1
|
Shi Q, Luo Y, Xiang Q, Kang X, Feng Z. CD28 Superfamily Costimulatory Molecules in Chronic Pain: Focus on Immunomodulation. Mol Neurobiol 2025:10.1007/s12035-025-04746-3. [PMID: 39956885 DOI: 10.1007/s12035-025-04746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/03/2025] [Indexed: 02/18/2025]
Abstract
Chronic pain has substantial effects on patients' quality of life and psychological well-being. It does not respond satisfactorily to available medicinal therapeutics because its mechanism remains unclear. Recent studies have shown a strong relationship between chronic pain and immunomodulation. As important members of the immune response, CD28 superfamily costimulatory molecules were demonstrated to have an analgesic effect on chronic pain. Based on research on the role of these molecules in chronic pain, new and highly effective analgesic medicines are anticipated that could be used in combination with some previous analgesic medicines to reduce substance abuse and side effects. This review of the literature will examine the pain-regulating mechanisms of CD28 superfamily costimulatory molecules, focusing on immunomodulation. In addition, this review will discuss the potential and difficulties of developing novel analgesic medicines targeting CD28 superfamily costimulatory molecules.
Collapse
Affiliation(s)
- Qinglu Shi
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Yujia Luo
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Qiaomin Xiang
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Department of Anesthesiology, Ninghai First Hospital, Ningbo, Zhejiang, China
| | - Xianhui Kang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Zhiying Feng
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
2
|
Hirsch BP, Sossamon J, Khan MA, Reitman C, Lawrence JP, Glaser J, Chun R, Gerald B, Baron E, Goldstein T, Baaj AA, Patrick Johnson J, Elojeimy S, Ravinsky RA. Applications of SPECT/CT in the Evaluation of Spinal Pathology: A Review. Int J Spine Surg 2024; 18:9-23. [PMID: 38050030 PMCID: PMC11265499 DOI: 10.14444/8552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Accurate identification of pain generators in the context of low back and spine-related pain is crucial for effective treatment. This review aims to evaluate the potential usefulness of single photon emission computed tomography with computed tomography (SPECT/CT) as an imaging modality in guiding clinical decision-making. METHODS A broad scoping literature review was conducted to identify relevant studies evaluating the use of SPECT/CT in patients with spine-related pain. Studies were reviewed for their methodology and results. RESULTS SPECT/CT appears to have advantages over traditional modalities, such as magnetic resonance imaging and CT, in certain clinical scenarios. It may offer additional information to clinicians and improve the specificity of diagnosis. However, further studies are needed to fully assess its diagnostic accuracy and clinical utility. CONCLUSIONS SPECT/CT is a promising imaging modality in the evaluation of low back pain, particularly in cases where magnetic resonance imaging and CT are inconclusive or equivocal. However, the current level of evidence is limited, and additional research is needed to determine its overall clinical relevance. CLINICAL RELEVANCE SPECT/CT may have a significant impact on clinical decision-making, particularly in cases in which traditional imaging modalities fail to provide a clear diagnosis. Its ability to improve specificity could lead to more targeted and effective treatment for patients with spinal pathology. LEVEL OF EVIDENCE: 4
Collapse
Affiliation(s)
- Brandon P Hirsch
- Department of Orthopedic Surgery, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Jake Sossamon
- College of Medicine, Medical University of South Carolina College of Medicine, Charleston, SC, USA
| | - Monis A Khan
- Department of Neurologic and Orthopedic Surgery, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Charles Reitman
- Department of Orthopedics and Physical Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - James P Lawrence
- Department of Orthopedics and Physical Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - John Glaser
- Department of Orthopedics and Physical Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Rebecca Chun
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Brittany Gerald
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Eli Baron
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Theodore Goldstein
- Department of Orthopedics, Spine Center of Excellence, Los Angeles, CA, USA
| | - Ali A Baaj
- Department of Neurologic and Orthopedic Surgery, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - J Patrick Johnson
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Saeed Elojeimy
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Robert A Ravinsky
- Department of Orthopedics and Physical Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
3
|
Ita ME, Singh S, Troche HR, Welch RL, Winkelstein BA. Intra-articular MMP-1 in the spinal facet joint induces sustained pain and neuronal dysregulation in the DRG and spinal cord, and alters ligament kinematics under tensile loading. Front Bioeng Biotechnol 2022; 10:926675. [PMID: 35992346 PMCID: PMC9382200 DOI: 10.3389/fbioe.2022.926675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic joint pain is a major healthcare challenge with a staggering socioeconomic burden. Pain from synovial joints is mediated by the innervated collagenous capsular ligament that surrounds the joint and encodes nociceptive signals. The interstitial collagenase MMP-1 is elevated in painful joint pathologies and has many roles in collagen regulation and signal transduction. Yet, the role of MMP-1 in mediating nociception in painful joints remains poorly understood. The goal of this study was to determine whether exogenous intra-articular MMP-1 induces pain in the spinal facet joint and to investigate effects of MMP-1 on mediating the capsular ligament’s collagen network, biomechanical response, and neuronal regulation. Intra-articular MMP-1 was administered into the cervical C6/C7 facet joints of rats. Mechanical hyperalgesia quantified behavioral sensitivity before, and for 28 days after, injection. On day 28, joint tissue structure was assessed using histology. Multiscale ligament kinematics were defined under tensile loading along with microstructural changes in the collagen network. The amount of degraded collagen in ligaments was quantified and substance P expression assayed in neural tissue since it is a regulatory of nociceptive signaling. Intra-articular MMP-1 induces behavioral sensitivity that is sustained for 28 days (p < 0.01), absent any significant effects on the structure of joint tissues. Yet, there are changes in the ligament’s biomechanical and microstructural behavior under load. Ligaments from joints injected with MMP-1 exhibit greater displacement at yield (p = 0.04) and a step-like increase in the number of anomalous reorganization events of the collagen fibers during loading (p ≤ 0.02). Collagen hybridizing peptide, a metric of damaged collagen, is positively correlated with the spread of collagen fibers in the unloaded state after MMP-1 (p = 0.01) and that correlation is maintained throughout the sub-failure regime (p ≤ 0.03). MMP-1 injection increases substance P expression in dorsal root ganglia (p < 0.01) and spinal cord (p < 0.01) neurons. These findings suggest that MMP-1 is a likely mediator of neuronal signaling in joint pain and that MMP-1 presence in the joint space may predispose the capsular ligament to altered responses to loading. MMP-1-mediated pathways may be relevant targets for treating degenerative joint pain in cases with subtle or no evidence of structural degeneration.
Collapse
Affiliation(s)
- Meagan E. Ita
- Spine Pain Research Laboratory, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Sagar Singh
- Spine Pain Research Laboratory, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Harrison R. Troche
- Spine Pain Research Laboratory, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Rachel L. Welch
- Spine Pain Research Laboratory, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Beth A. Winkelstein
- Spine Pain Research Laboratory, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Beth A. Winkelstein,
| |
Collapse
|
4
|
Singh S, Winkelstein BA. Inhibiting the β1integrin subunit increases the strain threshold for neuronal dysfunction under tensile loading in collagen gels mimicking innervated ligaments. Biomech Model Mechanobiol 2022; 21:885-898. [DOI: 10.1007/s10237-022-01565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 02/13/2022] [Indexed: 11/28/2022]
|
5
|
Ita ME, Ghimire P, Granquist EJ, Winkelstein BA. MMPs in tissues retrieved during surgery from patients with TMJ disorders relate to pain more than to radiological damage score. J Orthop Res 2022; 40:338-347. [PMID: 33792957 PMCID: PMC8484377 DOI: 10.1002/jor.25048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 02/04/2023]
Abstract
Orofacial pain is among the most common chronic pain conditions and can result from temporomandibular disorders (TMDs) of the temporomandibular joint (TMJ). Matrix metalloproteinases (MMPs) drive degeneration of TMJ tissues and likely mediate pain in TMJ disorders given their role in nociception. However, few studies have assessed MMPs in the TMJ innervated tissues nor in the context of pain. This study defined the extent of MMP-1, MMP-9, and MMP-2 in TMJ tissues from patients undergoing total joint replacement (TJR) or arthroplasty discectomy for painful TMJ disorders. Protein expression was probed by Western blot in TMJ disc and capsular ligaments taken during TJR (n = 6) or discectomy (n = 3) for osteoarthritis or internal derangement in an IRB-approved study. Pro- and active MMP-1, active MMP-9, and pro- and active MMP-2 are detectable. MMP-1 and MMP-9 correlate positively to each other (Kendall's τ = 0.63; p = 0.01), strengthening the hypothesis that they are mechanistically related in regulatory cascades. Active MMP-1 and active MMP-9 correlate positively with self-reported pain scores (τ ≥ 0.51; p ≤ 0.04), suggesting their involvement in peripheral nociception. Overall, neither MMPs nor pain correlate with the functional vertical opening of the jaw. MMP-1 varies with the observed stage of degeneration during surgery (p = 0.04). Neither overall MMPs nor pain correlate with the overall magnetic resonance imaging scores, corroborating the longstanding, but confounding, clinical observation that pain and radiological evidence of joint damage are not always related. Clinical significance: These findings suggest that MMPs mediate pain in innervated soft tissues and may be targets for diagnosing disease stage and treatments in painful TMJ disorders.
Collapse
Affiliation(s)
- Meagan E. Ita
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Prabesh Ghimire
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Eric J. Granquist
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
- Oral & Maxillofacial Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Beth A. Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
6
|
Middendorf JM, Ita ME, Winkelstein BA, H Barocas V. Local tissue heterogeneity may modulate neuronal responses via altered axon strain fields: insights about innervated joint capsules from a computational model. Biomech Model Mechanobiol 2021; 20:2269-2285. [PMID: 34514531 PMCID: PMC9289994 DOI: 10.1007/s10237-021-01506-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023]
Abstract
In innervated collagenous tissues, tissue scale loading may contribute to joint pain by transmitting force through collagen fibers to the embedded mechanosensitive axons. However, the highly heterogeneous collagen structures of native tissues make understanding this relationship challenging. Recently, collagen gels with embedded axons were stretched and the resulting axon signals were measured, but these experiments were unable to measure the local axon strain fields. Computational discrete fiber network models can directly determine axon strain fields due to tissue scale loading. Therefore, this study used a discrete fiber network model to identify how heterogeneous collagen networks (networks with multiple collagen fiber densities) change axon strain due to tissue scale loading. In this model, a composite cylinder (axon) was embedded in a Delaunay network (collagen). Homogeneous networks with a single collagen volume fraction and two types of heterogeneous networks with either a sparse center or dense center were created. Measurements of fiber forces show higher magnitude forces in sparse regions of heterogeneous networks and uniform force distributions in homogeneous networks. The average axon strain in the sparse center networks decreases when compared to homogeneous networks with similar collagen volume fractions. In dense center networks, the average axon strain increases compared to homogeneous networks. The top 1% of axon strains are unaffected by network heterogeneity. Based on these results, the interaction of tissue scale loading, collagen network heterogeneity, and axon strains in native musculoskeletal tissues should be considered when investigating the source of joint pain.
Collapse
Affiliation(s)
- Jill M Middendorf
- Department of Biomedical Engineering, College of Science and Engineering, University of Minnesota, Nils Hasselmo Hall, 312 Church St SE, Minneapolis, MN, USA
| | - Meagan E Ita
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Victor H Barocas
- Department of Biomedical Engineering, College of Science and Engineering, University of Minnesota, Nils Hasselmo Hall, 312 Church St SE, Minneapolis, MN, USA.
| |
Collapse
|
7
|
Mishra SK, Wheeler JJ, Pitake S, Ding H, Jiang C, Fukuyama T, Paps JS, Ralph P, Coyne J, Parkington M, DeBrecht J, Ehrhardt-Humbert LC, Cruse GP, Bäumer W, Ji RR, Ko MC, Olivry T. Periostin Activation of Integrin Receptors on Sensory Neurons Induces Allergic Itch. Cell Rep 2021; 31:107472. [PMID: 32268102 PMCID: PMC9210348 DOI: 10.1016/j.celrep.2020.03.036] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 02/04/2020] [Accepted: 03/11/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic allergic itch is a common symptom affecting millions of people and animals, but its pathogenesis is not fully explained. Herein, we show that periostin, abundantly expressed in the skin of patients with atopic dermatitis (AD), induces itch in mice, dogs, and monkeys. We identify the integrin αVβ3 expressed on a subset of sensory neurons as the periostin receptor. Using pharmacological and genetic approaches, we inhibited the function of neuronal integrin αVβ3, which significantly reduces periostin-induced itch in mice. Furthermore, we show that the cytokine TSLP, the application of AD-causing MC903 (calcipotriol), and house dust mites all induce periostin secretion. Finally, we establish that the JAK/STAT pathway is a key regulator of periostin secretion in keratinocytes. Altogether, our results identify a TSLP-periostin reciprocal activation loop that links the skin to the spinal cord via peripheral sensory neurons, and we characterize the non-canonical functional role of an integrin in itch. Mishra et al. demonstrate periostin-induced itch in mice, dogs, and monkeys and identify the integrin αVβ3 as the periostin neuronal receptor. They find that keratinocytes release periostin in response to TSLP, thus identifying a possible reciprocal vicious circle implicating the cytokine TSLP and periostin in chronic allergic itch.
Collapse
Affiliation(s)
- Santosh K Mishra
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; The WM Keck Behavioral Center, North Carolina State University, Raleigh, NC, USA; Program in Genetics, North Carolina State University, Raleigh, NC, USA.
| | - Joshua J Wheeler
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Saumitra Pitake
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Huiping Ding
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Tomoki Fukuyama
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Judy S Paps
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Patrick Ralph
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jacob Coyne
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Michelle Parkington
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jennifer DeBrecht
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Lauren C Ehrhardt-Humbert
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Glenn P Cruse
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Wolfgang Bäumer
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Thierry Olivry
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
8
|
Gevers-Montoro C, Provencher B, Descarreaux M, Ortega de Mues A, Piché M. Neurophysiological mechanisms of chiropractic spinal manipulation for spine pain. Eur J Pain 2021; 25:1429-1448. [PMID: 33786932 DOI: 10.1002/ejp.1773] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/05/2021] [Accepted: 03/27/2021] [Indexed: 12/19/2022]
Abstract
Together, neck pain and back pain are the first cause of disability worldwide, accounting for more than 10% of the total years lived with disability. In this context, chiropractic care provides a safe and effective option for the management of a large proportion of these patients. Chiropractic is a healthcare profession mainly focused on the spine and the treatment of spinal disorders, including spine pain. Basic studies have examined the influence of chiropractic spinal manipulation (SM) on a variety of peripheral, spinal and supraspinal mechanisms involved in spine pain. While spinal cord mechanisms of pain inhibition contribute at least partly to the pain-relieving effects of chiropractic treatments, the evidence is weaker regarding peripheral and supraspinal mechanisms, which are important components of acute and chronic pain. This narrative review highlights the most relevant mechanisms of pain relief by SM and provides a perspective for future research on SM and spine pain, including the validation of placebo interventions that control for placebo effects and other non-specific effects that may be induced by SM. SIGNIFICANCE: Spinal manipulation inhibits back and neck pain partly through spinal segmental mechanisms and potentially through peripheral mechanisms regulating inflammatory responses. Other mechanisms remain to be clarified. Controls and placebo interventions need to be improved in order to clarify the contribution of specific and non-specific effects to pain relief by spinal manipulative therapy.
Collapse
Affiliation(s)
- Carlos Gevers-Montoro
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.,Madrid College of Chiropractic - RCU María Cristina, Madrid, Spain
| | - Benjamin Provencher
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Martin Descarreaux
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.,GRAN Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | | | - Mathieu Piché
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
9
|
Ita ME, Ghimire P, Welch RL, Troche HR, Winkelstein BA. Intra-articular collagenase in the spinal facet joint induces pain, DRG neuron dysregulation and increased MMP-1 absent evidence of joint destruction. Sci Rep 2020; 10:21965. [PMID: 33319791 PMCID: PMC7738551 DOI: 10.1038/s41598-020-78811-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Degeneration is a hallmark of painful joint disease and is mediated by many proteases that degrade joint tissues, including collagenases. We hypothesized that purified bacterial collagenase would initiate nociceptive cascades in the joint by degrading the capsular ligament's matrix and activating innervating pain fibers. Intra-articular collagenase in the rat facet joint was investigated for its effects on behavioral sensitivity, joint degeneration, and nociceptive pathways in the peripheral and central nervous systems. In parallel, a co-culture collagen gel model of the ligament was used to evaluate effects of collagenase on microscale changes to the collagen fibers and embedded neurons. Collagenase induced sensitivity within one day, lasting for 3 weeks (p < 0.001) but did not alter ligament structure, cartilage health, or chondrocyte homeostasis. Yet, nociceptive mediators were increased in the periphery (substance P, pERK, and MMP-1; p ≤ 0.039) and spinal cord (substance P and MMP-1; p ≤ 0.041). The collagen loss (p = 0.008) induced by exposing co-cultures to collagenase was accompanied by altered neuronal activity (p = 0.002) and elevated neuronal MMP-1 (p < 0.001), suggesting microscale collagen degradation mediates sensitivity in vivo. The induction of sustained sensitivity and nociception without joint damage may explain the clinical disconnect in which symptomatic joint pain patients present without radiographic evidence of joint destruction.
Collapse
Affiliation(s)
- Meagan E Ita
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104-6392, USA
| | - Prabesh Ghimire
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104-6392, USA
| | - Rachel L Welch
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104-6392, USA
| | - Harrison R Troche
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104-6392, USA
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104-6392, USA.
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Ita ME, Winkelstein BA. Concentration-Dependent Effects of Fibroblast-Like Synoviocytes on Collagen Gel Multiscale Biomechanics and Neuronal Signaling: Implications for Modeling Human Ligamentous Tissues. J Biomech Eng 2019; 141:091013. [PMID: 31209465 PMCID: PMC6808009 DOI: 10.1115/1.4044051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/12/2019] [Indexed: 12/13/2022]
Abstract
Abnormal loading of a joint's ligamentous capsule causes pain by activating the capsule's nociceptive afferent fibers, which reside in the capsule's collagenous matrix alongside fibroblast-like synoviocytes (FLS) and transmit pain to the dorsal root ganglia (DRG). This study integrated FLS into a DRG-collagen gel model to better mimic the anatomy and physiology of human joint capsules; using this new model, the effect of FLS on multiscale biomechanics and cell physiology under load was investigated. Primary FLS cells were co-cultured with DRGs at low or high concentrations, to simulate variable anatomical FLS densities, and failed in tension. Given their roles in collagen degradation and nociception, matrix-metalloproteinase (MMP-1) and neuronal expression of the neurotransmitter substance P were probed after gel failure. The amount of FLS did not alter (p > 0.3) the gel failure force, displacement, or stiffness. FLS doubled regional strains at both low (p < 0.01) and high (p = 0.01) concentrations. For high FLS, the collagen network showed more reorganization at failure (p < 0.01). Although total MMP-1 and neuronal substance P were the same regardless of FLS concentration before loading, protein expression of both increased after failure, but only in low FLS gels (p ≤ 0.02). The concentration-dependent effect of FLS on microstructure and cellular responses implies that capsule regions with different FLS densities experience variable microenvironments. This study presents a novel DRG-FLS co-culture collagen gel system that provides a platform for investigating the complex biomechanics and physiology of human joint capsules, and is the first relating DRG and FLS interactions between each other and their surrounding collagen network.
Collapse
Affiliation(s)
- Meagan E Ita
- Department of Bioengineering,University of Pennsylvania,240 Skirkanich Hall, 210 South 33rd Street,Philadelphia, PA 19104e-mail:
| | - Beth A Winkelstein
- Mem. ASMEDepartment of Bioengineering,University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street,Philadelphia, PA 19104
- Department of Neurosurgery,University of Pennsylvania,240 Skirkanich Hall, 210 South 33rd Street,Philadelphia, PA 19104e-mail:
| |
Collapse
|
11
|
Scimone MT, Cramer III HC, Bar-Kochba E, Amezcua R, Estrada JB, Franck C. Modular approach for resolving and mapping complex neural and other cellular structures and their associated deformation fields in three dimensions. Nat Protoc 2018; 13:3042-3064. [DOI: 10.1038/s41596-018-0077-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Chan VWL, Tobin WR, Zhang S, Winkelstein BA, Barocas VH, Shephard MS, Picu CR. Image-based multi-scale mechanical analysis of strain amplification in neurons embedded in collagen gel. Comput Methods Biomech Biomed Engin 2018; 22:113-129. [PMID: 30450957 DOI: 10.1080/10255842.2018.1538414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A general multi-scale strategy is presented for modeling the mechanical environment of a group of neurons that were embedded within a collagenous matrix. The results of the multi-scale simulation are used to estimate the local strains that arise in neurons when the extracellular matrix is deformed. The distribution of local strains was found to depend strongly on the configuration of the embedded neurons relative to the loading direction, reflecting the anisotropic mechanical behavior of the neurons. More importantly, the applied strain on the surrounding extracellular matrix is amplified in the neurons for all loading configurations that are considered. In the most severe case, the applied strain is amplified by at least a factor of 2 in 10% of the neurons' volume. The approach presented in this paper provides an extension to the capability of past methods by enabling the realistic representation of complex cell geometry into a multi-scale framework. The simulation results for the embedded neurons provide local strain information that is not accessible by current experimental techniques.
Collapse
Affiliation(s)
- Victor W L Chan
- a Scientific Computational Research Center , Rensselaer Polytechnic Institute, Low Center for Industrial Innocation , Troy , NY , USA
| | - William R Tobin
- a Scientific Computational Research Center , Rensselaer Polytechnic Institute, Low Center for Industrial Innocation , Troy , NY , USA
| | - Sijia Zhang
- b Department of Bioengineering , University of Pennsylvania , Philadelphia , PA , USA
| | - Beth A Winkelstein
- b Department of Bioengineering , University of Pennsylvania , Philadelphia , PA , USA
| | - Victor H Barocas
- c Department of Biomedical Engineering , University of Minnesota , Minneapolis , MN , USA
| | - Mark S Shephard
- a Scientific Computational Research Center , Rensselaer Polytechnic Institute, Low Center for Industrial Innocation , Troy , NY , USA
| | - Catalin R Picu
- a Scientific Computational Research Center , Rensselaer Polytechnic Institute, Low Center for Industrial Innocation , Troy , NY , USA.,d Department of Mechanical , Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute , Troy , NY , USA
| |
Collapse
|
13
|
Zhang S, Singh S, Winkelstein BA. Collagen organization regulates stretch-initiated pain-related neuronal signals in vitro: Implications for structure-function relationships in innervated ligaments. J Orthop Res 2018; 36:770-777. [PMID: 28722281 PMCID: PMC5775066 DOI: 10.1002/jor.23657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/11/2017] [Indexed: 02/04/2023]
Abstract
Injury to the spinal facet capsule, an innervated ligament with heterogeneous collagen organization, produces pain. Although mechanical facet joint trauma activates embedded afferents, it is unclear if, and how, the varied extracellular microstructure of its ligament affects sensory transduction for pain from mechanical inputs. To investigate the effects of macroscopic deformations on afferents in collagen matrices with different organizations, an in vitro neuron-collagen construct (NCC) model was used. NCCs with either randomly organized or parallel aligned collagen fibers were used to mimic the varied microstructure in the facet capsular ligament. Embryonic rat dorsal root ganglia (DRG) were encapsulated in the NCCs; axonal outgrowth was uniform and in all directions in random NCCs, but parallel in aligned NCCs. NCCs underwent uniaxial stretch (0.25 ± 0.06 strain) corresponding to sub-failure facet capsule strains that induce pain. Macroscopic NCC mechanics were measured and axonal expression of phosphorylated extracellular signal-regulated kinase (pERK) and the neurotransmitter substance P (SP) was assayed at 1 day to assess neuronal activation and nociception. Stretch significantly upregulated pERK expression in both random and aligned gels (p < 0.001), with the increase in pERK being significantly higher (p = 0.013) in aligned than in random NCCs. That increase likely relates to the higher peak force (p = 0.025) and stronger axon alignment (p < 0.001) with stretch direction in the aligned NCCs. In contrast, SP expression was greater in stretched NCCs (p < 0.001) regardless of collagen organization. These findings suggest that collagen organization differentially modulates pain-related neuronal signaling and support structural heterogeneity of ligament tissue as mediating sensory function. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:770-777, 2018.
Collapse
Affiliation(s)
- Sijia Zhang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104
| | - Sagar Singh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104
| | - Beth A. Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104,Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|