineering). Uterus is the main organ for regeneration and contributes in the fertility. At an ultimate level, the uterus plays a role in embryo implantation, sperm migration and fetal nutrition. Uterine congenital anomalies, attained uterine lesions and immune system disorders may affect such uterine functions preventing successful pregnancy. Due to following reasons, it is essential to consider regenerative medicine as a new approach for the treatment of uterine dysfunctions to overcome the failures that cannot be treated with clinical medication.
Collapse
Affiliation(s)
- Hannes Campo
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI/INCLIVA, Valencia, Spain
| | - Sara López-Martínez
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI/INCLIVA, Valencia, Spain
| | - Irene Cervelló
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI/INCLIVA, Valencia, Spain.
| |
Collapse
|
13
|
Decellularization Methods of Ovary in Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1345:129-139. [PMID: 34582019 DOI: 10.1007/978-3-030-82735-9_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ovaries or female gonads are situated in the ovarian fossa of the abdominal cavity. These are paired, almond-shaped organs measuring about 3.5 cm long and 1.5 cm thick and exist out of a central medullary zone and a peripheral cortex that are enclosed in a fibrous capsule called the tunica albuginea. The ovaries serve 2 main functions, the first one being the production of female gametes called oocytes (oogenesis). Interestingly, the number of primary oocytes that reside in the ovary is determined at birth. About 400 oocyte-containing follicles successfully go through all the developmental stages from this limited pool during folliculogenesis throughout the female reproductive life. In this process, primordial follicles grow and advance until forming a mature or Graafian follicle; during ovulation, secondary oocytes are released and the remaining follicular wall collapses and forms the highly vascularized corpus luteum or luteal gland. This ovarian cycle is regulated by several hormones secreted from the adenohypophysis and lasts about 28 days. During this cycle, the ovaries also serve as endocrine glands and produce female sex hormones such as estrogens and progesterone (steroidogenesis), influencing the growth and development of tissues sensitive to these hormones such as the endometrium. Hence, the endometrial cycle goes synchronized with the ovarian cycle.
Collapse
|
14
|
Fattahi A, Liverani L, Dittrich R, Hoffmann I, Boccaccini AR, Beckmann MW, Bleisinger N. Optimization of Porcine Ovarian Follicle Isolation Methods for Better Developmental Potential. Tissue Eng Part A 2020; 26:712-719. [PMID: 32598233 DOI: 10.1089/ten.tea.2020.0058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the present study, we present a comparative analysis among the outputs of porcine follicle isolation using either mechanical technique alone or in combination with enzymes, proposing an optimized protocol useful for all further applications related to follicle in vitro growth and reproductive tissue engineering. The porcine follicles were isolated using mechanical technique alone (hand blender and scalpels) or in combination with collagenase or Liberase Dispase High (DH) at different doses applying different protocols. Finally, the number, morphology, and stage of isolated follicles were compared between the protocols. Moreover, the follicle viability (live/dead assay) and morphology (rhodamine phalloidin and 4',6-diamidino-2-phenylindole staining and scanning electron microscopy analysis) were evaluated after 10 days of culture. We found an optimum protocol for intact follicle isolation using the mechanical technique in combination with enzymes at a concentration of 0.5 mg/mL. However, the number of total isolated follicles and primordial follicles was significantly higher when collagenase was used compared to Liberase DH (p < 0.05), while Liberase DH could isolate a significantly higher percentage of preantral follicles. After 10 days of culture, the morphology and health status of follicles were statistically higher when Liberase DH was used in comparison with collagenase. Moreover, on the follicles extracted with Liberase DH, it was possible to observe theca cells covering part of the follicle surface. In conclusion, we demonstrated that the intact primary or secondary follicles could not be obtained using only mechanical methods, which led to the isolation of denuded oocytes and dramatically damaged follicles. We concluded that the collagenase-based follicle isolation could negatively affect the morphology and developmental potential of the follicles. Moreover, the incubation of ovarian cortex tissues with Liberase DH solution is an optimized protocol for porcine ovarian follicle isolation with developmental competence. Impact statement Isolation and in vitro maturation of follicles can pave the way for activities on reproductive tissue engineering (REPROTEN) and developing an artificial ovary. In this regard, the standardization and optimization of the extraction methods are pivotal for the design of experiment of follicle in vitro growth. In the present study, we provided a comparative analysis among the outputs of porcine follicle isolation using either mechanical technique alone or in combination with collagenase or Liberase DH, proposing an optimized protocol useful for all further applications related to follicles' in vitro growth and REPROTEN.
Collapse
Affiliation(s)
- Amir Fattahi
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center ER-EMN, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen University Hospital, Erlangen, Germany.,Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Liliana Liverani
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ralf Dittrich
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center ER-EMN, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen University Hospital, Erlangen, Germany
| | - Inge Hoffmann
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center ER-EMN, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen University Hospital, Erlangen, Germany
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias W Beckmann
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center ER-EMN, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen University Hospital, Erlangen, Germany
| | - Nathalie Bleisinger
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center ER-EMN, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen University Hospital, Erlangen, Germany
| |
Collapse
|
15
|
Ghanbari E, Khazaei M, Ghahremani-Nasab M, Mehdizadeh A, Yousefi M. Novel therapeutic approaches of tissue engineering in male infertility. Cell Tissue Res 2020; 380:31-42. [PMID: 32043209 DOI: 10.1007/s00441-020-03178-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/23/2020] [Indexed: 12/25/2022]
Abstract
Male reproductive organ plays an important role in sperm production, maintenance and entry to the female reproductive tract, as well as generation and secretion of male sex hormones responsible for the health of male reproductive system. The purpose of this paper is to discuss the experimental and clinical evidence on the utilization of tissue engineering techniques in treating male infertility. Tissue engineering (TE) and regenerative medicine have developed new approaches to treat patients with reproductive disorders such as iatrogenic injuries, congenital abnormalities, and trauma. In some cases, including congenital defects and undescended testis or hypogonadism, the sperm samples are not retrieved. This makes TE a possible future strategy for restoration of male fertility. Here, we have summarized the recent advances in experimental and clinical application of cell-, tissue-, and organ-based regenerative medicine in male reproductive disorders.
Collapse
Affiliation(s)
- Elham Ghanbari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Comprehensive Health Laboratory, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Ouni E, Vertommen D, Amorim CA. The Human Ovary and Future of Fertility Assessment in the Post-Genome Era. Int J Mol Sci 2019; 20:E4209. [PMID: 31466236 PMCID: PMC6747278 DOI: 10.3390/ijms20174209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 12/27/2022] Open
Abstract
Proteomics has opened up new avenues in the field of gynecology in the post-genome era, making it possible to meet patient needs more effectively and improve their care. This mini-review aims to reveal the scope of proteomic applications through an overview of the technique and its applications in assisted procreation. Some of the latest technologies in this field are described in order to better understand the perspectives of its clinical applications. Proteomics seems destined for a promising future in gynecology, more particularly in relation to the ovary. Nevertheless, we know that reproductive biology proteomics is still in its infancy and major technical and ethical challenges must first be overcome.
Collapse
Affiliation(s)
- Emna Ouni
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Didier Vertommen
- PHOS Unit, Institut de Duve, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Christiani A Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium.
| |
Collapse
|
17
|
Raffel N, Dittrich R, Bäuerle T, Seyler L, Fattahi A, Hoffmann I, Leal-Egaña A, Beckmann MW, Boccaccini AR, Liverani L. Novel approach for the assessment of ovarian follicles infiltration in polymeric electrospun patterned scaffolds. PLoS One 2019; 14:e0215985. [PMID: 31034489 PMCID: PMC6488091 DOI: 10.1371/journal.pone.0215985] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/11/2019] [Indexed: 12/15/2022] Open
Abstract
Reproductive tissue engineering (REPROTEN) has been recently defined as the application of the tissue engineering approach targeting reproductive organs and several research works are focusing on this novel strategy. Being still an innovative field, most of the scaffold characterization techniques suitable for other tissue targets give inappropriate results, and there is the need to evaluate and investigate novel approaches. In particular the focus of this paper is the evaluation of the infiltration of ovarian follicles inside patterned electrospun scaffolds. Beyond the standard techniques, for the first time the use of magnetic resonance imaging (MRI) for this purpose is proposed and specific protocols for scaffold preparation are reported. Positive results in terms of evaluation of scaffolds incorporating follicles confirm this technique as highly effective for further applications in this field.
Collapse
Affiliation(s)
- Nathalie Raffel
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen–Nürnberg, Comprehensive Cancer Center ER-EMN, Erlangen, Germany
| | - Ralf Dittrich
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen–Nürnberg, Comprehensive Cancer Center ER-EMN, Erlangen, Germany
- * E-mail: (LL); (RD)
| | - Tobias Bäuerle
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Seyler
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Amir Fattahi
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen–Nürnberg, Comprehensive Cancer Center ER-EMN, Erlangen, Germany
| | - Inge Hoffmann
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen–Nürnberg, Comprehensive Cancer Center ER-EMN, Erlangen, Germany
| | - Aldo Leal-Egaña
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias W. Beckmann
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen–Nürnberg, Comprehensive Cancer Center ER-EMN, Erlangen, Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- * E-mail: (LL); (RD)
| |
Collapse
|
18
|
Campo H, García-Domínguez X, López-Martínez S, Faus A, Vicente Antón JS, Marco-Jiménez F, Cervelló I. Tissue-specific decellularized endometrial substratum mimicking different physiological conditions influences in vitro embryo development in a rabbit model. Acta Biomater 2019; 89:126-138. [PMID: 30849561 DOI: 10.1016/j.actbio.2019.03.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 02/02/2023]
Abstract
In the last decades, the decellularization (DC) of organs has become an established technique in the field of regenerative medicine to yield complex and vascularized bioscaffolds. Furthermore, it has been demonstrated in vitro that these decellularized scaffolds retain their native tissue-specificity. This is also the case when this tissue-specific extracellular matrix (ECM) is solubilized and used as hydrogels or coatings to create a biomimetic environment. In this study we investigated if this specificity not only remains when applied to distinct tissues but even more, that these differences can be distinguished within the same tissue at different stages of proliferation. To address this question, a sensitive in vitro animal model was used: rabbit embryos at the third day of development were cultured on coatings made from acellular endometrium that was non-proliferating (non-synchronous, NS) and proliferating (synchronous with the embryo, S) and their development was compared. For this, we obtained whole NS and S rabbit uteri and subjected them to an adapted decellularization protocol. The acellular endometrium was carefully separated by microdissection and converted into a pre-gel solution to be used as hydrogels and coatings for in vitro assays. First, the characteristics of these NS and S hydrogels were investigated by proteomic analysis, electron microscopy and gelling kinetics. When used as substrata for day 3 embryos culture, it became apparent that only the acellular ECM from synchronous endometrial coating achieved similar results to the gold standard culture protocols and conditions, possibly because of the slow release of growth factors present in the synchronous/proliferating endometrium. STATEMENT OF SIGNIFICANCE: It has been shown by in vitro culture of stem cells, progenitor cells and primary culture cells that decellularized tissues retain their specific functions and biochemical and structural compositions. The present work demonstrates that using a mild SDS and perfusion based decellularization (DC) protocol not only effectively decellularize whole rabbit uteri, adding to the growing field of reproductive tissue engineering, but more importantly that the differences in the proliferating endometrium are translated after DC. This implies that DC not only retains the interspecificity of tissues but also the intraspecificity of a developing hormonally stimulated tissue. For the first time, we demonstrate that the coating from decellularized synchronous endometrium acts as a biological support for in vitro embryo development, achieving comparable results with the current gold standard that only uses serum-containing media.
Collapse
Affiliation(s)
- Hannes Campo
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI/INCLIVA, Valencia, Spain
| | - Ximo García-Domínguez
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València a, C/Camino de Vera s/n, 46022 Valencia, Spain
| | - Sara López-Martínez
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI/INCLIVA, Valencia, Spain
| | - Amparo Faus
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI/INCLIVA, Valencia, Spain
| | - José Salvador Vicente Antón
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València a, C/Camino de Vera s/n, 46022 Valencia, Spain
| | - Francisco Marco-Jiménez
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València a, C/Camino de Vera s/n, 46022 Valencia, Spain
| | - Irene Cervelló
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI/INCLIVA, Valencia, Spain.
| |
Collapse
|
19
|
Liverani L, Raffel N, Fattahi A, Preis A, Hoffmann I, Boccaccini AR, Beckmann MW, Dittrich R. Electrospun patterned porous scaffolds for the support of ovarian follicles growth: a feasibility study. Sci Rep 2019; 9:1150. [PMID: 30718584 PMCID: PMC6362199 DOI: 10.1038/s41598-018-37640-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/10/2018] [Indexed: 02/05/2023] Open
Abstract
Recently, the interest of the scientific community is focused on the application of tissue engineering approach for the fertility restoration. In this paper innovative patterned electrospun fibrous scaffolds were fabricated and used as 3D system for porcine follicles culture. The obtained scaffolds demonstrated to be a suitable support which did not alter or interfere with the typical spherical follicles morphology. The fibrillar structure of the scaffolds mimics the morphology of the healthy native tissue. The use of porcine follicles implied many advantages respect to the use of mouse model. Relevant results showed that more than the scaffold pattern and struts dimension, the selection of proper biomaterials improve the follicles adhesion and development.
Collapse
Affiliation(s)
- Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany.
| | - Nathalie Raffel
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center ER-EMN, 91054, Erlangen, Germany
| | - Amir Fattahi
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center ER-EMN, 91054, Erlangen, Germany
| | - Alexander Preis
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Inge Hoffmann
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center ER-EMN, 91054, Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Matthias W Beckmann
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center ER-EMN, 91054, Erlangen, Germany
| | - Ralf Dittrich
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center ER-EMN, 91054, Erlangen, Germany.
| |
Collapse
|
20
|
Kashaninejad N, Shiddiky MJA, Nguyen N. Advances in Microfluidics‐Based Assisted Reproductive Technology: From Sperm Sorter to Reproductive System‐on‐a‐Chip. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201700197] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Navid Kashaninejad
- Queensland Micro‐ and Nanotechnology Centre Nathan Campus Griffith University 170 Kessels Road Brisbane QLD 4111 Australia
| | | | - Nam‐Trung Nguyen
- Queensland Micro‐ and Nanotechnology Centre Nathan Campus Griffith University 170 Kessels Road Brisbane QLD 4111 Australia
| |
Collapse
|