1
|
Menon S, Hua Q, Currie-Gregg NJ. The biomechanical injury calculator: a postprocessor software for a finite element human body model. Comput Methods Biomech Biomed Engin 2025:1-13. [PMID: 40267941 DOI: 10.1080/10255842.2024.2448554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 04/25/2025]
Abstract
An injury risk assessment postprocessor for the Global Human Body Model Consortium (GHBMC) model is presented. The Biomechanical Injury Calculator (BIC) calculates injury probabilities for the head, neck, spine, and pelvis post-simulation, along with a total injury probability for the entire complex. It also generates an injury heatmap. Developed for the GHBMC M50-OS v2.3 +DeformSpine, BIC was validated by comparing 103 airmen's seat ejection injuries to BIC-predicted injury probabilities in 30 vertical seat load simulations. Observed injury rates correlated strongly with BIC predictions (Spearman=0.943, Pearson=0.982) within 5.16% margin. The total injury probability of 58.48% closely matched the 56.3% observed rate.
Collapse
Affiliation(s)
| | - Quenton Hua
- Texas A&M University, College Station, Texas, USA
| | | |
Collapse
|
2
|
Costa CG, Devane K, Stitzel JD, Iraeus J, Weaver AA. Validation of a generic finite element vehicle buck model for near-side crashes. TRAFFIC INJURY PREVENTION 2024; 26:215-225. [PMID: 39405414 DOI: 10.1080/15389588.2024.2403717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 03/05/2025]
Abstract
OBJECTIVE Finite element (FE) reconstructions of motor vehicle crashes using human body models are effective tools for developing a better understanding of occupant kinematics and injuries in real-world lateral crash conditions, but current near-side reconstruction methods are limited by the paucity of full-scale FE vehicle models. The objective of this study was to validate a generic vehicle model equipped with left-side airbags and intrusion capability by simulating a series of near-side crash tests for a range of vehicles and assessing model accuracy using objective evaluation methods. METHODS Moving deformable barrier crash tests were reconstructed for five common vehicle classifications (compact passenger, mid-size passenger, sport utility vehicle, pickup truck, and van) using an updated version of a previously developed simplified vehicle model. Unknown vehicle and intrusion properties (pretensioner force, seatback airbag pressure, curtain airbag pressure, door panel stiffness, ratio of dynamic-to-static intrusion, intrusion velocity, and intrusion scaling factor) were estimated by parameterizing them across 224 simulations per crash test using a Latin hypercube design of experiments. Model accuracy was assessed for 13 anthropomorphic test device signals using the Correlation and Analysis (CORA) objective rating method and injury metric comparisons. RESULTS Maximum ratings of 0.69, 0.67, 0.52, 0.52, and 0.62 were achieved for the compact passenger, midsize passenger, sport utility vehicle, pickup truck, and van classifications, respectively. On average, the abdomen displayed the most accurate behavior (0.51 ± 0.12), followed by the thorax (0.50 ± 0.10) and head (0.50 ± 0.07). The pelvis displayed the least accurate behavior (0.46 ± 0.18) of any region. Reconstructions overpraedicted injury metrics in all cases. CONCLUSIONS All vehicles achieved "fair" biofidelity ratings and the compact passenger and midsize passenger vehicles achieved "good" biofidelity ratings, validating them for kinematic evaluations with vehicle-to-vehicle nearside crash reconstructions. Regression models were developed for injuries and CORA ratings and can be used to optimize vehicle parameters in future studies.
Collapse
Affiliation(s)
- Casey G Costa
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Virginia Tech-Wake Forest School of Biomedical Engineering and Science, Center for Injury Biomechanics, Winston-Salem, North Carolina
| | - Karan Devane
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Virginia Tech-Wake Forest School of Biomedical Engineering and Science, Center for Injury Biomechanics, Winston-Salem, North Carolina
| | - Joel D Stitzel
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Virginia Tech-Wake Forest School of Biomedical Engineering and Science, Center for Injury Biomechanics, Winston-Salem, North Carolina
| | - Johan Iraeus
- Department of Applied Mechanics, Chalmers University of Technology, Göteborg, Sweden
| | - Ashley A Weaver
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Virginia Tech-Wake Forest School of Biomedical Engineering and Science, Center for Injury Biomechanics, Winston-Salem, North Carolina
| |
Collapse
|
3
|
Wang P, Peng H, Huang J, Li Y, Dou Q, Suo T. Effect of flight helmet mass characteristics and neck stress postures on pilot neck impact injury. THEORETICAL AND APPLIED MECHANICS LETTERS 2024; 14:100538. [DOI: 10.1016/j.taml.2024.100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Lalwala M, Devane KS, Koya B, Hsu FC, Gayzik FS, Weaver AA. Sensitivity Analysis for Multidirectional Spaceflight Loading and Muscle Deconditioning on Astronaut Response. Ann Biomed Eng 2023; 51:430-442. [PMID: 36018394 DOI: 10.1007/s10439-022-03054-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/05/2022] [Indexed: 01/25/2023]
Abstract
A sensitivity analysis for loading conditions and muscle deconditioning on astronaut response for spaceflight transient accelerations was carried out using a mid-size male human body model with active musculature. The model was validated in spaceflight-relevant 2.5-15 g loading magnitudes in seven volunteer tests, showing good biofidelity (CORA: 0.69). Sensitivity analysis was carried out in simulations varying pulse magnitude (5, 10, and 15 g), rise time (32.5 and 120 ms), and direction (10 directions: frontal, rear, vertical, lateral, and their combination) along with muscle size change (± 15% change) and responsiveness (pre-braced, relaxed, vs. delayed response) changes across 600 simulations. Injury metrics were most sensitive to the loading direction (50%, partial-R2) and least sensitive to muscle size changes (0.2%). The pulse magnitude also had significant effect on the injury metrics (16%), whereas muscle responsiveness (3%) and pulse rise time (2%) had only slight effects. Frontal and upward loading directions were the worst for neck, spine, and lower extremity injury metrics, whereas rear and downward directions were the worst for head injury metrics. Higher magnitude pulses and pre-bracing also increased the injury risk.
Collapse
Affiliation(s)
- Mitesh Lalwala
- Department of Biomedical Engineering, Wake Forest University School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
| | - Karan S Devane
- Department of Biomedical Engineering, Wake Forest University School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
| | - Bharath Koya
- Department of Biomedical Engineering, Wake Forest University School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, 525 Vine Street, Winston-Salem, NC, 27101, USA
| | - F Scott Gayzik
- Department of Biomedical Engineering, Wake Forest University School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
| | - Ashley A Weaver
- Department of Biomedical Engineering, Wake Forest University School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA.
- Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
5
|
Lalwala M, Devane KS, Koya B, Hsu FC, Yates KM, Newby NJ, Somers JT, Gayzik FS, Stitzel JD, Weaver AA. Effect of Active Muscles on Astronaut Kinematics and Injury Risk for Piloted Lunar Landing and Launch While Standing. Ann Biomed Eng 2023:10.1007/s10439-023-03143-y. [PMID: 36652027 DOI: 10.1007/s10439-023-03143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
While astronauts may pilot future lunar landers in a standing posture, the response of the human body under lunar launch and landing-related dynamic loading conditions is not well understood. It is important to consider the effects of active muscles under these loading conditions as muscles stabilize posture while standing. In the present study, astronaut response for a piloted lunar mission in a standing posture was simulated using an active human body model (HBM) with a closed-loop joint-angle based proportional integral derivative controller muscle activation strategy and compared with a passive HBM to understand the effects of active muscles on astronaut body kinematics and injury risk. While head, neck, and lumbar spine injury risk were relatively unaffected by active muscles, the lower extremity injury risk and the head and arm kinematics were significantly changed. Active muscle prevented knee-buckling and spinal slouching and lowered tibia injury risk in the active vs. passive model (revised tibia index: 0.02-0.40 vs. 0.01-0.58; acceptable tolerance: 0.43). Head displacement was higher in the active vs. passive model (11.6 vs. 9.0 cm forward, 6.3 vs. 7.0 cm backward, 7.9 vs. 7.3 cm downward, 3.7 vs. 2.4 cm lateral). Lower arm movement was seen with the active vs. passive model (23 vs. 35 cm backward, 12 vs. 20 cm downward). Overall simulations suggest that the passive model may overpredict injury risk in astronauts for spaceflight loading conditions, which can be improved using the model with active musculature.
Collapse
Affiliation(s)
- Mitesh Lalwala
- Department of Biomedical Engineering, Wake Forest University School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
| | - Karan S Devane
- Department of Biomedical Engineering, Wake Forest University School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
| | - Bharath Koya
- Department of Biomedical Engineering, Wake Forest University School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, 525 Vine Street, Winston-Salem, NC, 27101, USA
| | | | | | - Jeffrey T Somers
- NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX, 77058, USA
| | - F Scott Gayzik
- Department of Biomedical Engineering, Wake Forest University School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
| | - Joel D Stitzel
- Department of Biomedical Engineering, Wake Forest University School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
| | - Ashley A Weaver
- Department of Biomedical Engineering, Wake Forest University School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA.
- Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
6
|
Simulated Astronaut Kinematics and Injury Risk for Piloted Lunar Landings and Launches While Standing. Ann Biomed Eng 2022; 50:1857-1871. [PMID: 35818016 DOI: 10.1007/s10439-022-03002-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/27/2022] [Indexed: 12/30/2022]
Abstract
During future lunar missions, astronauts may be required to pilot vehicles while standing, and the associated kinematic and injury response is not well understood. In this study, we used human body modeling to predict unsuited astronaut kinematics and injury risk for piloted lunar launches and landings in the standing posture. Three pulses (2-5 g; 10-150 ms rise times) were applied in 10 directions (vertical; ± 10-degree offsets) for a total of 30 simulations. Across all simulations, motion envelopes were computed to quantify displacement of the astronaut's head (max 9.0 cm forward, 7.0 cm backward, 2.1 cm upward, 7.3 cm downward, 2.4 cm lateral) and arms (max 25 cm forward, 35 cm backward, 15 cm upward, 20 cm downward, 20 cm lateral). All head, neck, lumbar, and lower extremity injury metrics were within NASA's tolerance limits, except tibia compression forces (0-1543 N upper tibia; 0-1482 N lower tibia; tolerance-1350 N) and revised tibia index (0.04-0.58 upper tibia; 0.03-0.48 lower tibia; tolerance-0.43) for the 2.7 g/150 ms pulse. Pulse magnitude and duration contributed over 80% to the injury metric values, whereas loading direction contributed less than 3%. Overall, these simulations suggest piloting a lunar lander vehicle in the standing posture presents a tibia injury risk which is potentially outside NASA's acceptance limits and warrants further investigation.
Collapse
|
7
|
Lalwala M, Koya B, Devane KS, Hsu FC, Yates KM, Newby NJ, Somers JT, Gayzik FS, Stitzel JD, Weaver AA. Effects of Standing, Upright Seated, vs. Reclined Seated Postures on Astronaut Injury Biomechanics for Lunar Landings. Ann Biomed Eng 2022; 51:951-965. [PMID: 36352272 DOI: 10.1007/s10439-022-03108-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022]
Abstract
Astronauts may pilot a future lunar lander in a standing or upright/reclined seated posture. This study compared kinematics and injury risk for the upright/reclined (30°; 60°) seated vs. standing postures for lunar launch/landing using human body modeling across 30 simulations. While head metrics for standing and upright seated postures were comparable to 30 cm height jumps, those of reclined postures were closer to 60 cm height jumps. Head linear acceleration for 60° reclined posture in the 5 g/10 ms pulse exceeded NASA's tolerance (10.1 g; tolerance: 10 g). Lower extremity metrics exceeding NASA's tolerance in the standing posture (revised tibia index: 0.36-0.53; tolerance: 0.43) were lowered in seated postures (0.00-0.04). Head displacement was higher in standing vs. seated (9.0 cm vs. 2.4 cm forward, 7.0 cm vs. 1.3 cm backward, 2.1 cm vs. 1.2 cm upward, 7.3 cm vs. 0.8 cm downward, 2.4 cm vs. 3.2 cm lateral). Higher arm movement was seen with seated vs. standing (40 cm vs. 25 cm forward, 60 cm vs. 15 cm upward, 30 cm vs. 20 cm downward). Pulse-nature contributed more than 40% to the injury metrics for seated postures compared to 80% in the standing posture. Seat recline angle contributed about 22% to the injury metrics in the seated posture. This study established a computational methodology to simulate the different postures of an astronaut for lunar landings and generated baseline injury risk and body kinematics data.
Collapse
Affiliation(s)
- Mitesh Lalwala
- Department of Biomedical Engineering, Wake Forest School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
| | - Bharath Koya
- Department of Biomedical Engineering, Wake Forest School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
| | - Karan S Devane
- Department of Biomedical Engineering, Wake Forest School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, 525 Vine Street, Winston-Salem, NC, 27101, USA
| | | | | | - Jeffrey T Somers
- NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX, 77058, USA
| | - F Scott Gayzik
- Department of Biomedical Engineering, Wake Forest School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
| | - Joel D Stitzel
- Department of Biomedical Engineering, Wake Forest School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
| | - Ashley A Weaver
- Department of Biomedical Engineering, Wake Forest School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA.
- Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
8
|
Kang M, Kim H, Cho Y, Kim S, Lim D. Occupant safety effectiveness of proactive safety seat in autonomous emergency braking. Sci Rep 2022; 12:5727. [PMID: 35388130 PMCID: PMC8986762 DOI: 10.1038/s41598-022-09842-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/24/2022] [Indexed: 11/09/2022] Open
Abstract
The proactive safety seat (PSS) is a recently developed active safety system for securing occupant safety in out-of-seat position (OOSP), which was applied in the Hyundai Genesis G80 in 2020. However, there has not been sufficient quantifiable verification supporting the effectiveness of the PSS. The present study was performed to determine the effectiveness of the PSS for occupant safety in OOSP and to identify areas for additional improvement. Six test conditions were considered to determine the effectiveness of the PSS for augmentation of occupant safety in OOSP. Ten healthy men participated in the tests. Compared with the no PSS condition, maximum head excursion and neck rotation were significantly decreased in the PSS condition by 0.6-0.8-fold and 0.6-0.7-fold, respectively (P < 0.05). The PSS condition in which the seat pan was moved forward to the mid position showed a greater effect in reducing the characteristic motions related to submarining, compared with the condition in which the seat pan was moved rearward to the mid position (P < 0.05). These results suggested that PSS augments occupant safety in OOSP. This study provides valuable insights in ameliorating risks to the occupant in unintended seat positions before braking and/or collision.
Collapse
Affiliation(s)
- Myeongkwan Kang
- Department of Mechanical Engineering, Sejong University, Seoul, 05006, Korea
| | - Hyungjoo Kim
- Automotive Research and Development Division, Hyundai Motor Group, Hwaseong, 18280, Korea.
| | - Youngkuen Cho
- Automotive Research and Development Division, Hyundai Motor Group, Hwaseong, 18280, Korea
| | - Seonglae Kim
- Automotive Research and Development Division, Hyundai Motor Group, Hwaseong, 18280, Korea
| | - Dohyung Lim
- Department of Mechanical Engineering, Sejong University, Seoul, 05006, Korea.
| |
Collapse
|
9
|
Decker WB, Jones DA, Devane K, Hsu FC, Davis ML, Patalak JP, Gayzik FS. Effect of body size and enhanced helmet systems on risk for motorsport drivers. TRAFFIC INJURY PREVENTION 2021; 22:S49-S55. [PMID: 34582303 DOI: 10.1080/15389588.2021.1977802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/24/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Computational modeling has been shown to be a useful tool for simulating representative motorsport impacts and analyzing data for relative injury risk assessment. Previous studies have used computational modeling to analyze the probability of injury in specific regions of a 50th percentile male driver. However, NASCAR drivers can represent a large range in terms of size and female drivers are becoming increasingly more common in the sport. Additionally, motorsport helmets can be outfitted with external attachments, or enhanced helmet systems (EHS), whose effect is unknown relative to head and neck kinematics. The current study expands on this previous work by incorporating the F05-OS and M95-OS into the motorsport environment in order to determine correlations between metrics and factors such as PDOF, resultant ΔV occupant size, and EHS. METHODS A multi-step computational process was used to integrate the Global Human Body Models Consortium family of simplified occupant models into a motorsport environment. This family included the 5th percentile female (F05-OS), 50th percentile male (M50-OS), and 95th percentile male (M95-OS), which provide a representative range for the size and sex of drivers seen in NASCAR's racing series'. A series of 45 representative impacts, developed from real-world crash data, and set of observed on-track severe impacts were conducted with these models. These impacts were run in triplicate for three helmet configurations: bare helmet, helmet with visor, helmet with visor and camera. This resulted in 450 total simulations. A paired t-test was initially performed as an exploratory analysis to study the effect of helmet configuration on 10 head and neck injury metrics. A mixed-effects model with unstructured covariance matrix was then utilized to correlate the effect between five independent variables (resultant ΔV, body size, helmet configuration, impact quadrant, and steering wheel position) and a selection of 25 metrics. All simulations were conducted in LS-Dyna R. 9.1. RESULTS Risk estimates from the M50-OS with bare helmet were used as reference values to determine the effect of body size and helmet configuration. The paired t-test found significance for helmet configuration in select head-neck metrics, but the relative increase in these metrics was low and not likely to increase injury risk. The mixed-effects model analyzed statistical relationships across multiple types of variables. Within the mixed-effects model, no significance was found between helmet configuration and metrics. The greatest effect was found from resultant ΔV, body size, and impact quadrant. CONCLUSIONS Overall, smaller drivers showed statistically significant reductions in injury metrics, while larger drivers showed statistically significant increases. Lateral impacts showed the greatest effect on neck metrics and, on average, showed decreases for head metrics related to linear acceleration and increases for head metrics related to angular velocity. HBM parametric studies such as this may provide an avenue to assist injury detection for motorsport incidents, improve triage effectiveness, and assist in the development of safety standards.
Collapse
Affiliation(s)
- William B Decker
- Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | - Karan Devane
- Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | - John P Patalak
- National Association for Stock Car Auto Racing, Incorporated, Daytona Beach, Florida
| | - F Scott Gayzik
- Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
10
|
Sahandifar P, Kleiven S. Influence of nonlinear soft tissue modeling on the external and internal forces during lateral hip impacts. J Mech Behav Biomed Mater 2021; 124:104743. [PMID: 34474319 DOI: 10.1016/j.jmbbm.2021.104743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Soft tissues in the hip region, which are typically considered the natural shock-absorbers during falls, attenuate the applied forces to the underlying hard tissue. The soft tissue thickness is, therefore, a significant parameter in the force attenuation. Another factor that could affect the assessment of the force attenuation in numerical simulations is the choice of constitutive model and material parameters for the soft tissue. Several constitutive models and parameters for muscle and adipose tissue were suggested in the published literature; however, the biofidelity of the proposed models for the lateral impacts has not been assessed yet. To achieve this purpose, we used a previously developed human body model named THUMS v4.02 and modified the mechanical properties and geometry of the soft tissues in the hip region. The simulations consisted of regional hip models and whole-body models. The biofidelity of the constitutive models of muscle and adipose tissue was determined objectively using the CORrelation and Analysis (CORA) rating. Moreover, the potential force attenuating effect of the adipose tissue thickness was investigated in the regional models. We collected and fitted several available nonlinear material models for muscle and adipose tissue and implemented them. The CORA ratings for several constitutive models for adipose tissue in the regional model were above 0.8. Among the muscle constitutive models, three Ogden models consistently rated above 0.58 for the whole-body model. Moreover, the impact forces in the selected adipose tissue model attenuated 47 N for every 1 mm increase in thickness. Overall, the choice of the nonlinear material model for the adipose and muscle tissue influences the external and internal force, and the difference between the material models is more pronounced when the thickness of the soft tissue increases.
Collapse
Affiliation(s)
- Pooya Sahandifar
- Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Svein Kleiven
- Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
11
|
Motion Responses by Occupants in Out-of-Seat Positions During Autonomous Emergency Braking. Ann Biomed Eng 2021; 49:2468-2480. [PMID: 34114130 DOI: 10.1007/s10439-021-02806-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
The occupant's posture can be changeable to an inadvertent or unintentional out-of-seat position (OOSP) depend on their convenience. Understanding for OOSP has been demanded, but it is not sufficient; especially when AEB is activated. The aim of the current study was to characterize the motion responses of an occupant in various OOSPs when AEB is activated and to identify if there were any additional risks of injury or discomfort to the occupant. The normal seat position (NSP) and three OOSPs were defined to compare the difference of human responses, and six healthy males were participated. Particularly, the maximum rotation angles of the neck in OOSP2 and OOSP3 differed significantly around 1.3 ± 0.3 and 1.4 ± 0.2 times higher respectively than from in the NSP (p < 0.05). Occupants assuming OOSP3 exhibited motion characteristics were not restrained effectively and characterized a hovering and falling upper body and a slipping pelvis. This study has identified, for the first time, a potential risk of injury or discomfort when AEB is activated while an occupant is in an OOSP. This study may serve as fundamental data for the development of safety system that can improve restraint and counteract any deterioration in occupant safety.
Collapse
|
12
|
Trunk Skeletal Muscle Changes on CT with Long-Duration Spaceflight. Ann Biomed Eng 2021; 49:1257-1266. [PMID: 33604800 DOI: 10.1007/s10439-021-02745-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/02/2021] [Indexed: 12/25/2022]
Abstract
Astronauts exposed to microgravity for extended time are susceptible to trunk muscle atrophy, which may compromise strength and function on mission and after return. This study investigates changes in trunk skeletal muscle size and composition using computed tomography (CT) and dual-energy X-ray absorptiometry (DXA) among 16 crewmembers (1 female, 15 male) on 4-6 month missions. Muscle cross-sectional area and muscle attenuation were measured using abdominal CT scans at pre-flight, post-flight return, 1 year post-flight, and 2-4 years post-flight. Longitudinal muscle changes were analyzed using mixed models. In six crewmembers, CT and DXA data were used to calculate subject height-normalized skeletal muscle indices. Changes in these indices were analyzed using paired t-tests and compared by imaging modality using Pearson correlations. Trunk muscle area decreased at post-flight return (- 4.7 ± 1.1%, p < 0.001) and recovered to pre-flight values at 1-4 years post-flight. Muscle attenuation changes were not significant. Skeletal muscle index from CT decreased (- 5.2 ± 1.0%, p = 0.004) while appendicular skeletal muscle index from DXA did not change significantly. In summary, trunk muscle atrophies with long-duration microgravity exposure but recovers to pre-flight values within 1-4 years. The CT measures highlight size decreases not detected with DXA, emphasizing the importance of advanced imaging modalities in assessing muscle health with spaceflight.
Collapse
|
13
|
Albert DL. Variations in User Implementation of the CORA Rating Metric. STAPP CAR CRASH JOURNAL 2020; 64:1-30. [PMID: 33636001 DOI: 10.4271/2020-22-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The CORA rating metric is frequently used in the field of injury biomechanics to compare the similarity of response time histories. However, subjectivity exists within the CORA metric in the form of user-customizable parameters that give the metric the flexibility to be used for a variety of applications. How these parameters are customized is not always reported in the literature, and it is unknown how these customizations affect the CORA scores. Therefore, the purpose of this study was to evaluate how variations in the CORA parameters affect the resulting similarity scores. A literature review was conducted to determine how the CORA parameters are commonly customized within the literature. Then, CORA scores for two datasets were calculated using the most common parameter customizations and the default parameters. Differences between the CORA scores using customized and default parameters were statistically significant for all customizations. Furthermore, most customizations produced score increases relative to the default settings. The use of standard deviation corridors and exclusion of the corridor component were found to produce the largest score differences. The observed differences demonstrated the need for researchers to exercise transparency when using customized parameters in CORA analyses.
Collapse
Affiliation(s)
- Devon L Albert
- Center for Injury Biomechanics, Department of Biomedical Engineering and Mechanics, Virginia Tech
| |
Collapse
|
14
|
Decker WB, Jones DA, Devane K, Davis ML, Patalak JP, Gayzik FS. Simulation-based assessment of injury risk for an average male motorsport driver. TRAFFIC INJURY PREVENTION 2020; 21:S72-S77. [PMID: 32856956 DOI: 10.1080/15389588.2020.1802021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE While well-protected through a variety of safety countermeasures, motorsports drivers can be exposed to a large variety of crash modes and severities. Computational human body models (HBMs) are currently used to assess occupant safety for the general driving public in production vehicles. The purpose of this study was to incorporate a HBM into a motorsport environment using a simulation-based approach and provide quantitative data on relative risk for on-track motorsport crashes. METHODS Unlike a traditional automotive seat, the NASCAR driver environment is driver-customized and form-fitting. A multi-step process was developed to integrate the Global Human Body Models Consortium (GHBMC) 50th percentile male simplified occupant into a representative motorsport environment which includes a donned helmet, a 7-point safety belt system, head and neck restraint (HNR), poured-foam seat, steering wheel, and leg enclosure. A series of 45 representative impacts, developed from real-world crash data, of varying severity (10 kph ≤ ΔV ≤ 100 kph) and impact direction (∼290° ≤ PDOF ≤ 20°) were conducted with the GHBMC 50th percentile male simplified occupant (M50-OS v2.2). Kinematic and kinetic data, and a variety of injury criteria, were output from each of the simulations and used to calculate AIS 1+, 2+, and 3+ injury risk. All simulations were conducted in LS-Dyna R. 9.1. RESULTS Injury risk of the occupant using the previously mentioned injury criteria was calculated for the head, neck, thorax, and lower extremity, and the probability of injury for each region was plotted. Of the simulated impacts, five had a maximum AIS 1+ injury risk >20%, six had a maximum AIS 2+ injury risk >10%, and no cases had a maximum AIS 3+ injury >1%. Overall, injury risk estimates were reasonable compared to on-track data reported from Patalak et al. (2020). CONCLUSIONS Beyond injury risk, the study is the first of its kind to provide mechanical loading values likely experienced during motorsports crash incidents with crash pulses developed from real-world data. Given the severity of the crash pulses, the simulated environments reinforce the need for the robust safety environment implemented by NASCAR.
Collapse
Affiliation(s)
- William B Decker
- Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Wake Forest University Center for Injury Biomechanics, Winston-Salem, North Carolina
| | | | - Karan Devane
- Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Wake Forest University Center for Injury Biomechanics, Winston-Salem, North Carolina
| | | | - John P Patalak
- National Association for Stock Car Auto Racing, Incorporated, Daytona Beach, Florida
| | - F Scott Gayzik
- Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Wake Forest University Center for Injury Biomechanics, Winston-Salem, North Carolina
| |
Collapse
|
15
|
Johnson D, Koya B, Gayzik FS. Comparison of Neck Injury Criteria Values Across Human Body Models of Varying Complexity. Front Bioeng Biotechnol 2020; 8:985. [PMID: 32974313 PMCID: PMC7462006 DOI: 10.3389/fbioe.2020.00985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 07/28/2020] [Indexed: 11/24/2022] Open
Abstract
Due to the severity and frequency of cervical spine injuries, the neck injury criterion (Nij) was developed to provide a quantitative relationship between forces and moments of the upper neck with accompanied injury risk. The present study was undertaken to evaluate differences in calculated Nij for the Global Human Body Model Consortium's detailed and simplified average 50th percentile male models. The simplified model is a computationally light version of the more detailed model and therefore it is of interest to achieve similar Nij values between the two models. These models were compared in 15 match paired conditions of rigid head impact and a mixture of seven full body rigid hub and sled pulses, for 44 total simulations. Collectively, Nij values of the simplified model were found to exhibit a second-degree polynomial fit, allowing for a conversion to the prediction of the detailed model. Correlates were also derived for impact and inertial loading cases individually, for which the latter may be the subject of future work. The differences in Nij may be attributed to a variety of modeling approach differences related to neck muscles (attachment location and morphometric implementation), localization of head mass within the M50-OS, head geometry, and intervertebral joint space properties. With a primary focus on configurations in the anterior-posterior direction, there is a potential limitation in extensibility to lateral loading cases. In response to the relatively low Nij values exhibited, future work should evaluate the appropriateness of the established critical intercepts of Nij for computational human body models.
Collapse
Affiliation(s)
- Dale Johnson
- Center for Injury Biomechanics, Wake Forest University, Winston-Salem, NC, United States
- Department of Biomedical Engineering, Wake Forest University, Winston-Salem, NC, United States
| | - Bharath Koya
- Center for Injury Biomechanics, Wake Forest University, Winston-Salem, NC, United States
- Department of Biomedical Engineering, Wake Forest University, Winston-Salem, NC, United States
| | - F. Scott Gayzik
- Center for Injury Biomechanics, Wake Forest University, Winston-Salem, NC, United States
- Department of Biomedical Engineering, Wake Forest University, Winston-Salem, NC, United States
| |
Collapse
|
16
|
Ye X, Jones DA, Gaewsky JP, Koya B, McNamara KP, Saffarzadeh M, Putnam JB, Somers JT, Gayzik FS, Stitzel JD, Weaver AA. Lumbar Spine Response of Computational Finite Element Models in Multidirectional Spaceflight Landing Conditions. J Biomech Eng 2020; 142:051007. [PMID: 31701120 PMCID: PMC7105154 DOI: 10.1115/1.4045401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 10/30/2019] [Indexed: 11/08/2022]
Abstract
The goals of this study are to compare the lumbar spine response variance between the hybrid III, test device for human occupant restraint (THOR), and global human body models consortium simplified 50th percentile (GHBMC M50-OS) finite element models and evaluate the sensitivity of lumbar spine injury metrics to multidirectional acceleration pulses for spaceflight landing conditions. The hybrid III, THOR, and GHBMC models were positioned in a baseline posture within a generic seat with side guards and a five-point restraint system. Thirteen boundary conditions, which were categorized as loading condition variables and environmental variables, were included in the parametric study using a Latin hypercube design of experiments. Each of the three models underwent 455 simulations for a total of 1365 simulations. The hybrid III and THOR models exhibited similar lumbar compression forces. The average lumbar compression force was 45% higher for hybrid III (2.2 ± 1.5 kN) and 51% higher for THOR (2.0 ± 1.6 kN) compared to GHBMC (1.3 ± 0.9 kN). Compared to hybrid III, THOR sustained an average 64% higher lumbar flexion moment and an average 436% higher lumbar extension moment. The GHBMC model sustained much lower bending moments compared to hybrid III and THOR. Regressions revealed that lumbar spine responses were more sensitive to loading condition variables than environmental variables across all models. This study quantified the intermodel lumbar spine response variations and sensitivity between hybrid III, THOR, and GHBMC. Results improve the understanding of lumbar spine response in spaceflight landings.
Collapse
Affiliation(s)
- Xin Ye
- Center for Injury Biomechanics, Wake Forest University School of Medicine,
Virginia-Tech Wake Forest University 575 N. Patterson Avenue, Suite 120, Winston-Salem, NC 27101
e-mail:
| | - Derek A. Jones
- Center for Injury Biomechanics, Wake Forest University School of Medicine,
Virginia-Tech Wake Forest University, 575 N. Patterson Avenue, Suite 120, Winston-Salem, NC 27101
e-mail:
| | - James P. Gaewsky
- Center for Injury Biomechanics, Wake Forest University School of Medicine,
Virginia-Tech Wake Forest University, 575 N. Patterson Avenue, Suite 120, Winston-Salem, NC 27101
e-mail:
| | - Bharath Koya
- Center for Injury Biomechanics, Wake Forest University School of Medicine,
Virginia-Tech Wake Forest University, 575 N. Patterson Avenue, Suite 120, Winston-Salem, NC 27101
e-mail:
| | - Kyle P. McNamara
- Center for Injury Biomechanics, Wake Forest University School of Medicine,
Virginia-Tech Wake Forest University, 575 N. Patterson Avenue, Suite 120, Winston-Salem, NC 27101
e-mail:
| | - Mona Saffarzadeh
- Center for Injury Biomechanics, Wake Forest University School of Medicine,
Virginia-Tech Wake Forest University, 575 N. Patterson Avenue, Suite 120, Winston-Salem, NC 27101
e-mail:
| | - Jacob B. Putnam
- NASA Langley Research Center, 1 NASA Dr., Hampton, VA 23666
e-mail:
| | | | - F. Scott Gayzik
- Center for Injury Biomechanics, Wake Forest University School of Medicine,
Virginia-Tech Wake Forest University, 575 N. Patterson Avenue, Suite 120, Winston-Salem, NC 27101
e-mail:
| | - Joel D. Stitzel
- Center for Injury Biomechanics, Wake Forest University School of Medicine,
Virginia-Tech Wake Forest University, 575 N. Patterson Avenue, Suite 120, Winston-Salem, NC 27101
e-mail:
| | - Ashley A. Weaver
- Center for Injury Biomechanics, Wake Forest University School of Medicine,
Virginia-Tech Wake Forest University, 575 N. Patterson Avenue, Suite 120, Winston-Salem, NC 27101
e-mail:
| |
Collapse
|
17
|
Jones DA, Gaewsky JP, Somers JT, Gayzik FS, Weaver AA, Stitzel JD. Head injury metric response in finite element ATDs and a human body model in multidirectional loading regimes. TRAFFIC INJURY PREVENTION 2020; 20:S96-S102. [PMID: 31951749 DOI: 10.1080/15389588.2019.1707193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Objective: The objective was to quantify head injury metric sensitivity of the 50th percentile male Hybrid III, THOR, and Global Human Body Models Consortium simplified occupant (GHBMC M50-OS) to changes in loading conditions in loading regimes that may be experienced by occupants of spaceflight vehicles or highly autonomous vehicles (HAVs) with nontraditional seating configurations.Methods: A Latin hypercube (LHD) design of experiments (DOE) was employed to develop boundary conditions for 455 unique acceleration profiles. Three previously validated finite element (FE) models of the Hybrid III anthropomorphic test device (ATD), THOR ATD, and GHBMC M50-OS were positioned in an upright 90°-90°-90° seat and with a 5-point belt. Acceleration pulses were applied to each of the three occupants in the ± X, +Y, and ± Z directions, with peak resultant acceleration magnitudes ranging from 5 to 20 G and times to peak ranging from 32.5 to 120.8 ms with duration 250 ms, resulting in 1,248 simulations. Head injury metrics included peak linear head acceleration, peak rotational head acceleration, head injury criteria (HIC15), and brain injury criteria (BrIC). Injury metrics were regressed against boundary condition parameters using 2nd order multiple polynomial regression, and compared between occupants using matched pairs Wilcoxon signed rank analysis.Results: Across the 416 matched-simulations that reached normal termination with all three models, HIC15 values ranged from 1.0-396.5 (Hybrid III), 1.2-327.9 (THOR), and 0.6-585.6 (GHBMC). BrIC ranged from 0.03-0.95 (Hybrid III), 0.03-1.21 (THOR), and 0.04-0.84 (GHBMC). Wilcoxon signed rank analysis demonstrated significant pairwise differences between each of the three occupant models for head injury metrics. For HIC15, the largest divergence between GHBMC and the ATDs was observed in simulations with components of combined underbody and rear impact loading. The three models performed most similarly with respect to BrIC output when loaded in a frontal direction. Both the GHBMC and the Hybrid III produced lower values of BrIC than the THOR on average, with the differences most pronounced in rear impact loading.Conclusion: In conclusion, observed differences between the occupant models' head injury metric output were quantified. Loading direction had a large effect on metric outcome and metric comparability across models, with frontal and rear impacts with low vertical acceleration tending to be the most similar. One explanation for these differences could be the differences in neck stiffness between the models that allowed more rotation in the GHBMC and THOR. Care should be taken when using ATDs as human volunteer surrogates in these low energy events.
Collapse
Affiliation(s)
- Derek A Jones
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Winston-Salem, North Carolina
| | - James P Gaewsky
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Winston-Salem, North Carolina
| | | | - F Scott Gayzik
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Winston-Salem, North Carolina
| | - Ashley A Weaver
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Winston-Salem, North Carolina
| | - Joel D Stitzel
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Winston-Salem, North Carolina
| |
Collapse
|
18
|
Aira J, Guleyupoglu B, Jones D, Koya B, Davis M, Gayzik FS. Validated thoracic vertebrae and costovertebral joints increase biofidelity of a human body model in hub impacts. TRAFFIC INJURY PREVENTION 2019; 20:S1-S6. [PMID: 31364878 DOI: 10.1080/15389588.2019.1638511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/04/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Objective: A recent emphasis on nontraditional seating and omnidirectional impact directions has motivated the need for deformable representation of the thoracic spine (T-spine) in human body models. The goal of this study was to develop and validate a deformable T-spine for the Global Human Body Models Consortium (GHBMC) M50-O (average male occupant) human model and to demonstrate improved biofidelity.Methods: Eleven functional spinal units (FSUs) were developed with deformable vertebrae (cortical and trabecular), spinal and costovertebral ligaments, and intervertebral discs. Material properties for all parts were obtained from the literature.FSUs were subjected to quasistatic loads per Panjabi et al. (1976) in 6 degrees of freedom. Stiffness values were calculated for each moment (Nm/°) and translational force (N/µm). Updated costovertebral (CV) joints of ribs 2, 6, and 10 were subjected to moments along 3 axes per Duprey et al. (2010). The response was optimized by maximum force and laxity in the ligaments. In both cases, updated models were compared to the baseline approach, which employed rigid bodies and joint-like behavior. The deformable T-spine and CV joints were integrated into the full M50-O model Ver. 5.0β and 2 full-body cases were run: (1) a rear pendulum impact per Forman et al. (2015) at speeds up to 5.5 m/s. and (2) a lateral shoulder impact per Koh (2005) at 4.5 m/s. Quantitative evaluation protocols were used to evaluate the time history response vs. experimental data, with an average correlation and analysis (CORA) score of 0.76.Results: All FSU responses showed reduced stiffness vs. baseline. Tension, extension, torsion, and lateral bending became more compliant than experimental data. Like the experimental results, no trend was observed for joint response by level. CV joints showed good biofidelity. The response at ribs 2, 6, and 10 generally followed the experimental data.Conclusions: Deformable T-spine and CV joint validation has not been previously published and yielded high biofidelity in rear impact and notable improvement in lateral impact at the full body level. Future work will focus on localized T-spine injury criteria made possible by the introduction of this fully deformable representation of the anatomy.
Collapse
Affiliation(s)
- Jazmine Aira
- Wake Forest School of Medicine, Biomedical Engineering, Winston-Salem, North Carolina
- Virginia Tech-Wake Forest University Center for Injury Biomechanics, Winston-Salem, North Carolina
| | | | - Derek Jones
- Wake Forest School of Medicine, Biomedical Engineering, Winston-Salem, North Carolina
- Virginia Tech-Wake Forest University Center for Injury Biomechanics, Winston-Salem, North Carolina
| | - Bharath Koya
- Wake Forest School of Medicine, Biomedical Engineering, Winston-Salem, North Carolina
- Virginia Tech-Wake Forest University Center for Injury Biomechanics, Winston-Salem, North Carolina
| | | | - F Scott Gayzik
- Wake Forest School of Medicine, Biomedical Engineering, Winston-Salem, North Carolina
- Virginia Tech-Wake Forest University Center for Injury Biomechanics, Winston-Salem, North Carolina
- Elemance, LLC, Clemmons, North Carolina
| |
Collapse
|