1
|
Hu Q, Zuo H, Hsu JC, Zeng C, Zhou T, Sun Z, Cai W, Tang Z, Chen W. The Emerging Landscape for Combating Resistance Associated with Energy-Based Therapies via Nanomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308286. [PMID: 37971203 PMCID: PMC10872442 DOI: 10.1002/adma.202308286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Cancer represents a serious disease with significant implications for public health, imposing substantial economic burden and negative societal consequences. Compared to conventional cancer treatments, such as surgery and chemotherapy, energy-based therapies (ET) based on athermal and thermal ablation provide distinct advantages, including minimally invasive procedures and rapid postoperative recovery. Nevertheless, due to the complex pathophysiology of many solid tumors, the therapeutic effectiveness of ET is often limited. Nanotechnology offers unique opportunities by enabling facile material designs, tunable physicochemical properties, and excellent biocompatibility, thereby further augmenting the outcomes of ET. Numerous nanomaterials have demonstrated the ability to overcome intrinsic therapeutic resistance associated with ET, leading to improved antitumor responses. This comprehensive review systematically summarizes the underlying mechanisms of ET-associated resistance (ETR) and highlights representative applications of nanoplatforms used to mitigate ETR. Overall, this review emphasizes the recent advances in the field and presents a detailed account of novel nanomaterial designs in combating ETR, along with efforts aimed at facilitating their clinical translation.
Collapse
Affiliation(s)
- Qitao Hu
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Huali Zuo
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Jessica C. Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Wisconsin 53705, United States
| | - Cheng Zeng
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Tian Zhou
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Zhouyi Sun
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Wisconsin 53705, United States
| | - Zhe Tang
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiyu Chen
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| |
Collapse
|
2
|
Gajewska-Naryniecka A, Szwedowicz U, Łapińska Z, Rudno-Rudzińska J, Kielan W, Kulbacka J. Irreversible Electroporation in Pancreatic Cancer-An Evolving Experimental and Clinical Method. Int J Mol Sci 2023; 24:4381. [PMID: 36901812 PMCID: PMC10002122 DOI: 10.3390/ijms24054381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Pancreatic cancer has no symptoms until the disease has advanced and is aggressive cancer with early metastasis. Up to now, the only curative treatment is surgical resection, which is possible in the early stages of the disease. Irreversible electroporation treatment offers new hope for patients with unresectable tumors. Irreversible electroporation (IRE) is a type of ablation therapy that has been explored as a potential treatment for pancreatic cancer. Ablation therapies involve the use of energy to destroy or damage cancer cells. IRE involves using high-voltage, low-energy electrical pulses to create resealing in the cell membrane, causing the cell to die. This review summarizes experiential and clinical findings in terms of the IRE applications. As was described, IRE can be a non-pharmacological approach (electroporation) or combined with anticancer drugs or standard treatment methods. The efficacy of irreversible electroporation (IRE) in eliminating pancreatic cancer cells has been demonstrated through both in vitro and in vivo studies, and it has been shown to induce an immune response. Nevertheless, further investigation is required to assess its effectiveness in human subjects and to comprehensively understand IRE's potential as a treatment option for pancreatic cancer.
Collapse
Affiliation(s)
- Agnieszka Gajewska-Naryniecka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Urszula Szwedowicz
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Zofia Łapińska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Julia Rudno-Rudzińska
- 2nd Department of General Surgery and Surgical Oncology, Medical University Hospital, Borowska 213, 50-556 Wroclaw, Poland
| | - Wojciech Kielan
- 2nd Department of General Surgery and Surgical Oncology, Medical University Hospital, Borowska 213, 50-556 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| |
Collapse
|
3
|
Han X, Zhang N, Zhang Y, Li Z, Wang Y, Mao L, He T, Li Q, Zhao J, Chen X, Li Y, Qin Z, Lv Y, Ren F. Survival model database of human digestive system cells exposed to electroporation pulses: An in vitro and in silico study. Front Public Health 2022; 10:948562. [PMID: 36133930 PMCID: PMC9484541 DOI: 10.3389/fpubh.2022.948562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/04/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND OBJECTIVES This study aimed to establish a mathematical survival model database containing cell-specific coefficients from human digestive system cells exposed to electroporation pulses (EPs). MATERIALS AND METHODS A total of 20 types of human digestive system cell lines were selected to investigate the effect of EPs on cell viability. Cell viability was measured after exposure to various pulse settings, and a cell survival model was established using the Peleg-Fermi model. Next, the cell-specific coefficients of each cell line were determined. RESULTS Cell viability tended to decrease when exposed to stronger electric field strength (EFS), longer pulse duration, and more pulse number, but the decreasing tendency varied among different cell lines. When exposed to a lower EFS (<1,000 V/cm), only a slight decrease in cell viability occurred. All cell lines showed a similar tendency: the extent of electrical injury (EI) increased with the increase in pulse number and duration. However, there existed differences in heat sensitivity among organs. CONCLUSIONS This database can be used for the application of electroporation-based treatment (EBT) in the digestive system to predict cell survival and tissue injury distribution during the treatment.
Collapse
Affiliation(s)
- Xuan Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nana Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuchi Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhuoqun Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingxue Wang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lujing Mao
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tianshuai He
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qingshan Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiawen Zhao
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xue Chen
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yixuan Li
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zitong Qin
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fenggang Ren
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Ranjbartehrani P, Etheridge M, Ramadhyani S, Natesan H, Bischof J, Shao Q. Characterization of Miniature Probes for Cryosurgery, Thermal Ablation, and Irreversible Electroporation on Small Animals. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Pegah Ranjbartehrani
- Department of Mechanical Engineering University of Minnesota Minneapolis MN 55455 USA
| | - Michael Etheridge
- Department of Mechanical Engineering University of Minnesota Minneapolis MN 55455 USA
| | | | | | - John Bischof
- Department of Mechanical Engineering University of Minnesota Minneapolis MN 55455 USA
- Department of Biomedical Engineering University of Minnesota Minneapolis MN 55455 USA
| | - Qi Shao
- Department of Mechanical Engineering University of Minnesota Minneapolis MN 55455 USA
| |
Collapse
|
5
|
Yang C, Wang X, Ma W, Wang Z, Tan G, Fang W, Jin Y. Improving the photodynamic therapy of pyropheophorbide a through the combination of hypoxia-sensitive molecule and infrared light-excited d-TiO2−X nanoparticles. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Photodynamic therapy (PDT) involving the generation of cytotoxic reactive oxygen species under light in the presence of sufficient oxygen has been widely used in diagnosing and treating cancer. However, the ubiquitous hypoxia in many solid tumors due to their abnormal proliferation and vascularization has greatly compromised the therapeutic effect. We have designed and prepared a tumor therapeutic nanoplatform for improving PDT based on defective TiO[Formula: see text] (d-TiO[Formula: see text] with the consideration that the continuous PDT would cause hypoxic tumor microenvironment (HTM) in which many hypoxia-sensitive drugs might be activated to exert the antitumor activities. The inorganic d-TiO[Formula: see text] nanoparticles (NPs) were firstly prepared and then modified by APTES to obtain the mesoporous d-TiO[Formula: see text]@SiO2NPs. The organic photosensitizer pyropheophorbide-a (PPa) and hypoxic-sensitive agent 6-aminoflavone (AF) were then adsorbed in the mesoporous SiO2, followed by further hydrophilic PEGylation to improve the biocompatibility. Defective d-TiO[Formula: see text] and the PPa could simultaneously consume oxygen after light excitation, while the resulted HTM was utilized to activate the hypoxic-sensitive agent 6-aminoflavone (AF) to trigger anti-cancer effect. The prepared d-TiO[Formula: see text]@SiO2/PPa/AF@PEG NPs were stable in normal physiological environment, and could continuously release PPa and AF under slightly acidic conditions. The in vitro experiments against cancer cells suggested that the combination of PPa and AF displayed significantly enhanced antitumor activities than that of monotherapy. Therefore, this research offered a potential application for 6-aminoflavone in PDT-induced hypoxia to improve the antitumor effects.
Collapse
Affiliation(s)
- Chen Yang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Xingchao Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Wei Ma
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Guanghui Tan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Wen Fang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| |
Collapse
|
6
|
Combination of irreversible electroporation with sustained release of a synthetic membranolytic polymer for enhanced cancer cell killing. Sci Rep 2021; 11:10810. [PMID: 34031433 PMCID: PMC8144369 DOI: 10.1038/s41598-021-89661-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
Irreversible electroporation (IRE) is used clinically as a focal therapy to ablate solid tumors. A critical disadvantage of IRE as a monotherapy for cancer is the inability of ablating large tumors, because the electric field strength required is often too high to be safe. Previous reports indicate that cells exposed to certain cationic small molecules and surfactants are more vulnerable to IRE at lower electric field strengths. However, low-molecular-weight IRE sensitizers may suffer from suboptimal bioavailability due to poor stability and a lack of control over spatiotemporal accumulation in the tumor tissue. Here, we show that a synthetic membranolytic polymer, poly(6-aminohexyl methacrylate) (PAHM), synergizes with IRE to achieve enhanced cancer cell killing. The enhanced efficacy of the combination therapy is attributed to PAHM-mediated sensitization of cancer cells to IRE and to the direct cell killing by PAHM through membrane lysis. We further demonstrate sustained release of PAHM from embolic beads over 1 week in physiological medium. Taken together, combining IRE and a synthetic macromolecular sensitizer with intrinsic membranolytic activity and sustained bioavailability may present new therapeutic opportunities for a wide range of solid tumors.
Collapse
|
7
|
Irreversible Electroporation Enhanced by Radiofrequency Ablation: An In Vitro and Computational Study in a 3D Liver Tumor Model. Ann Biomed Eng 2021; 49:2126-2138. [PMID: 33594637 DOI: 10.1007/s10439-021-02734-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/15/2021] [Indexed: 12/24/2022]
Abstract
In the present study, we used a computational and experimental study in a 3D liver tumor model (LTM) to explore the tumor ablation enhancement of irreversible electroporation (IRE) by pre-heating with radiofrequency ablation (RFA) and elucidate the mechanism whereby this enhancement occurs. Three ablation protocols, including IRE alone, RFA45 → IRE (with the pre-heating temperature of 45 °C), and RFA60 → IRE (with the pre-heating temperature of 60 °C) were investigated. Both the thermal conductivity and electrical conductivity of the 3D LTM were characterized with the change in the pre-heating temperature. The results showed, compared to IRE alone, a significant increase in the tumor ablation volume (19.59 [Formula: see text] 0.61 vs. 15.29 ± 0.61 mm3, p = 0.002 and 22.87 [Formula: see text] 0.35 vs. 15.29 ± 0.61 mm3, p < 0.001) was observed with both RFA45 → IRE and RFA60 → IRE, leading to a decrease in lethal electric filed strength (8 and 17%, correspondingly). The mechanism can be attributed to the change of cell microenvironment by pre-heating and/or a synergistic effect of RFA and IRE. The proposed enhancing method might contribute to the improvement of interventional oncology in the treatment of large tumors close to critical organs (e.g., large blood vessels and bile ducts).
Collapse
|
8
|
Ding L, Moser M, Luo Y, Zhang W, Zhang B. Treatment Planning Optimization in Irreversible Electroporation for Complete Ablation of Variously Sized Cervical Tumors: A Numerical Study. J Biomech Eng 2021; 143:014503. [PMID: 34043747 DOI: 10.1115/1.4047551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Indexed: 01/04/2023]
Abstract
Irreversible electroporation (IRE), a relatively new energy-based tumor ablation technology, has shown itself in the last decade to be able to safely ablate tumors with favorable clinical outcomes, yet little work has been done on optimizing the IRE protocol to variously sized tumors. Incomplete tumor ablation has been shown to be the main reason leading to the local recurrence and thus treatment failure. The goal of this study was to develop a general optimization approach to optimize the IRE protocol for cervical tumors in different sizes, while minimizing the damage to normal tissues. This kind of approach can lay a foundation for future personalized treatment of IRE. First, a statistical IRE cervical tumor death model was built using previous data in our group. Then, a multi-objective optimization problem model was built, in which the decision variables are five IRE-setting parameters, namely, the pulse strength (U), the length of active tip (H), the number of pulses delivered in one round between a pair of electrodes (A), the distance between electrodes (D), and the number of electrodes (N). The domains of the decision variables were determined based on the clinical experience. Finally, the problem model was solved by using nondominated sorting genetic algorithms II (NSGA-II) algorithm to give respective optimal protocol for three sizes of cervical tumors. Every protocol was assessed by the evaluation criterion established in the study to show the efficacy in a more straightforward way. The results of the study demonstrate this approach can theoretically provide the optimal IRE protocol for different sizes of tumors and may be generalizable to other types, sizes, and locations of tumors.
Collapse
Affiliation(s)
- Lujia Ding
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Michael Moser
- Department of Surgery, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Yigang Luo
- Department of Surgery, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Wenjun Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Bing Zhang
- Energy-Based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| |
Collapse
|
9
|
Brock RM, Beitel-White N, Davalos RV, Allen IC. Starting a Fire Without Flame: The Induction of Cell Death and Inflammation in Electroporation-Based Tumor Ablation Strategies. Front Oncol 2020; 10:1235. [PMID: 32850371 PMCID: PMC7399335 DOI: 10.3389/fonc.2020.01235] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
New therapeutic strategies and paradigms are direly needed for the treatment of cancer. While the surgical removal of tumors is favored in most cancer treatment plans, resection options are often limited based on tumor localization. Over the last two decades, multiple tumor ablation strategies have emerged as promising stand-alone or combination therapeutic options for patients. These strategies are often employed to treat tumors in areas where surgical resection is not possible or where chemotherapeutics have proven ineffective. The type of cell death induced by the ablation modality is a critical aspect of therapeutic success that can impact the efficacy of the treatment and systemic anti-tumor immune system responses. Electroporation-based ablation technologies include electrochemotherapy, irreversible electroporation, and other modalities that rely on pulsed electric fields to create pores in cell membranes. These pores can either be reversible or irreversible depending on the electric field parameters and can induce cell death either alone or in combination with a therapeutic agent. However, there have been many controversial findings among these technologies as to the cell death type initiated, from apoptosis to pyroptosis. As cell death mechanisms can impact treatment side effects and efficacy, we review the main types of cell death induced by electroporation-based treatments and summarize the impact of these mechanisms on treatment response. We also discuss potential reasons behind the variability of findings such as the similarities between cell death pathways, differences between cell-types, and the variation in electric field strength across the treatment area.
Collapse
Affiliation(s)
- Rebecca M. Brock
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - Natalie Beitel-White
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Irving C. Allen
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Science, Blacksburg, VA, United States
| |
Collapse
|
10
|
Polajžer T, Miklavčič D. Development of adaptive resistance to electric pulsed field treatment in CHO cell line in vitro. Sci Rep 2020; 10:9988. [PMID: 32561789 PMCID: PMC7305184 DOI: 10.1038/s41598-020-66879-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/26/2020] [Indexed: 12/02/2022] Open
Abstract
Pulsed electric field treatment has increased over the last few decades with successful translation from in vitro studies into different medical treatments like electrochemotherapy, irreversible electroporation for tumor and cardiac tissue ablation and gene electrotransfer for gene therapy and DNA vaccination. Pulsed electric field treatments are efficient but localized often requiring repeated applications to obtain results due to partial response and recurrence of disease. While these treatment times are several orders of magnitude lower than conventional biochemical treatment, it has been recently suggested that cells may become resistant to electroporation in repetitive treatments. In our study, we evaluate this possibility of developing adaptive resistance in cells exposed to pulsed electric field treatment over successive lifetimes. Mammalian cells were exposed to electroporation pulses for 30 generations. Every 5th generation was analyzed by determining permeabilization and survival curve. No statistical difference between cells in control and cells exposed to pulsed electric field treatment was observed. We offer evidence that electroporation does not affect cells in a way that they would become less susceptible to pulsed electric field treatment. Our findings indicate pulsed electric field treatment can be used in repeated treatments with each treatment having equal efficiency to the initial treatment.
Collapse
Affiliation(s)
- Tamara Polajžer
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000, Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|
11
|
Pelaez F, Shao Q, Ranjbartehrani P, Lam T, Lee HR, O'Flanagan S, Silbaugh A, Bischof JC, Azarin SM. Optimizing Integrated Electrode Design for Irreversible Electroporation of Implanted Polymer Scaffolds. Ann Biomed Eng 2020; 48:1230-1240. [PMID: 31916125 DOI: 10.1007/s10439-019-02445-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022]
Abstract
Irreversible electroporation (IRE) is an emerging technology for non-thermal ablation of solid tumors. This study sought to integrate electrodes into microporous poly(caprolactone) (PCL) scaffolds previously shown to recruit metastasizing cancer cells in vivo in order to facilitate application of IRE to disseminating cancer cells. As the ideal parallel plate geometry would render much of the porous scaffold surface inaccessible to infiltrating cells, numerical modeling was utilized to predict the spatial profile of electric field strength within the scaffold for alternative electrode designs. Metal mesh electrodes with 0.35 mm aperture and 0.16 mm wire diameter established electric fields with similar spatial uniformity as the parallel plate geometry. Composite PCL-IRE scaffolds were fabricated by placing cylindrical porous PCL scaffolds between two PCL dip-coated stainless steel wire meshes. PCL-IRE scaffolds exhibited no difference in cell infiltration in vivo compared to PCL scaffolds. In addition, upon application of IRE in vivo, cells infiltrating the PCL-IRE scaffolds were successfully ablated, as determined by histological analysis 3 days post-treatment. The ability to establish homogeneous electric fields within a biomaterial that can recruit metastatic cancer cells, especially when combined with immunotherapy, may further advance IRE technology beyond solid tumors to the treatment of systemic cancer.
Collapse
Affiliation(s)
- Francisco Pelaez
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Qi Shao
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Pegah Ranjbartehrani
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Tiffany Lam
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hak Rae Lee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stephen O'Flanagan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Abby Silbaugh
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Samira M Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
12
|
Shao Q, O'Flanagan S, Lam T, Roy P, Pelaez F, Burbach BJ, Azarin SM, Shimizu Y, Bischof JC. Engineering T cell response to cancer antigens by choice of focal therapeutic conditions. Int J Hyperthermia 2019; 36:130-138. [DOI: 10.1080/02656736.2018.1539253] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Qi Shao
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Stephen O'Flanagan
- Department of Laboratory Medicine and Pathology and Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Tiffany Lam
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Priyatanu Roy
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Francisco Pelaez
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Brandon J Burbach
- Department of Laboratory Medicine and Pathology and Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Samira M Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Yoji Shimizu
- Department of Laboratory Medicine and Pathology and Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
13
|
Chen Y, Moser MAJ, Luo Y, Zhang W, Zhang B. Chemical Enhancement of Irreversible Electroporation: A Review and Future Suggestions. Technol Cancer Res Treat 2019; 18:1533033819874128. [PMID: 31500518 PMCID: PMC6737874 DOI: 10.1177/1533033819874128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/20/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022] Open
Abstract
Irreversible electroporation has raised great interest in the past decade as a means of destroying cancers in a way that does not involve heat. Irreversible electroporation is a novel ablation technology that uses short high-voltage electrical pulses to enhance the permeability of tumor cell membranes and generate irreversible nano-sized structural defects or pores, thus leading to cell death. Irreversible electroporation has many advantages over thermal therapies due to its nonthermal mechanism: (1) reduced risk of injury to surrounding organs and (2) no "heat-sink" effect due to nearby blood vessels. However, so far, it has been difficult for irreversible electroporation to completely ablate large tumors (eg, >3 cm in diameter). In order to overcome this problem, many preclinical and clinical studies have been performed to improve the efficacy of IRE in the treatment of large size of tumors through a chemical perspective. Due to the distribution of electric field, irreversible electroporation region, reversible electroporation region, and intact region can be found in the treatment of irreversible electroporation. Thus, 2 types of chemical enhancements of irreversible electroporation were discussed in the article, such as the reversible electroporation region enhanced and the irreversible electroporation region enhanced. Specifically, the state-of-the-art results regarding the following approaches that have the potential to be used in the enhancement of irreversible electroporation were systematically reviewed in the article, including (1) combination with cytotoxic drugs, (2) calcium electroporation, (3) modification of cell membrane, and (4) modification of the tumor cell microenvironment. In the end, we concluded with 4 issues that should be addressed in the future for improving irreversible electroporation further in a chemical way.
Collapse
Affiliation(s)
- Ying Chen
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China
| | | | - Yigang Luo
- Department of Surgery, University of Saskatchewan, Saskatoon, Canada
| | - Wenjun Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Bing Zhang
- Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| |
Collapse
|
14
|
Zhang B, Yang Y, Ding L, Moser MAJ, Zhang EM, Zhang W. Tumor Ablation Enhancement by Combining Radiofrequency Ablation and Irreversible Electroporation: An In Vitro 3D Tumor Study. Ann Biomed Eng 2018; 47:694-705. [PMID: 30565007 DOI: 10.1007/s10439-018-02185-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/06/2018] [Indexed: 02/08/2023]
Abstract
We hypothesized and demonstrated for the first time that significant tumor ablation enhancement can be achieved by combining radiofrequency ablation (RFA) and irreversible electroporation (IRE) using a 3D cervical cancer cell model. Three RFA (43, 50, and 60 °C for 2 min) and IRE protocols (350, 700, and 1050 V/cm) were used to study the combining effect in the 3D tumor cell model. The in vitro experiment showed that both RFA enhanced IRE and IRE enhanced RFA can lead to a significant increase in the size of the ablation zone compared to IRE and RFA alone. It was also noted that the sequence of applying ablation energy (RFA → RE or IRE → RFA) affected the efficacy of tumor ablation enhancement. The electrical conductivity of 3D tumor was found to be increased after preliminary RFA or IRE treatment. This increase in tumor conductivity may explain the enhancement of tumor ablation. Another explanation might be that there is repeat injury to the transitional zone of the first treatment by the second one. The promising results achieved in the study can provide us useful clues about the treatment of large tumors abutting large vessels or bile ducts.
Collapse
Affiliation(s)
- Bing Zhang
- Tumor Ablation Group, Biomedical Science and Technology Research Center, School of Mechatronic Engineering and Automation, Shanghai University, 99 Shangda Road, Baoshan, Shanghai, 200444, China.
| | - Yongji Yang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lujia Ding
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Michael A J Moser
- Department of Surgery, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
| | - Edwin M Zhang
- Division of Vascular & Interventional Radiology, Department of Medical Imaging, University of Toronto, Toronto, ON, M5T 1W7, Canada
| | - Wenjun Zhang
- Tumor Ablation Group, Biomedical Science and Technology Research Center, School of Mechatronic Engineering and Automation, Shanghai University, 99 Shangda Road, Baoshan, Shanghai, 200444, China.,Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada
| |
Collapse
|