1
|
Niu C, Li B, Wan H, Jin W, Zhang Z, Zhang W, Li X. Antrum Preservation Versus Antrum Resection in Laparoscopic Sleeve Gastrectomy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J INVEST SURG 2025; 38:2477099. [PMID: 40096744 DOI: 10.1080/08941939.2025.2477099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
PURPOSE To compare the effects of laparoscopic sleeve gastrectomy (LSG) with antrum preservation (AP) and antrum resection (AR) on weight loss and postoperative complications. METHODS A meta-analysis of randomized controlled trials (RCTs) followed PRISMA guidelines. The databases searched included PubMed, Web of Science, Embase Medline, and the Cochrane Library up to October 2022. Extracted data included operation time, hospital stay, excess weight loss, total weight loss, body mass index (BMI), weight, and complications. RESULTS Eleven RCTs were included with 843 patients: 422 with AR and 421 with AP. The AR group exhibited higher total weight loss at 3 months (p = 0.02), 6 months (p < 0.001), and 1 year (p < 0.001) postoperatively. They also showed greater excess weight loss at 6 months (p < 0.001), 1 year (p < 0.001), and 2 years (p = 0.03). BMI reduction was more significant in the AR group at 3 (p = 0.007) and 6 months (p < 0.001). The AR group lost weight more rapidly at 3 months (p = 0.05), 6 months (p = 0.04), and 1 year (p < 0.001). No significant differences were found in operation time, hospital stay, bleeding, staple line disruption, Clavien-Dindo complications, or remission rates of diabetes, hypertension, arthritis/back pain, hyperlipidemia, or gastroesophageal reflux disease (p > 0.05). CONCLUSION LSG with AR offers better short-term weight loss than AP without increasing surgical complications, but the long-term effects and complications need further investigation in larger RCTs.
Collapse
Affiliation(s)
- Chao Niu
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, P R. China
| | - Bo Li
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, P R. China
| | - Hongwei Wan
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, P R. China
| | - Wendi Jin
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, P R. China
| | - Zhiping Zhang
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, P R. China
| | - Wanfu Zhang
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, P R. China
| | - Xiaogang Li
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, P R. China
| |
Collapse
|
2
|
Friis SJ, Hansen TS, Olesen C, Poulsen M, Gregersen H, Vinge Nygaard J. Experimental and numerical study of solid needle insertions into human stomach tissue. J Mech Behav Biomed Mater 2025; 162:106832. [PMID: 39591721 DOI: 10.1016/j.jmbbm.2024.106832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
PURPOSE Oral drug delivery is the Holy Grail in the field of drug delivery. However, poor bioavailability limits the oral intake of macromolecular drugs. Oral devices may overcome this limitation, but a knowledge gap exists on the device-tissue interaction. This study focuses on needle insertion into the human stomach experimentally and numerically. This will guide early stages of device development. METHODS Needle insertions were done into excised human gastric tissue with sharp and blunt needles at velocities of 0.0001 and 0.1 m/s. Parameters for constitutive models were determined from tensile visco-hyperelastic biomechanical tests. The computational setup modeled four different needle shape indentations at five velocities from 0.0001 to 5 m/s. RESULTS From experiments, peak forces at 0.1 and 0.0001 m/s were 0.995 ± 0.296 N and 1.281 ± 0.670 N (blunt needle) and 0.325 ± 0.235 N and 0.362 ± 0.119 N (sharp needle). The needle geometry significantly influenced peak forces (p < 0.05). A Yeoh-Prony series combination was fitted to the tensile visco-hyperelastic biomechanical data and used for the numerical model with excellent fit (R2 = 0.973). Both needle geometry and insertion velocity influenced the stress contour and displacement magnitudes as well as energy curves. CONCLUSION This study contributes to a better understanding of needle insertion into the stomach wall. The numerical model demonstrated agreement with experimental data providing a good approach to early device iterations. Findings in this study showed that insertion velocity and needle shape affect tissue mechanical outcomes.
Collapse
Affiliation(s)
- Sif Julie Friis
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark; Alternative Delivery Technologies, Device & Delivery Solutions, Novo Nordisk A/S, Hilleroed, Denmark
| | | | - Camilla Olesen
- Department of Mechanical and Production Engineering, Aarhus University, Aarhus, Denmark
| | - Mette Poulsen
- Alternative Delivery Technologies, Device & Delivery Solutions, Novo Nordisk A/S, Hilleroed, Denmark
| | - Hans Gregersen
- California Medical Innovations Institute, San Diego, CA, United States
| | - Jens Vinge Nygaard
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
3
|
Berardo A, Polese L, Carniel EL, Toniolo I. How does sutures pattern influence stomach motility after endoscopic sleeve gastroplasty? A computational study. Updates Surg 2024; 76:2833-2839. [PMID: 38954375 PMCID: PMC11628582 DOI: 10.1007/s13304-024-01917-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The relatively recent adoption of Endoscopic Sleeve Gastroplasty (ESG) amongst obese patients has gained approval within the surgical community due to its notable benefits, including significant weight loss, safety, feasibility, repeatability, and potential reversibility. However, despite its promising clinical outcomes and reduced invasiveness, there is still a lack of standardised procedures for performing ESG. Multiple suture patterns and stitching methods have been proposed over time, yet rational tools to quantify and compare their effects on gastric tissues are absent. To address this gap, this study proposed a computational approach. The research involved a case study analyzing three distinct suture patterns (C-shaped, U-shaped and Z-shaped) using a patient-specific computational stomach model generated from magnetic resonance imaging. Simulations mimicked food intake by placing wire features in the intragastric cavity to replicate sutures, followed by applying a linearly increasing internal pressure up to 15 mmHg. The outcomes facilitated comparisons between suture configurations based on pressure-volume behaviours and the distribution of maximum stress on biological tissues, revealing the U-shaped as the more effective in terms of volume reduction, even if with reduced elongation strains and increased tissues stresses, whereas the Z-shaped is responsible of the greatest stomach shortness after ESG. In summary, computational biomechanics methods serve as potent tools in clinical and surgical settings, offering insights into aspects that are challenging to explore in vivo, such as tissue elongation and stress. These methods allow for mechanical comparisons between different configurations, although they might not encompass crucial clinical outcomes.
Collapse
Affiliation(s)
- Alice Berardo
- Department of Civil, Environmental and Architectural Engineering, University of Padova, Padua, Italy
- Centre for Mechanics of Biological Materials, University of Padova, Padua, Italy
| | - Lino Polese
- Centre for Mechanics of Biological Materials, University of Padova, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Emanuele Luigi Carniel
- Centre for Mechanics of Biological Materials, University of Padova, Padua, Italy.
- Department of Industrial Engineering, University of Padova, Via Venezia 1, 35131, Padua, Italy.
| | - Ilaria Toniolo
- Centre for Mechanics of Biological Materials, University of Padova, Padua, Italy
- Department of Industrial Engineering, University of Padova, Via Venezia 1, 35131, Padua, Italy
| |
Collapse
|
4
|
Casarin M, Toniolo I, Todesco M, Carniel EL, Astolfi L, Morlacco A, Moro FD. Mechanical characterization of porcine ureter for the evaluation of tissue-engineering applications. Front Bioeng Biotechnol 2024; 12:1412136. [PMID: 38952671 PMCID: PMC11215493 DOI: 10.3389/fbioe.2024.1412136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/21/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction: Clinics increasingly require readily deployable tubular substitutes to restore the functionality of structures like ureters and blood vessels. Despite extensive exploration of various materials, both synthetic and biological, the optimal solution remains elusive. Drawing on abundant literature experiences, there is a pressing demand for a substitute that not only emulates native tissue by providing requisite signals and growth factors but also exhibits appropriate mechanical resilience and behaviour. Methods: This study aims to assess the potential of porcine ureters by characterizing their biomechanical properties in their native configuration through ring and membrane flexion tests. In order to assess the tissue morphology before and after mechanical tests and the eventual alteration of tissue microstructure that would be inserted in material constitutive description, histological staining was performed on samples. Corresponding computational analyses were performed to mimic the experimental campaign to identify the constitutive material parameters. Results: The absence of any damages to muscle and collagen fibres, which only compacted after mechanical tests, was demonstrated. The experimental tests (ring and membrane flexion tests) showed non-linearity for material and geometry and the viscoelastic behaviour of the native porcine ureter. Computational models were descriptive of the mechanical behaviour ureteral tissue, and the material model feasible. Discussion: This analysis will be useful for future comparison with decellularized tissue for the evaluation of the aggression of cell removal and its effect on microstructure. The computational model could lay the basis for a reliable tool for the prediction of solicitation in the case of tubular substitutions in subsequent simulations.
Collapse
Affiliation(s)
- Martina Casarin
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padova, Italy
| | - Ilaria Toniolo
- Department of Industrial Engineering, University of Padua, Padova, Italy
| | - Martina Todesco
- Department of Civil, Environmental and Architectural Engineering, University of Padua, Padova, Italy
| | | | - Laura Astolfi
- Bioacoustics Research Laboratory, Department of Neuroscience DNS, University of Padova, Padova, Italy
| | - Alessandro Morlacco
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padova, Italy
| | - Fabrizio Dal Moro
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padova, Italy
| |
Collapse
|
5
|
Mascolini MV, Toniolo I, Carniel EL, Fontanella CG. Ex vivo, in vivo and in silico studies of corneal biomechanics: a systematic review. Phys Eng Sci Med 2024; 47:403-441. [PMID: 38598066 PMCID: PMC11166853 DOI: 10.1007/s13246-024-01403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/08/2024] [Indexed: 04/11/2024]
Abstract
Healthy cornea guarantees the refractive power of the eye and the protection of the inner components, but injury, trauma or pathology may impair the tissue shape and/or structural organization and therefore its material properties, compromising its functionality in the ocular visual process. It turns out that biomechanical research assumes an essential role in analysing the morphology and biomechanical response of the cornea, preventing pathology occurrence, and improving/optimising treatments. In this review, ex vivo, in vivo and in silico methods for the corneal mechanical characterization are reported. Experimental techniques are distinct in testing mode (e.g., tensile, inflation tests), samples' species (human or animal), shape and condition (e.g., healthy, treated), preservation methods, setup and test protocol (e.g., preconditioning, strain rate). The meaningful results reported in the pertinent literature are discussed, analysing differences, key features and weaknesses of the methodologies adopted. In addition, numerical techniques based on the finite element method are reported, incorporating the essential steps for the development of corneal models, such as geometry, material characterization and boundary conditions, and their application in the research field to extend the experimental results by including further relevant aspects and in the clinical field for diagnostic procedure, treatment and planning surgery. This review aims to analyse the state-of-art of the bioengineering techniques developed over the years to study the corneal biomechanics, highlighting their potentiality to improve diagnosis, treatment and healing process of the corneal tissue, and, at the same, pointing out the current limits in the experimental equipment and numerical tools that are not able to fully characterize in vivo corneal tissues non-invasively and discourage the use of finite element models in daily clinical practice for surgical planning.
Collapse
Affiliation(s)
- Maria Vittoria Mascolini
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
| | - Ilaria Toniolo
- Department of Industrial Engineering, University of Padova, Padova, Italy.
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy.
| | - Emanuele Luigi Carniel
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
| | - Chiara Giulia Fontanella
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Papenkort S, Borsdorf M, Kiem S, Böl M, Siebert T. Regional differences in stomach stretch during organ filling and their implications on the mechanical stress response. J Biomech 2024; 168:112107. [PMID: 38677029 DOI: 10.1016/j.jbiomech.2024.112107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
As part of the digestive system, the stomach plays a crucial role in the health and well-being of an organism. It produces acids and performs contractions that initiate the digestive process and begin the break-up of ingested food. Therefore, its mechanical properties are of interest. This study includes a detailed investigation of strains in the porcine stomach wall during passive organ filling. In addition, the observed strains were applied to tissue samples subjected to biaxial tensile tests. The results show inhomogeneous strains during filling, which tend to be higher in the circumferential direction (antrum: 13.2%, corpus: 22.0%, fundus: 67.8%), compared to the longitudinal direction (antrum: 4.8%, corpus: 24.7%, fundus: 50.0%) at a maximum filling of 3500 ml. Consequently, the fundus region experienced the greatest strain. In the biaxial tensile experiments, the corpus region appeared to be the stiffest, reaching nominal stress values above 400 kPa in the circumferential direction, whereas the other regions only reached stress levels of below 50 kPa in both directions for the investigated stretch range. Our findings gain new insight into stomach mechanics and provide valuable data for the development and validation of computational stomach models.
Collapse
Affiliation(s)
- Stefan Papenkort
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany
| | - Mischa Borsdorf
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany
| | - Simon Kiem
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany.
| | - Markus Böl
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Tobias Siebert
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany; Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
7
|
Durcan C, Hossain M, Chagnon G, Perić D, Girard E. Mechanical experimentation of the gastrointestinal tract: a systematic review. Biomech Model Mechanobiol 2024; 23:23-59. [PMID: 37935880 PMCID: PMC10901955 DOI: 10.1007/s10237-023-01773-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/10/2023] [Indexed: 11/09/2023]
Abstract
The gastrointestinal (GI) organs of the human body are responsible for transporting and extracting nutrients from food and drink, as well as excreting solid waste. Biomechanical experimentation of the GI organs provides insight into the mechanisms involved in their normal physiological functions, as well as understanding of how diseases can cause disruption to these. Additionally, experimental findings form the basis of all finite element (FE) modelling of these organs, which have a wide array of applications within medicine and engineering. This systematic review summarises the experimental studies that are currently in the literature (n = 247) and outlines the areas in which experimentation is lacking, highlighting what is still required in order to more fully understand the mechanical behaviour of the GI organs. These include (i) more human data, allowing for more accurate modelling for applications within medicine, (ii) an increase in time-dependent studies, and (iii) more sophisticated in vivo testing methods which allow for both the layer- and direction-dependent characterisation of the GI organs. The findings of this review can also be used to identify experimental data for the readers' own constitutive or FE modelling as the experimental studies have been grouped in terms of organ (oesophagus, stomach, small intestine, large intestine or rectum), test condition (ex vivo or in vivo), number of directions studied (isotropic or anisotropic), species family (human, porcine, feline etc.), tissue condition (intact wall or layer-dependent) and the type of test performed (biaxial tension, inflation-extension, distension (pressure-diameter), etc.). Furthermore, the studies that investigated the time-dependent (viscoelastic) behaviour of the tissues have been presented.
Collapse
Affiliation(s)
- Ciara Durcan
- Zienkiewicz Centre for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN, UK
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Mokarram Hossain
- Zienkiewicz Centre for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN, UK.
| | - Grégory Chagnon
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Djordje Perić
- Zienkiewicz Centre for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN, UK
| | - Edouard Girard
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
- Laboratoire d'Anatomie des Alpes Françaises, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
8
|
Biomechanics of Hollow Organs: Experimental Testing and Computational Modeling. Bioengineering (Basel) 2023; 10:bioengineering10020175. [PMID: 36829669 PMCID: PMC9952441 DOI: 10.3390/bioengineering10020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Hollow organs are visceral organs that are hollow tubes or pouches (such as the intestine or the stomach, respectively) or that include a cavity (such as the heart) and which subserve a vital function [...].
Collapse
|
9
|
Toniolo I, Berardo A, Foletto M, Fiorillo C, Quero G, Perretta S, Carniel EL. Patient-specific stomach biomechanics before and after laparoscopic sleeve gastrectomy. Surg Endosc 2022; 36:7998-8011. [PMID: 35451669 PMCID: PMC9028903 DOI: 10.1007/s00464-022-09233-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/29/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Obesity has become a global epidemic. Bariatric surgery is considered the most effective therapeutic weapon in terms of weight loss and improvement of quality of life and comorbidities. Laparoscopic sleeve gastrectomy (LSG) is one of the most performed procedures worldwide, although patients carry a nonnegligible risk of developing post-operative GERD and BE. OBJECTIVES The aim of this work is the development of computational patient-specific models to analyze the changes induced by bariatric surgery, i.e., the volumetric gastric reduction, the mechanical response of the stomach during an inflation process, and the related elongation strain (ES) distribution at different intragastric pressures. METHODS Patient-specific pre- and post-surgical models were extracted from Magnetic Resonance Imaging (MRI) scans of patients with morbid obesity submitted to LSG. Twenty-three patients were analyzed, resulting in forty-six 3D-geometries and related computational analyses. RESULTS A significant difference between the mechanical behavior of pre- and post-surgical stomach subjected to the same internal gastric pressure was observed, that can be correlated to a change in the global stomach stiffness and a minor gastric wall tension, resulting in unusual activations of mechanoreceptors following food intake and satiety variation after LSG. CONCLUSIONS Computational patient-specific models may contribute to improve the current knowledge about anatomical and physiological changes induced by LSG, aiming at reducing post-operative complications and improving quality of life in the long run.
Collapse
Affiliation(s)
- Ilaria Toniolo
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
| | - Alice Berardo
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy.
- Department of Civil, Environmental and Architectural Engineering, University of Padova, Padova, Italy.
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | - Mirto Foletto
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
- Bariatric Surgery Unit, Azienda Ospedaliera, University of Padova, Padova, Italy
| | - Claudio Fiorillo
- Digestive Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giuseppe Quero
- Digestive Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Catholic University of Sacred Heart of Rome, Rome, Italy
| | - Silvana Perretta
- IHU Strasbourg, Strasbourg, France
- IRCAD France, Strasbourg, France
- Department of Digestive and Endocrine Surgery, NHC, Strasbourg, France
| | - Emanuele Luigi Carniel
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
| |
Collapse
|
10
|
Coupled experimental and computational approach to stomach biomechanics: Towards a validated characterization of gastric tissues mechanical properties. J Mech Behav Biomed Mater 2021; 125:104914. [PMID: 34715641 DOI: 10.1016/j.jmbbm.2021.104914] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 10/06/2021] [Accepted: 10/17/2021] [Indexed: 12/31/2022]
Abstract
Gastric diseases are one of the most relevant healthcare problems worldwide. Interventions and therapies definition/design mainly derive from biomedical and clinical expertise. Computational biomechanics, with particular regard to the finite element method, provides hard-to-measure quantities during in-vivo tests, such as strain and stress distribution, leading to a more comprehensive and promising approach to improve the effectiveness of many different clinical activities. However, reliable finite element models of biological organs require appropriate constitutive formulations of building tissues, whose parameters identification needs an experimental campaign consisting in different tests on human tissues and organs. The aim of the reported here research activities was the identification of mechanical properties of human gastric tissues. Human gastric specimens were tested at tissue, sub-structural and structural levels, by tensile, membrane indentation and inflation tests, respectively. On the other hand, animal experimentations on tissue layers from literature pointed out the mechanical response at sub-tissue level during tensile loading conditions. In detail, the analysis of experimental results at sub-tissue and tissue levels led to a fibre-reinforced visco-hyperelastic constitutive formulation and to the identification of gastric layers mechanical behaviour. Results from experimentations on human samples were coupled with data derived from animal models. Data from sub-structural and structural experimentations were exploited to upgrade and validate the constitutive formulations and parameters. The developed investigations led to a reliable constitutive framework of human gastric tissues that both describe stomach mechanical functionality and allow computational investigations. Indeed, the comparisons among average computational data and experimental medians provided the following RMSEs (Root Mean Square Errors): 0.89 N, 0.15 N for corpus and fundus during membrane indentation test, respectively, and 0.44 kPa during inflation test. Accounting for the magnitude of experimental and computational data, the RMSEs can be considered low and acceptable because they concerned biological samples. In fact, biological tissues and structures are affected by a high inherent inter-samples' variability, which is detectable in both the geometrical configuration and the mechanical behaviour. The specific values of the here reported RMSEs ensured the reliability of the achieved parameters and the quality of the overall developed procedure. Reliable computational models of the gastric district could become efficient clinical tools to find out the main crucial aspects of bariatric procedures, such as the mechanical stimulation of gastric mechano-receptors. Moreover, the methods of computational biomechanics will permit to run the preliminary tests of new and innovative bariatric procedures, on one hand, predicting the successful rate and the effectiveness, and, on other hand, reducing the use of animal testing.
Collapse
|
11
|
Computational evaluation of laparoscopic sleeve gastrectomy. Updates Surg 2021; 73:2253-2262. [PMID: 33817769 PMCID: PMC8606391 DOI: 10.1007/s13304-021-01046-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
Abstract
LSG is one of the most performed bariatric procedures worldwide. It is a safe and effective operation with a low complication rate. Unsatisfactory weight loss/regain may occur, suggesting that the operation design could be improved. A bioengineering approach might significantly help in avoiding the most common complications. Computational models of the sleeved stomach after LSG were developed according to bougie size (range 27-54 Fr). The endoluminal pressure and the basal volume were computed at different intragastric pressures. At an inner pressure of 22.5 mmHg, the basal volume of the 54 Fr configuration was approximately 6 times greater than that of the 27 Fr configuration (57.92 ml vs 9.70 ml). Moreover, the elongation distribution of the gastric wall was assessed to quantify the effect on mechanoreceptors impacting satiety by differencing regions and layers. An increasing trend in elongation strain with increasing bougie size was observed in all cases. The most stressed region and layer were the antrum (approximately 25% higher stress than that in the corpus at 37.5 mmHg) and mucosa layer (approximately 7% higher stress than that in the muscularis layer at 22.5 mmHg), respectively. In addition, the pressure-volume behaviors were reported. Computational models and bioengineering methods can help to quantitatively identify some critical aspects of the "design" of bariatric operations to plan interventions, and predict and increase the success rate. Moreover, computational tools can support the development of innovative bariatric procedures, potentially skipping invasive approaches.
Collapse
|
12
|
Toniolo I, Fontanella CG, Foletto M, Carniel EL. Biomechanical Investigation of the Stomach Following Different Bariatric Surgery Approaches. Bioengineering (Basel) 2020; 7:bioengineering7040159. [PMID: 33317122 PMCID: PMC7764040 DOI: 10.3390/bioengineering7040159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
Background: The stomach is a hollow organ of the gastrointestinal tract, on which bariatric surgery (BS) is performed for the treatment of obesity. Even though BS is the most effective treatment for severe obesity, drawbacks and complications are still present because the intervention design is largely based on the surgeon’s expertise and intraoperative decisions. Bioengineering methods can be exploited to develop computational tools for more rational presurgical design and planning of the intervention. Methods: A computational mechanical model of the stomach was developed, considering the actual complexity of the biological structure, as the nonhomogeneous and multilayered configuration of the gastric wall. Mechanical behavior was characterized by means of an anisotropic visco-hyperelastic constitutive formulation of fiber-reinforced conformation, nonlinear elastic response, and time-dependent behavior, which assume the typical features of gastric wall mechanics. Model applications allowed for an analysis of the influence of BS techniques on stomach mechanical functionality through different computational analyses. Results: Computational results showed that laparoscopic sleeve gastrectomy and endoscopic sleeve gastroplasty drastically alter stomach capacity and stiffness, while laparoscopic adjustable gastric banding modestly affects stomach stiffness and capacity. Moreover, the mean elongation strain values, which are correlated to the mechanical stimulation of gastric receptors, were elevated in laparoscopic adjustable gastric banding compared to other procedures. Conclusions: The investigation of stomach mechanical response through computational models provides information on different topics such as stomach capacity and stiffness and the mechanical stimulation of gastric receptors, which interact with the brain to control satiety. These data can provide reliable support to surgeons in the presurgical decision-making process.
Collapse
Affiliation(s)
- Ilaria Toniolo
- Department of Industrial Engineering, University of Padova, Via Venezia 1, 35131 Padova, Italy; (I.T.); (E.L.C.)
| | - Chiara Giulia Fontanella
- Department of Industrial Engineering, University of Padova, Via Venezia 1, 35131 Padova, Italy; (I.T.); (E.L.C.)
- Centre for Mechanics of Biological Materials, University of Padova, Via F. Marzolo 9, 35131 Padova, Italy;
- Correspondence: ; Tel.: +39-049-8276754
| | - Mirto Foletto
- Centre for Mechanics of Biological Materials, University of Padova, Via F. Marzolo 9, 35131 Padova, Italy;
- IFSO Bariatric Center of Excellence, Padova University Hospital, Via Ospedale Civile, 35121 Padova, Italy
| | - Emanuele Luigi Carniel
- Department of Industrial Engineering, University of Padova, Via Venezia 1, 35131 Padova, Italy; (I.T.); (E.L.C.)
- Centre for Mechanics of Biological Materials, University of Padova, Via F. Marzolo 9, 35131 Padova, Italy;
| |
Collapse
|