1
|
Mann D, Bar-Shai N, Levkov K, Gabay B, Vitkin E, Nyska A, Yarmush M, Shalom A, Golberg A. Treating Scars After Burns With Pulsed Electric Fields in the Rat Model. J Burn Care Res 2024; 45:1553-1565. [PMID: 39109993 DOI: 10.1093/jbcr/irae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Reducing scar size after severe burn injuries is an important and challenging medical, technological, and social problem. We have developed a battery-powered pulsed electric field (PEF) device and surface needle electrode applicator to deliver PEFs to the healing dorsal burn wound in rats. The pulsed electric field was used to treat residual burn wounds caused by metal contact in rats starting 10 days after the injury for 4 months every 11 or 22 days for 4 months using varying time applied voltages at 250-350 V range, 400 mA current, 40 pulses, 70 μs duration each, delivered at pulse repetition frequency 10 Hz at 5 locations inside the wound. We found 40%-45% reduction in the scar size in comparison with untreated controls in both upper and lower dorsal locations on rats' backs 2 months after the last PEF application. We have not detected significant histopathological differences in the center of the scars besides the thickness of the newly generated epidermis, which was thicker in the PEF-treated group. We showed that minimally invasively applied PEFs through needle electrodes are effective method and device for treating residual burn wounds in the rat model, reducing the size of the resulting scars, without any adverse reaction.
Collapse
Affiliation(s)
- Din Mann
- Department of Plastic Surgery, Meir Medical Center, Kfar Sava, 4428164, Israel
| | - Nurit Bar-Shai
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, 6139001, Israel
| | - Klimentiy Levkov
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, 6139001, Israel
| | - Batel Gabay
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, 6139001, Israel
| | - Edward Vitkin
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, 6139001, Israel
| | - Abraham Nyska
- Faculty of Medicine, Tel Aviv University, Tel Aviv, 6139001, Israel
| | - Martin Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Avshalom Shalom
- Department of Plastic Surgery, Meir Medical Center, Kfar Sava, 4428164, Israel
| | - Alexander Golberg
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, 6139001, Israel
| |
Collapse
|
2
|
Four Channel 6.5 kV, 65 A, 100 ns–100 µs Generator with Advanced Control of Pulse and Burst Protocols for Biomedical and Biotechnological Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pulsed electric fields in the sub-microsecond range are being increasingly used in biomedical and biotechnology applications, where the demand for high-voltage and high-frequency pulse generators with enhanced performance and pulse flexibility is pushing the limits of pulse power solid state technology. In the scope of this article, a new pulsed generator, which includes four independent MOSFET based Marx modulators, operating individually or combined, controlled from a computer user interface, is described. The generator is capable of applying different pulse shapes, from unipolar to bipolar pulses into biological loads, in symmetric and asymmetric modes, with voltages up to 6.5 kV and currents up to 65 A, in pulse widths from 100 ns to 100 µs, including short-circuit protection, current and voltage monitoring. This new scientific tool can open new research possibility due to the flexibility it provides in pulse generation, particularly in adjusting pulse width, polarity, and amplitude from pulse-to-pulse. It also permits operating in burst mode up to 5 MHz in four independent channels, for example in the application of synchronized asymmetric bipolar pulses, which is shown together with other characteristics of the generator.
Collapse
|
3
|
Wu M, Rubin AE, Dai T, Schloss R, Usta OB, Golberg A, Yarmush M. High-Voltage, Pulsed Electric Fields Eliminate Pseudomonas aeruginosa Stable Infection in a Mouse Burn Model. Adv Wound Care (New Rochelle) 2021; 10:477-489. [PMID: 33066719 PMCID: PMC8260897 DOI: 10.1089/wound.2019.1147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 10/12/2020] [Indexed: 12/19/2022] Open
Abstract
Objective: The incidence of severe infectious complications after burn injury increases mortality by 40%. However, traditional approaches for managing burn infections are not always effective. High-voltage, pulsed electric field (PEF) treatment shortly after a burn injury has demonstrated an antimicrobial effect in vivo; however, the working parameters and long-term effects of PEF treatment have not yet been investigated. Approach: Nine sets of PEF parameters were investigated to optimize the applied voltage, pulse duration, and frequency or pulse repetition for disinfection of Pseudomonas aeruginosa infection in a stable mouse burn wound model. The bacterial load after PEF administration was monitored for 3 days through bioluminescence imaging. Histological assessments and inflammation response analyses were performed at 1 and 24 h after the therapy. Results: Among all tested PEF parameters, the best disinfection efficacy of P. aeruginosa infection was achieved with a combination of 500 V, 100 μs, and 200 pulses delivered at 3 Hz through two plate electrodes positioned 1 mm apart for up to 3 days after the injury. Histological examinations revealed fewer inflammatory signs in PEF-treated wounds compared with untreated infected burns. Moreover, the expression levels of multiple inflammatory-related cytokines (interleukin [IL]-1α/β, IL-6, IL-10, leukemia inhibitory factor [LIF], and tumor necrosis factor-alpha [TNF-α]), chemokines (macrophage inflammatory protein [MIP]-1α/β and monocyte chemoattractant protein-1 [MCP-1]), and inflammation-related factors (vascular endothelial growth factor [VEGF], macrophage colony-stimulating factor [M-CSF], and granulocyte-macrophage colony-stimulating factor [G-CSF]) were significantly decreased in the infected burn wound after PEF treatment. Innovation: We showed that PEF treatment on infected wounds reduces the P. aeruginosa load and modulates inflammatory responses. Conclusion: The data presented in this study suggest that PEF treatment is a potent candidate for antimicrobial therapy for P. aeruginosa burn infections.
Collapse
Affiliation(s)
- Mengjie Wu
- Department of Orthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Center of Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrey Ethan Rubin
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rene Schloss
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Osman Berk Usta
- Center of Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander Golberg
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Martin Yarmush
- Center of Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
- Shriners Burn Hospital for Children, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Ghosh S, Gillis A, Levkov K, Vitkin E, Golberg A. Saving energy on meat air convection drying with pulsed electric field coupled to mechanical press water removal. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Faveri M, Miquelleto DEC, Bueno-Silva B, Pingueiro JMS, Figueiredo LC, Dolkart O, Yakobson E, Barak S, Feres M, Shibli JA. Antimicrobial effects of a pulsed electromagnetic field: an in vitro polymicrobial periodontal subgingival biofilm model. BIOFOULING 2020; 36:862-869. [PMID: 32993357 DOI: 10.1080/08927014.2020.1825694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
The objective was to test the influence of a pulsed electromagnetic field (PEMF) on bacterial biofilm colonization around implants incorporated with healing abutments. Healing abutments with (test group) and without (control group) active PEMF devices were placed in a multispecies biofilm consisting of 31 different bacterial species. The biofilm composition and total bacterial counts (x105) were analyzed by checkerboard DNA-DNA hybridization. After 96 h, the mean level of 7 out of the 31 bacterial species differed significantly between groups, namely Eubacterium nodatum, Fusobacterium nucleatum ssp. nucleatum, Streptococcus intermedius, Streptococcus anginosus, Streptococcus mutans, Fusobacterium nucleatum ssp. Vicentii and Capnocytophaga ochracea were elevated in the control group (p < 0.05). The mean total bacterial counts were lower in the Test group vs the control group (p < 0.05). An electromagnetic healing cap had antimicrobial effects on the bacterial species and can be used to control bacterial colonization around dental implants. Further clinical studies should be conducted to confirm these findings.
Collapse
Affiliation(s)
- Marcelo Faveri
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Brazil
| | | | - Bruno Bueno-Silva
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Brazil
| | | | | | - Oleg Dolkart
- Sackler Faculty of Medicine, Division of Orthopedic Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Magda Feres
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Brazil
| | - Jamil Awad Shibli
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Brazil
| |
Collapse
|
6
|
Concepts and Capabilities of In-House Built Nanosecond Pulsed Electric Field (nsPEF) Generators for Electroporation: State of Art. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Electroporation is a pulsed electric field triggered phenomenon of cell permeabilization, which is extensively used in biomedical and biotechnological context. There is a growing scientific demand for high-voltage and/or high-frequency pulse generators for electropermeabilization of cells (electroporators). In the scope of this article we have reviewed the basic topologies of nanosecond pulsed electric field (nsPEF) generators for electroporation and the parametric capabilities of various in-house built devices, which were introduced in the last two decades. Classification of more than 60 various nsPEF generators was performed and pulse forming characteristics (pulse shape, voltage, duration and repetition frequency) were listed and compared. Lastly, the trends in the development of the electroporation technology were discussed.
Collapse
|
7
|
|