1
|
Qi S, Yu J, Li L, Dong C, Ji Z, Cao L, Wei Z, Liang Z. Advances in non-invasive brain stimulation: enhancing sports performance function and insights into exercise science. Front Hum Neurosci 2024; 18:1477111. [PMID: 39677404 PMCID: PMC11638246 DOI: 10.3389/fnhum.2024.1477111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024] Open
Abstract
The cerebral cortex, as the pinnacle of human complexity, poses formidable challenges to contemporary neuroscience. Recent advancements in non-invasive brain stimulation have been pivotal in enhancing human locomotor functions, a burgeoning area of interest in exercise science. Techniques such as transcranial direct current stimulation, transcranial alternating current stimulation, transcranial random noise stimulation, and transcranial magnetic stimulation are widely recognized for their neuromodulator capabilities. Despite their broad applications, these methods are not without limitations, notably in spatial and temporal resolution and their inability to target deep brain structures effectively. The advent of innovative non-invasive brain stimulation modalities, including transcranial focused ultrasound stimulation and temporal interference stimulation technology, heralds a new era in neuromodulation. These approaches offer superior spatial and temporal precision, promising to elevate athletic performance, accelerate sport science research, and enhance recovery from sports-related injuries and neurological conditions. This comprehensive review delves into the principles, applications, and future prospects of non-invasive brain stimulation in the realm of exercise science. By elucidating the mechanisms of action and potential benefits, this study aims to arm researchers with the tools necessary to modulate targeted brain regions, thereby deepening our understanding of the intricate interplay between brain function and human behavior.
Collapse
Affiliation(s)
- Shuo Qi
- School of Sport and Health, Shandong Sport University, Jinan, China
| | - Jinglun Yu
- College of Sports and Health Sciences, Xi’an Physical Education University, Xi’an, China
| | - Li Li
- Physical Education and Arts College, Shandong Sport University, Jinan, China
| | - Chen Dong
- College of Sports Management, Shandong Sport University, Jinan, China
| | - Zhe Ji
- College of Physical Education, Anhui Normal University, Wuhu, China
| | - Lei Cao
- National Football Academy, Shandong Sport University, Jinan, China
| | - Zhen Wei
- The Second Clinical Medical School, Xuzhou Medical University, Xuzhou, China
| | - Zhiqiang Liang
- Faculty of Sports Science, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Choi T, Koo M, Joo J, Kim T, Shon Y, Park J. Bidirectional Neuronal Control of Epileptiform Activity by Repetitive Transcranial Focused Ultrasound Stimulations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302404. [PMID: 37997163 PMCID: PMC10787102 DOI: 10.1002/advs.202302404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 10/30/2023] [Indexed: 11/25/2023]
Abstract
Repetitive stimulation procedures are used in neuromodulation techniques to induce persistent excitatory or inhibitory brain activity. The directivity of modulation is empirically regulated by modifying the stimulation length, interval, and strength. However, bidirectional neuronal modulations using ultrasound stimulations are rarely reported. This study presents bidirectional control of epileptiform activities with repetitive transcranial-focused ultrasound stimulations in a rat model of drug-induced acute epilepsy. It is found that repeated transmission of elongated (40 s), ultra-low pressure (0.25 MPa) ultrasound can fully suppress epileptic activities in electro-encephalography and cerebral blood volume measurements, while the change in bursting intervals from 40 to 20 s worsens epileptic activities even with the same burst length. Furthermore, the suppression induced by 40 s long bursts is transformed to excitatory states by a subsequent transmission. Bidirectional modulation of epileptic seizures with repeated ultrasound stimulation is achieved by regulating the changes in glutamate and γ-Aminobutyric acid levels, as confirmed by measurements of expressed c-Fos and GAD65 and multitemporal analysis of neurotransmitters in the interstitial fluid obtained via microdialysis.
Collapse
Affiliation(s)
- Taewon Choi
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan UniversitySuwon16419South Korea
| | - Minseok Koo
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan UniversitySuwon16419South Korea
| | - Jaesoon Joo
- Department of Health Sciences and TechnologySamsung Advanced Institute for Health Science and TechnologySungkyunkwan UniversitySeoul06351South Korea
- Department of NeurologySamsung Medical CenterSungkyunkwan University School of MedicineSeoul06351South Korea
| | - Taekyung Kim
- Biomedical Engineering Research CenterSamsung Medical CenterSeoul06351South Korea
- Department of Medical Device Management and ResearchSamsung Advanced Institute for Health Science and TechnologySungkyunkwan UniversitySeoul06351South Korea
| | - Young‐Min Shon
- Department of Health Sciences and TechnologySamsung Advanced Institute for Health Science and TechnologySungkyunkwan UniversitySeoul06351South Korea
- Department of NeurologySamsung Medical CenterSungkyunkwan University School of MedicineSeoul06351South Korea
- Biomedical Engineering Research CenterSamsung Medical CenterSeoul06351South Korea
- Department of Medical Device Management and ResearchSamsung Advanced Institute for Health Science and TechnologySungkyunkwan UniversitySeoul06351South Korea
| | - Jinhyoung Park
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan UniversitySuwon16419South Korea
- Department of Biomedical EngineeringSungkyunkwan UniversitySuwon16419South Korea
| |
Collapse
|
3
|
Lee K, Lee JM, Phan TT, Lee CJ, Park JM, Park J. Ultrasonocoverslip: In-vitro platform for high-throughput assay of cell type-specific neuromodulation with ultra-low-intensity ultrasound stimulation. Brain Stimul 2023; 16:1533-1548. [PMID: 37909109 DOI: 10.1016/j.brs.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 11/02/2023] Open
Abstract
Brain stimulation with ultra-low-intensity ultrasound has rarely been investigated due to the lack of a reliable device to measure small neuronal signal changes made by the ultra-low intensity range. We propose Ultrasonocoverslip, an ultrasound-transducer-integrated-glass-coverslip that determines the minimum intensity for brain cell activation. Brain cells can be cultured directly on Ultrasonocoverslip to simultaneously deliver uniform ultrasonic pressure to hundreds of cells with real-time monitoring of cellular responses using fluorescence microscopy and single-cell electrophysiology. The sensitivity for detecting small responses to ultra-low-intensity ultrasound can be improved by averaging simultaneously obtained responses. Acoustic absorbers can be placed under Ultrasonocoverslip, and stimuli distortions are substantially reduced to precisely deliver user-intended acoustic stimulations. With the proposed device, we discover the lowest acoustic threshold to induce reliable neuronal excitation releasing glutamate. Furthermore, mechanistic studies on the device show that the ultra-low-intensity ultrasound stimulation induces cell type-specific neuromodulation by activating astrocyte-mediated neuronal excitation without direct neuronal involvement. The performance of ultra-low-intensity stimulation is validated by in vivo experiments demonstrating improved safety and specificity in motor modulation of tail movement compared to that with supra-watt-intensity.
Collapse
Affiliation(s)
- Keunhyung Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung Moo Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Tien Thuy Phan
- IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Joo Min Park
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea; IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Jinhyoung Park
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
4
|
Lu H, Cui H, Lu G, Jiang L, Hensleigh R, Zeng Y, Rayes A, Panduranga MK, Acharya M, Wang Z, Irimia A, Wu F, Carman GP, Morales JM, Putterman S, Martin LW, Zhou Q, Zheng XR. 3D Printing and processing of miniaturized transducers with near-pristine piezoelectric ceramics for localized cavitation. Nat Commun 2023; 14:2418. [PMID: 37105973 PMCID: PMC10140030 DOI: 10.1038/s41467-023-37335-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 03/14/2023] [Indexed: 04/29/2023] Open
Abstract
The performance of ultrasonic transducers is largely determined by the piezoelectric properties and geometries of their active elements. Due to the brittle nature of piezoceramics, existing processing tools for piezoelectric elements only achieve simple geometries, including flat disks, cylinders, cubes and rings. While advances in additive manufacturing give rise to free-form fabrication of piezoceramics, the resultant transducers suffer from high porosity, weak piezoelectric responses, and limited geometrical flexibility. We introduce optimized piezoceramic printing and processing strategies to produce highly responsive piezoelectric microtransducers that operate at ultrasonic frequencies. The 3D printed dense piezoelectric elements achieve high piezoelectric coefficients and complex architectures. The resulting piezoelectric charge constant, d33, and coupling factor, kt, of the 3D printed piezoceramic reach 583 pC/N and 0.57, approaching the properties of pristine ceramics. The integrated printing of transducer packaging materials and 3D printed piezoceramics with microarchitectures create opportunities for miniaturized piezoelectric ultrasound transducers capable of acoustic focusing and localized cavitation within millimeter-sized channels, leading to miniaturized ultrasonic devices that enable a wide range of biomedical applications.
Collapse
Affiliation(s)
- Haotian Lu
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Huachen Cui
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA
- Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangdong, 511453, China
| | - Gengxi Lu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Laiming Jiang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, 90089, USA
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, China
| | - Ryan Hensleigh
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Yushun Zeng
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Adnan Rayes
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Mohanchandra K Panduranga
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Megha Acharya
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Zhen Wang
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Andrei Irimia
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Felix Wu
- Materials Technology R&D, Vehicle Technologies Office, Energy Efficiency and Renewable Energy, U.S. Department of Energy, Washington, DC, 20585, USA
| | - Gregory P Carman
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, 90095, USA
| | - José M Morales
- Ronald Reagan UCLA Medical Center, University of California, Los Angeles, CA, 90095, USA
| | - Seth Putterman
- Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095, USA
| | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Qifa Zhou
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Xiaoyu Rayne Zheng
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Li Y, Jiang Y, Lan L, Ge X, Cheng R, Zhan Y, Chen G, Shi L, Wang R, Zheng N, Yang C, Cheng JX. Optically-generated focused ultrasound for noninvasive brain stimulation with ultrahigh precision. LIGHT, SCIENCE & APPLICATIONS 2022; 11:321. [PMID: 36323662 PMCID: PMC9630534 DOI: 10.1038/s41377-022-01004-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 06/01/2023]
Abstract
High precision neuromodulation is a powerful tool to decipher neurocircuits and treat neurological diseases. Current non-invasive neuromodulation methods offer limited precision at the millimeter level. Here, we report optically-generated focused ultrasound (OFUS) for non-invasive brain stimulation with ultrahigh precision. OFUS is generated by a soft optoacoustic pad (SOAP) fabricated through embedding candle soot nanoparticles in a curved polydimethylsiloxane film. SOAP generates a transcranial ultrasound focus at 15 MHz with an ultrahigh lateral resolution of 83 µm, which is two orders of magnitude smaller than that of conventional transcranial-focused ultrasound (tFUS). Here, we show effective OFUS neurostimulation in vitro with a single ultrasound cycle. We demonstrate submillimeter transcranial stimulation of the mouse motor cortex in vivo. An acoustic energy of 0.6 mJ/cm2, four orders of magnitude less than that of tFUS, is sufficient for successful OFUS neurostimulation. OFUS offers new capabilities for neuroscience studies and disease treatments by delivering a focus with ultrahigh precision non-invasively.
Collapse
Affiliation(s)
- Yueming Li
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
| | - Ying Jiang
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02215, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Lu Lan
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Xiaowei Ge
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Ran Cheng
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Yuewei Zhan
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Guo Chen
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Linli Shi
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Runyu Wang
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Nan Zheng
- Division of Materials Science and Engineering, Boston University, Boston, MA, 02215, USA
| | - Chen Yang
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Chemistry, Boston University, Boston, MA, 02215, USA.
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
6
|
Lee S, Lee K, Choi M, Park J. Implantable acousto-optic window for monitoring ultrasound-mediated neuromodulation in vivo. NEUROPHOTONICS 2022; 9:032203. [PMID: 35874142 PMCID: PMC9298854 DOI: 10.1117/1.nph.9.3.032203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Significance: Ultrasound has recently received considerable attention in neuroscience because it provides noninvasive control of deep brain activity. Although the feasibility of ultrasound stimulation has been reported in preclinical and clinical settings, its mechanistic understanding remains limited. While optical microscopy has become the "gold standard" tool for investigating population-level neural functions in vivo, its application for ultrasound neuromodulation has been technically challenging, as most conventional ultrasonic transducers are not designed to be compatible with optical microscopy. Aim: We aimed to develop a transparent acoustic transducer based on a glass coverslip called the acousto-optic window (AOW), which simultaneously provides ultrasound neuromodulation and microscopic monitoring of neural responses in vivo. Approach: The AOW was fabricated by the serial deposition of transparent acoustic stacks on a circular glass coverslip, comprising a piezoelectric material, polyvinylidene fluoride-trifluoroethylene, and indium-tin-oxide electrodes. The fabricated AOW was implanted into a transgenic neural-activity reporter mouse after open craniotomy. Two-photon microscopy was used to observe neuronal activity in response to ultrasonic stimulation through the AOW. Results: The AOW allowed microscopic imaging of calcium activity in cortical neurons in response to ultrasound stimulation. The optical transparency was ∼ 40 % over the visible and near-infrared spectra, and the ultrasonic pressure was 0.035 MPa at 10 MHz corresponding to 10 mW / cm 2 . In anesthetized Gad2-GCaMP6-tdTomato mice, we observed robust ultrasound-evoked activation of inhibitory cortical neurons at depths up to 200 μ m . Conclusions: The AOW is an implantable ultrasonic transducer that is broadly compatible with optical imaging modalities. The AOW will facilitate our understanding of ultrasound neuromodulation in vivo.
Collapse
Affiliation(s)
- Sungho Lee
- Seoul National University, School of Biological Sciences, Seoul, Republic of Korea
- Seoul National University, Institute of Molecular Biology and Genetics, Seoul, Republic of Korea
| | - Keunhyung Lee
- Sungkyunkwan University, Department of Intelligent Precision Healthcare Convergence, Suwon, Republic of Korea
| | - Myunghwan Choi
- Seoul National University, School of Biological Sciences, Seoul, Republic of Korea
- Seoul National University, Institute of Molecular Biology and Genetics, Seoul, Republic of Korea
| | - Jinhyoung Park
- Sungkyunkwan University, Department of Intelligent Precision Healthcare Convergence, Suwon, Republic of Korea
- Sungkyunkwan University, Department of Biomedical Engineering, Suwon, Republic of Korea
| |
Collapse
|
7
|
Costa T, Shi C, Tien K, Elloian J, Cardoso FA, Shepard KL. An Integrated 2D Ultrasound Phased Array Transmitter in CMOS With Pixel Pitch-Matched Beamforming. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:731-742. [PMID: 34260357 DOI: 10.1109/tbcas.2021.3096722] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Emerging non-imaging ultrasound applications, such as ultrasonic wireless power delivery to implantable devices and ultrasound neuromodulation, require wearable form factors, millisecond-range pulse durations and focal spot diameters approaching 100 μm with electronic control of its three-dimensional location. None of these are compatible with typical handheld linear array ultrasound imaging probes. In this work, we present a 4 mm × 5 mm 2D ultrasound phased array transmitter with integrated piezoelectric ultrasound transducers on complementary metal-oxide-semiconductor (CMOS) integrated circuits, featuring pixel-level pitch-matched transmit beamforming circuits which support arbitrary pulse duration. Our direct integration method enabled up to 10 MHz ultrasound arrays in a patch form-factor, leading to focal spot diameter of ∼200 μm, while pixel pitch-matched beamforming allowed for precise three-dimensional positioning of the ultrasound focal spot. Our device has the potential to provide a high-spatial resolution and wearable interface to both powering of highly-miniaturized implantable devices and ultrasound neuromodulation.
Collapse
|
8
|
Chang S, Na H, Koo M, Choi T, Kim Y, Park SA, Lee SK, Park J. Therapeutic Quadrisected Annular Array for Improving Magnetic Resonance Compatibility. IEEE Trans Biomed Eng 2021; 69:199-208. [PMID: 34156933 DOI: 10.1109/tbme.2021.3090986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Focused ultrasound has been applied in brain therapeutics. Although focusing ultrasonic beams on multiple arbitrary regions under the guidance of magnetic resonance imaging(MRI) is needed for precise treatments, current therapeutic transducers with large pitch sizes have been optimized to focus on deep brain regions. While annular arrays can adjust the beam foci from cortical to deep regions, their circular shape may generate eddy current-induced magnetic flux during MRI. In this study, a quadrisected annular array is proposed to address these limitations. METHODS Conventional and quadrisected annular arrays with three elements were implemented by loading the electrode patterns onto an 850 kHz 1-3 composite PZT disc, with a diameter of 31 mm, including three rings. MR compatibilities were demonstrated by imaging an MRI phantom with pulse sequences for B0 and B1 mapping and spin-echo imaging. Acoustic beam profiles, with and without a macaque monkey skull, were measured. A quadrisected transducer was also used to open the blood-brain barrier(BBB). RESULTS The flip angle distortion improved by 20% in spin-echo MR imaging. The acoustic beam distortions shifting the focal point from 36 to 41mm and elongating the focal zone from 10 to 15 mm could be recovered to nearly the original values. BBB openings in the hippocampus and basal region were also demonstrated. CONCLUSION The MR compatibility was improved by the increased resistance of the electrodes in the quadrisected array maintaining dynamic focusing capabilities. SIGNIFICANCE The quadrisected annular design can be a fundamental structure for a larger MR-compatible segmented array transducer generating multiple acoustic foci.
Collapse
|
9
|
Kim T, Park C, Chhatbar PY, Feld J, Mac Grory B, Nam CS, Wang P, Chen M, Jiang X, Feng W. Effect of Low Intensity Transcranial Ultrasound Stimulation on Neuromodulation in Animals and Humans: An Updated Systematic Review. Front Neurosci 2021; 15:620863. [PMID: 33935626 PMCID: PMC8079725 DOI: 10.3389/fnins.2021.620863] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/15/2021] [Indexed: 12/09/2022] Open
Abstract
Background: Although low-intensity transcranial ultrasound stimulation (LI-TUS) has received more recognition for its neuromodulation potential, there remains a crucial knowledge gap regarding the neuromodulatory effects of LI-TUS and its potential for translation as a therapeutic tool in humans. Objective: In this review, we summarized the findings reported by recently published studies regarding the effect of LI-TUS on neuromodulation in both animals and humans. We also aim to identify challenges and opportunities for the translation process. Methods: A literature search of PubMed, Medline, EMBASE, and Web of Science was performed from January 2019 to June 2020 with the following keywords and Boolean operators: [transcranial ultrasound OR transcranial focused ultrasound OR ultrasound stimulation] AND [neuromodulation]. The methodological quality of the animal studies was assessed by the SYRCLE's risk of bias tool, and the quality of human studies was evaluated by the PEDro score and the NIH quality assessment tool. Results: After applying the inclusion and exclusion criteria, a total of 26 manuscripts (24 animal studies and two human studies) out of 508 reports were included in this systematic review. Although both inhibitory (10 studies) and excitatory (16 studies) effects of LI-TUS were observed in animal studies, only inhibitory effects have been reported in primates (five studies) and human subjects (two studies). The ultrasonic parameters used in animal and human studies are different. The SYRCLE quality score ranged from 25 to 43%, with a majority of the low scores related to performance and detection bias. The two human studies received high PEDro scores (9/10). Conclusion: LI-TUS appears to be capable of targeting both superficial and deep cerebral structures to modulate cognitive or motor behavior in both animals and humans. Further human studies are needed to more precisely define the effective modulation parameters and thereby translate this brain modulatory tool into the clinic.
Collapse
Affiliation(s)
- Taewon Kim
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Christine Park
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Pratik Y Chhatbar
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Jody Feld
- Physical Therapy Division, Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Brian Mac Grory
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Chang S Nam
- Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, United States
| | - Pu Wang
- Department of Rehabilitation Medicine, Seventh Affiliated Hospital, Sun Yat-sen University, Shengzhen, China
| | - Mengyue Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States
| | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
10
|
Yu K, Niu X, He B. Neuromodulation Management of Chronic Neuropathic Pain in The Central Nervous system. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1908999. [PMID: 34335132 PMCID: PMC8323399 DOI: 10.1002/adfm.201908999] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Indexed: 05/05/2023]
Abstract
Neuromodulation is becoming one of the clinical tools for treating chronic neuropathic pain by transmitting controlled physical energy to the pre-identified neural targets in the central nervous system. Its nature of drug-free, non-addictive and improved targeting have attracted increasing attention among neuroscience research and clinical practices. This article provides a brief overview of the neuropathic pain and pharmacological routines for treatment, summarizes both the invasive and non-invasive neuromodulation modalities for pain management, and highlights an emerging brain stimulation technology, transcranial focused ultrasound (tFUS) with a focus on ultrasound transducer devices and the achieved neuromodulation effects and applications on pain management. Practical considerations of spatial guidance for tFUS are discussed for clinical applications. The safety of transcranial ultrasound neuromodulation and its future prospectives on pain management are also discussed.
Collapse
Affiliation(s)
| | | | - Bin He
- Department of Biomedical Engineering, Carnegie Mellon University
| |
Collapse
|