1
|
Yokosawa R, Mazur RA, Wilson KA, Lee JH, Showalter NW, Lampe KJ, VandeVord PJ. High-rate mechano-stimulation alters proliferation- and maturation-related signaling of oligodendrocyte precursor cells in a 3D hydrogel. MECHANOBIOLOGY IN MEDICINE 2025; 3:100126. [PMID: 40519865 PMCID: PMC12163403 DOI: 10.1016/j.mbm.2025.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 06/18/2025]
Abstract
Traumatic brain injury (TBI) leads to neuroinflammation and is associated with chronic neurodegeneration. Many TBI studies aim to understand further the mechanism by which cells in the brain respond to the mechanical forces associated with TBI. In particular, mild TBI is the most common level of injury among TBI patients, and the reactivity of glial cells is a key mechanism in understanding mild TBI. However, there is a lack of studies focusing on oligodendrocyte precursor cells (OPCs). OPCs respond to the injury by migration, proliferation, and differentiation into oligodendrocytes (OL) to assist in post-injury repair. Given their ability to proliferate and differentiate, OPCs are a promising therapeutic target for OL regeneration. Despite their important role in maintaining normal neuronal functions, the response of OPCs to mechanical insult remains poorly understood. Thus, this study aims to elucidate the cellular responses of OPCs using a brain-tissue mimicking in vitro 3D hydrogel platform to identify key signaling pathways driving their response. In this study, we applied a high-rate pressure wave to OPCs to induce mild TBI and assess subsequent cellular and molecular responses by quantifying cell growth, metabolic activity, and gene and protein expression. Although the high-rate mechanical insult did not significantly impact cell survival, it induced transcriptomic and proteomic changes in molecular targets related to OPC proliferation and maturation, including PDGFRA, GALC, CTNNB1, and HSP90AB. These dysregulations and altered molecular profiles provide valuable insights into the OPC injury response and may serve as potential therapeutic targets for treating neurodegeneration.
Collapse
Affiliation(s)
- Ryosuke Yokosawa
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Rachel A. Mazur
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, USA
| | - Kelsey A. Wilson
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Jacob H. Lee
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Noah W. Showalter
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Kyle J. Lampe
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, USA
| | - Pamela J. VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Veterans Affairs Medical Center, Salem, VA, 24153-6404, USA
| |
Collapse
|
2
|
Salmina AB, Alexandrova OP, Averchuk AS, Korsakova SA, Saridis MR, Illarioshkin SN, Yurchenko SO. Current progress and challenges in the development of brain tissue models: How to grow up the changeable brain in vitro? J Tissue Eng 2024; 15:20417314241235527. [PMID: 38516227 PMCID: PMC10956167 DOI: 10.1177/20417314241235527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
In vitro modeling of brain tissue is a promising but not yet resolved problem in modern neurobiology and neuropharmacology. Complexity of the brain structure and diversity of cell-to-cell communication in (patho)physiological conditions make this task almost unachievable. However, establishment of novel in vitro brain models would ultimately lead to better understanding of development-associated or experience-driven brain plasticity, designing efficient approaches to restore aberrant brain functioning. The main goal of this review is to summarize the available data on methodological approaches that are currently in use, and to identify the most prospective trends in development of neurovascular unit, blood-brain barrier, blood-cerebrospinal fluid barrier, and neurogenic niche in vitro models. The manuscript focuses on the regulation of adult neurogenesis, cerebral microcirculation and fluids dynamics that should be reproduced in the in vitro 4D models to mimic brain development and its alterations in brain pathology. We discuss approaches that are critical for studying brain plasticity, deciphering the individual person-specific trajectory of brain development and aging, and testing new drug candidates in the in vitro models.
Collapse
Affiliation(s)
- Alla B Salmina
- Brain Science Institute, Research Center of Neurology, Moscow, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| | - Olga P Alexandrova
- Brain Science Institute, Research Center of Neurology, Moscow, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| | - Anton S Averchuk
- Brain Science Institute, Research Center of Neurology, Moscow, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| | | | | | | | | |
Collapse
|
3
|
Pereira I, Lopez-Martinez MJ, Samitier J. Advances in current in vitro models on neurodegenerative diseases. Front Bioeng Biotechnol 2023; 11:1260397. [PMID: 38026882 PMCID: PMC10658011 DOI: 10.3389/fbioe.2023.1260397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Many neurodegenerative diseases are identified but their causes and cure are far from being well-known. The problem resides in the complexity of the neural tissue and its location which hinders its easy evaluation. Although necessary in the drug discovery process, in vivo animal models need to be reduced and show relevant differences with the human tissues that guide scientists to inquire about other possible options which lead to in vitro models being explored. From organoids to organ-on-a-chips, 3D models are considered the cutting-edge technology in cell culture. Cell choice is a big parameter to take into consideration when planning an in vitro model and cells capable of mimicking both healthy and diseased tissue, such as induced pluripotent stem cells (iPSC), are recognized as good candidates. Hence, we present a critical review of the latest models used to study neurodegenerative disease, how these models have evolved introducing microfluidics platforms, 3D cell cultures, and the use of induced pluripotent cells to better mimic the neural tissue environment in pathological conditions.
Collapse
Affiliation(s)
- Inês Pereira
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria J. Lopez-Martinez
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro Investigación Biomédica en Red: Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro Investigación Biomédica en Red: Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Goldstein ME, Scull MA. Modeling Innate Antiviral Immunity in Physiological Context. J Mol Biol 2022; 434:167374. [PMID: 34863779 PMCID: PMC8940657 DOI: 10.1016/j.jmb.2021.167374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
An effective innate antiviral response is critical for the mitigation of severe disease and host survival following infection. In vivo, the innate antiviral response is triggered by cells that detect the invading pathogen and then communicate through autocrine and paracrine signaling to stimulate the expression of genes that inhibit viral replication, curtail cell proliferation, or modulate the immune response. In other words, the innate antiviral response is complex and dynamic. Notably, in the laboratory, culturing viruses and assaying viral life cycles frequently utilizes cells that are derived from tissues other than those that support viral replication during natural infection, while the study of viral pathogenesis often employs animal models. In recapitulating the human antiviral response, it is important to consider that variation in the expression and function of innate immune sensors and antiviral effectors exists across species, cell types, and cell differentiation states, as well as when cells are placed in different contexts. Thus, to gain novel insight into the dynamics of the host response and how specific sensors and effectors impact infection kinetics by a particular virus, the model system must be selected carefully. In this review, we briefly introduce key signaling pathways involved in the innate antiviral response and highlight how these differ between systems. We then review the application of tissue-engineered or 3D models for studying the antiviral response, and suggest how these in vitro culture systems could be further utilized to assay physiologically-relevant host responses and reveal novel insight into virus-host interactions.
Collapse
Affiliation(s)
- Monty E Goldstein
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, 3134 Bioscience Research Building, University of Maryland, College Park, MD 20742, USA
| | - Margaret A Scull
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, 3134 Bioscience Research Building, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
5
|
Hammel JH, Cook SR, Belanger MC, Munson JM, Pompano RR. Modeling Immunity In Vitro: Slices, Chips, and Engineered Tissues. Annu Rev Biomed Eng 2021; 23:461-491. [PMID: 33872520 PMCID: PMC8277680 DOI: 10.1146/annurev-bioeng-082420-124920] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Modeling immunity in vitro has the potential to be a powerful tool for investigating fundamental biological questions, informing therapeutics and vaccines, and providing new insight into disease progression. There are two major elements to immunity that are necessary to model: primary immune tissues and peripheral tissues with immune components. Here, we systematically review progress made along three strategies to modeling immunity: ex vivo cultures, which preserve native tissue structure; microfluidic devices, which constitute a versatile approach to providing physiologically relevant fluid flow and environmental control; and engineered tissues, which provide precise control of the 3D microenvironment and biophysical cues. While many models focus on disease modeling, more primary immune tissue models are necessary to advance the field. Moving forward, we anticipate that the expansion of patient-specific models may inform why immunity varies from patient to patient and allow for the rapid comprehension and treatment of emerging diseases, such as coronavirus disease 2019.
Collapse
Affiliation(s)
- Jennifer H Hammel
- Fralin Biomedical Research Institute and Department of Biomedical Engineering and Mechanics, Virginia Tech, Roanoke, Virginia 24016, USA;
| | - Sophie R Cook
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Maura C Belanger
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Jennifer M Munson
- Fralin Biomedical Research Institute and Department of Biomedical Engineering and Mechanics, Virginia Tech, Roanoke, Virginia 24016, USA;
| | - Rebecca R Pompano
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, USA;
- Carter Immunology Center and UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
| |
Collapse
|
6
|
Yuan J, Botchway BOA, Zhang Y, Wang X, Liu X. Combined bioscaffold with stem cells and exosomes can improve traumatic brain injury. Stem Cell Rev Rep 2021; 16:323-334. [PMID: 31808037 DOI: 10.1007/s12015-019-09927-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The intricacy of the brain, along with the existence of blood brain barrier (BBB) does complicate the delivery of effective therapeutics through simple intravascular injection. Hence, an effective delivery mechanism of therapeutics in the event of either traumatic brain injury (TBI) or other brain injuries is needed. Stem cells can promote regeneration and repair injury. The usage of biomaterials and exosomes in transporting stem cells to target lesion sites has been suggested as a potential option. The combination of biomaterials with modified exosomes can help in transporting stem cells to injury sites, whiles also increasing their survival and promoting effective treatment. Herein, we review the current researches pertinent to biological scaffolds and exosomes in repairing TBI and present the current progress and new direction in the clinical setting. We begin with the role of bioscaffold in treating neuronal conditions, the effect of exosomes in injury, and conclude with the improvement of TBI via the employment of combined exosomes, bioscaffold and stem cells.
Collapse
Affiliation(s)
- Jiaying Yuan
- Department of Histology and Embryology, Medical College, Shaoxing University, 312000, Shaoxing, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, 312000, Shaoxing, Zhejiang, China
| | - Xizhi Wang
- Department of Histology and Embryology, Medical College, Shaoxing University, 312000, Shaoxing, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, 312000, Shaoxing, Zhejiang, China.
| |
Collapse
|
7
|
Bang S, Lee S, Choi N, Kim HN. Emerging Brain-Pathophysiology-Mimetic Platforms for Studying Neurodegenerative Diseases: Brain Organoids and Brains-on-a-Chip. Adv Healthc Mater 2021; 10:e2002119. [PMID: 34028201 DOI: 10.1002/adhm.202002119] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases are a group of disorders characterized by progressive degeneration of the structural and functional integrity of the central and peripheral nervous systems. Millions of people suffer from degenerative brain diseases worldwide, and the mortality continues to increase every year, causing a growing demand for knowledge of the underlying mechanisms and development of therapeutic targets. Conventional 2D-based cell culture platforms and animal models cannot fully recapitulate the pathophysiology, and this has limited the capability for estimating drug efficacy. Recently, engineered platforms, including brain organoids and brain-on-a-chip, have emerged. They mimic the physiology of brain tissue and reflect the fundamental pathophysiological signatures of neurodegenerative diseases, such as the accumulation of neurotoxic proteins, structural abnormalities, and functional loss. In this paper, recent advances in brain-mimetic platforms and their potential for modeling features of neurodegenerative diseases in vitro are reviewed. The development of a physiologically relevant model should help overcome unresolved neurodegenerative diseases.
Collapse
Affiliation(s)
- Seokyoung Bang
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
| | - Songhyun Lee
- Department of Medical Engineering Yonsei University College of Medicine Seoul 03722 Republic of Korea
| | - Nakwon Choi
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- KU‐KIST Graduate School of Converging Science and Technology Korea University Seoul 02841 Republic of Korea
| | - Hong Nam Kim
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- Division of Bio‐Medical Science & Technology KIST School Korea University of Science and Technology (UST) Seoul 02792 Republic of Korea
| |
Collapse
|
8
|
Hu XB, Qin Y, Fan WT, Liu YL, Huang WH. A Three-Dimensional Electrochemical Biosensor Integrated with Hydrogel Enables Real-Time Monitoring of Cells under Their In Vivo-like Microenvironment. Anal Chem 2021; 93:7917-7924. [PMID: 34019392 DOI: 10.1021/acs.analchem.1c00621] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Three-dimensional (3D) cell culture can better reproduce the in vivo cell environment and has been extensively used in fields such as tissue engineering, drug screening, and pathological research. Despite the tremendous advancement of 3D cultures, an analysis technique that could collect real-time information of the biological processes therein is sorely lacking. Electrochemical sensing with fast response and high sensitivity has played a vital role in real-time monitoring of living cells, but most current sensors are based on planar electrodes and fail to perfectly match the 3D cell culture matrix. Herein, we developed a robust 3D electrochemical sensor based on functionalized graphene foam (GF), which could be integrated with hydrogels for the 3D culture and in situ monitoring of cells for the first time. Specifically, platinum nanoparticles (Pt NPs) electrodeposited on GF (GF/Pt NPs) conferred the prominent electrochemical sensing performance, and the anti-fouling coating of poly(3,4-ethylenedioxythiophene) (PEDOT) endowed the GF/Pt NPs electrode with greatly improved stability. As a proof of concept, collagen hydrogel with microglia seeded in was filled into the interspace of the 3D GF/Pt NPs/PEDOT sensor to establish an integrated platform, which allowed the successful real-time monitoring of reactive oxygen species released from microglia in the collagen matrix. Given the versatility, our proposed biosensor in conjunction with various 3D culture models will serve as an excellent tool to provide biochemical information of cells under their in vivo-like microenvironment.
Collapse
Affiliation(s)
- Xue-Bo Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.,College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Yu Qin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wen-Ting Fan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
9
|
Epigenetics and Communication Mechanisms in Microglia Activation with a View on Technological Approaches. Biomolecules 2021; 11:biom11020306. [PMID: 33670563 PMCID: PMC7923060 DOI: 10.3390/biom11020306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Microglial cells, the immune cells of the central nervous system (CNS), play a crucial role for the proper brain development and function and in CNS homeostasis. While in physiological conditions, microglia continuously check the state of brain parenchyma, in pathological conditions, microglia can show different activated phenotypes: In the early phases, microglia acquire the M2 phenotype, increasing phagocytosis and releasing neurotrophic and neuroprotective factors. In advanced phases, they acquire the M1 phenotype, becoming neurotoxic and contributing to neurodegeneration. Underlying this phenotypic change, there is a switch in the expression of specific microglial genes, in turn modulated by epigenetic changes, such as DNA methylation, histones post-translational modifications and activity of miRNAs. New roles are attributed to microglial cells, including specific communication with neurons, both through direct cell–cell contact and by release of many different molecules, either directly or indirectly, through extracellular vesicles. In this review, recent findings on the bidirectional interaction between neurons and microglia, in both physiological and pathological conditions, are highlighted, with a focus on the complex field of microglia immunomodulation through epigenetic mechanisms and/or released factors. In addition, advanced technologies used to study these mechanisms, such as microfluidic, 3D culture and in vivo imaging, are presented.
Collapse
|
10
|
Hedegaard A, Stodolak S, James WS, Cowley SA. Honing the Double-Edged Sword: Improving Human iPSC-Microglia Models. Front Immunol 2020; 11:614972. [PMID: 33363548 PMCID: PMC7753623 DOI: 10.3389/fimmu.2020.614972] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022] Open
Abstract
Human induced Pluripotent Stem Cell (hiPSC) models are a valuable new tool for research into neurodegenerative diseases. Neuroinflammation is now recognized as a key process in neurodegenerative disease and aging, and microglia are central players in this. A plethora of hiPSC-derived microglial models have been published recently to explore neuroinflammation, ranging from monoculture through to xenotransplantation. However, combining physiological relevance, reproducibility, and scalability into one model is still a challenge. We examine key features of the in vitro microglial environment, especially media composition, extracellular matrix, and co-culture, to identify areas for improvement in current hiPSC-microglia models.
Collapse
Affiliation(s)
| | | | | | - Sally A. Cowley
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Novikova YP, Poplinskaya VA, Grigoryan EN. Organotypic Culturing as a Way to Study Recovery Opportunities of the Eye Retina in Vertebrates and Humans. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420010063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Webers A, Heneka MT, Gleeson PA. The role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer's disease. Immunol Cell Biol 2019; 98:28-41. [PMID: 31654430 DOI: 10.1111/imcb.12301] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/20/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is characterized by amyloid beta (Aβ) accumulation, tau pathology and neuroinflammation. Recently, there has been considerable interest in the role of neuroinflammation in directly contributing to the progression of AD. Studies in mice and humans have identified a role for microglial cells, the resident innate immune cells of the central nervous system, in AD. Activated microglia are a key hallmark of the disease and the secretion of proinflammatory cytokines by microglia may result in a positive feedback loop between neurons and microglia, resulting in ongoing low-grade inflammation. Traditionally, the pathways of Aβ production and neuroinflammation have been considered independently; however, recent studies suggest that these processes may converge to promote the pathology associated with AD. Here we review the importance of inflammation and microglia in AD development and effects of inflammatory responses on cellular pathways of neurons, including Aβ generation.
Collapse
Affiliation(s)
- Alessandra Webers
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.,Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Paul A Gleeson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
13
|
Thei L, Imm J, Kaisis E, Dallas ML, Kerrigan TL. Microglia in Alzheimer's Disease: A Role for Ion Channels. Front Neurosci 2018; 12:676. [PMID: 30323735 PMCID: PMC6172337 DOI: 10.3389/fnins.2018.00676] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease is the most common form of dementia, it is estimated to affect over 40 million people worldwide. Classically, the disease has been characterized by the neuropathological hallmarks of aggregated extracellular amyloid-β and intracellular paired helical filaments of hyperphosphorylated tau. A wealth of evidence indicates a pivotal role for the innate immune system, such as microglia, and inflammation in the pathology of Alzheimer's disease. The over production and aggregation of Alzheimer's associated proteins results in chronic inflammation and disrupts microglial clearance of these depositions. Despite being non-excitable, microglia express a diverse array of ion channels which shape their physiological functions. In support of this, there is a growing body of evidence pointing to the involvement of microglial ion channels contributing to neurodegenerative diseases such as Alzheimer's disease. In this review, we discuss the evidence for an array of microglia ion channels and their importance in modulating microglial homeostasis and how this process could be disrupted in Alzheimer's disease. One promising avenue for assessing the role that microglia play in the initiation and progression of Alzheimer's disease is through using induced pluripotent stem cell derived microglia. Here, we examine what is already understood in terms of the molecular underpinnings of inflammation in Alzheimer's disease, and the utility that inducible pluripotent stem cell derived microglia may have to advance this knowledge. We outline the variability that occurs between the use of animal and human models with regards to the importance of microglial ion channels in generating a relevant functional model of brain inflammation. Overcoming these hurdles will be pivotal in order to develop new drug targets and progress our understanding of the pathological mechanisms involved in Alzheimer's disease.
Collapse
Affiliation(s)
- Laura Thei
- Reading School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Jennifer Imm
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Eleni Kaisis
- Reading School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Mark L Dallas
- Reading School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Talitha L Kerrigan
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|