1
|
Walker RL, O'Brien TD, Barton GJ, Carter B, Wright DM, Foster RJ. Are challenging walking environments linked to falls or risk of falling in children with cerebral palsy? A systematic review. Gait Posture 2025; 117:306-316. [PMID: 39842153 DOI: 10.1016/j.gaitpost.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2024] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Children with cerebral palsy (CP) regularly fall over and this has negative effects on their physical and psychosocial wellbeing (e.g., reduced activity participation). However, the reasons for falls are not well understood. The way in which children negotiate challenging walking environments (e.g., uneven surfaces), may reveal more about how falls occur as these environments require gait modifications to maintain stability. Stability in challenging walking environments has been explored for children with CP; however, it remains unclear how these lead to falls. RESEARCH QUESTION Do challenging walking environments that mimic those faced in the real-world, contribute to increased fall occurrence and fall risk in children with CP? METHODS Five databases were searched, and 1386 records screened to include ambulatory children with CP, aged 5-18 years old, investigating dynamic walking in challenging environments, with outcomes of fall occurrence or fall risk. The full protocol for this review was registered on PROSPERO (CRD42021290456). RESULTS Sixteen studies met the inclusion criteria. One study reported occurrence of stumbles, two reported no falls. Fifteen studies identified gait alterations used by children with CP in challenging environments. Twenty-four gait characteristics were identified to be indicative of cautious walking strategies and seven gait characteristics identified to increase fall risk, suggesting a potential link. However, limited evidence exists as to whether this reflects falls faced in the real-world. SIGNIFICANCE Investigations into stability over challenging walking environments for children with CP are lacking any measures of fall occurrence. Investigations into the mechanisms that may contribute to high fall risk, or fall avoidance when negotiating obstacles, uneven surfaces, steep declines and stairs may reveal further causes of real-world falls, and in doing so inform future fall prevention techniques. Finally, understanding the multifaceted causes of falls in real-world challenging environments from the perspectives of children with CP is key for future research.
Collapse
Affiliation(s)
- Rebecca L Walker
- Research Institute for Sport and Exercise Sciences, Tom Reilly Building, Liverpool John Moores University, Byrom St, Liverpool L3 3AF, United Kingdom
| | - Thomas D O'Brien
- Research Institute for Sport and Exercise Sciences, Tom Reilly Building, Liverpool John Moores University, Byrom St, Liverpool L3 3AF, United Kingdom
| | - Gabor J Barton
- Research Institute for Sport and Exercise Sciences, Tom Reilly Building, Liverpool John Moores University, Byrom St, Liverpool L3 3AF, United Kingdom
| | - Bernie Carter
- Faculty of Health, Social Care and Medicine, Edge Hill University, St Helens Rd, Ormskirk L39 4QP, United Kingdom
| | - David M Wright
- North West Movement Analysis Centre, Alder Hey Children's NHS Foundation Trust, East Prescot Rd, Liverpool L14 5AB, United Kingdom
| | - Richard J Foster
- Research Institute for Sport and Exercise Sciences, Tom Reilly Building, Liverpool John Moores University, Byrom St, Liverpool L3 3AF, United Kingdom.
| |
Collapse
|
2
|
Zhou Y. User experience of lower extremity exoskeletons and its improvement methodologies: A narrative review. Proc Inst Mech Eng H 2024; 238:1052-1068. [PMID: 39552186 DOI: 10.1177/09544119241291194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
In this review, user experience (UX) of recent lower limb exoskeletons (LLEs) and its improvement methodologies are investigated. First, statistics based on standardised and custom UX evaluations are presented. It is indicated that, LLE users have positive UX, especially in the aspects of safety, dimension and effectiveness. Further, overall, UX levels of ankle and hip-knee exoskeletons are higher than those of other exoskeleton types; unilateral LLEs have higher mean UX levels than that of the bilateral ones. Then, design practices for improving UX are studied; the focused points are burden reduction and improvement of device fit. The former is achieved through lightweight design and approaches that reduce device's moment of inertia (MOI) at mechanical joints. Works on the latter refer to the endeavours to enhance static and dynamic fit; they mainly rely on the optimisations of human-robot interface (HRS) and endeavours to rectify misalignment of axes of mechanical and anatomic joints, respectively. The following section is control approaches to enhance wearing comfort level; it is mainly focused on adaptive, interaction and compensation-based controls. Finally, existing problems and future directions are stated and prospected respectively.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Dierwechter B, Kolakowsky-Hayner SA. Journey to 1 Million Steps: A Retrospective Case Series Analyzing the Implementation of Robotic-Assisted Gait Training Into an Outpatient Pediatric Clinic. Pediatr Phys Ther 2024; 36:285-293. [PMID: 38349640 DOI: 10.1097/pep.0000000000001097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
PURPOSE To describe the implementation of an exoskeleton program in a rehabilitation setting using a Design Thinking framework. METHODS This is a retrospective case series of 3 randomly selected children who participated in skilled physical therapy using a pediatric exoskeleton that occurred on our journey to walking 1 000 000 steps in the exoskeleton devices. Participants ranged in age from 3 to 5 years, and all had neurologic disorders. RESULTS All participants improved toward achieving their therapy goals, tolerated the exoskeleton well, and had an increased number of steps taken over time. CONCLUSION The implementation of new technology into pediatric care and an established outpatient therapy clinic is described. The Design Thinking process applies to health care professionals and improves clinical care. Exoskeletons are effective tools for use in pediatric physical therapy.
Collapse
Affiliation(s)
- Brittany Dierwechter
- Outpatient Physical Therapy Department (Dr Dierwechter) and Research and Clinical Outcomes Department (Dr Kolakowsky-Hayner), Good Shepherd Rehabilitation Network, Allentown, Pennsylvania
| | | |
Collapse
|
4
|
Fang Y, Lerner ZF. How Adaptive Ankle Exoskeleton Assistance Affects Stability During Perturbed and Unperturbed Walking in the Elderly. Ann Biomed Eng 2023; 51:2606-2616. [PMID: 37452214 DOI: 10.1007/s10439-023-03310-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Slowing the decline in walking mobility in the elderly is critical for maintaining the quality of life. Wearable assistive devices may 1 day facilitate mobility in older adults; however, we need to ensure that such devices do not impair stability in this population that is predisposed to fall-related injuries. This study sought to quantify the effects of untethered ankle exoskeleton assistance on measures of stability, whole-body dynamics, and strategies to maintain balance during normal and perturbed walking in older adults. Eight healthy participants (69-84 years) completed a treadmill-based walking protocol that included perturbations from unexpected belt accelerations while participants walked with and without ankle exoskeleton assistance. Exoskeleton assistance increased frontal plane range of angular momentum (8-14%, p ≤ 0.007), step width (18-34%, p ≤ 0.006), and ankle co-contraction (21-29%, p ≤ 0.039), and decreased biological ankle moment (16-27%, p ≤ 0.001) during unperturbed and perturbed walking; it did not affect the anteroposterior margin-of-stability, step length, trunk variability, or soleus activity during unperturbed and perturbed walking. Our finding that ankle exoskeleton assistance did not affect the anteroposterior margin-of-stability supports additional investigation of assistive exoskeletons for walking assistance in the elderly.
Collapse
Affiliation(s)
- Ying Fang
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Physical Therapy, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Zachary F Lerner
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, 86011, USA.
- Department of Orthopedics, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA.
| |
Collapse
|
5
|
Bianco NA, Collins SH, Liu K, Delp SL. Simulating the effect of ankle plantarflexion and inversion-eversion exoskeleton torques on center of mass kinematics during walking. PLoS Comput Biol 2023; 19:e1010712. [PMID: 37549183 PMCID: PMC10434928 DOI: 10.1371/journal.pcbi.1010712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 08/17/2023] [Accepted: 07/06/2023] [Indexed: 08/09/2023] Open
Abstract
Walking balance is central to independent mobility, and falls due to loss of balance are a leading cause of death for people 65 years of age and older. Bipedal gait is typically unstable, but healthy humans use corrective torques to counteract perturbations and stabilize gait. Exoskeleton assistance could benefit people with neuromuscular deficits by providing stabilizing torques at lower-limb joints to replace lost muscle strength and sensorimotor control. However, it is unclear how applied exoskeleton torques translate to changes in walking kinematics. This study used musculoskeletal simulation to investigate how exoskeleton torques applied to the ankle and subtalar joints alter center of mass kinematics during walking. We first created muscle-driven walking simulations using OpenSim Moco by tracking experimental kinematics and ground reaction forces recorded from five healthy adults. We then used forward integration to simulate the effect of exoskeleton torques applied to the ankle and subtalar joints while keeping muscle excitations fixed based on our previous tracking simulation results. Exoskeleton torque lasted for 15% of the gait cycle and was applied between foot-flat and toe-off during the stance phase, and changes in center of mass kinematics were recorded when the torque application ended. We found that changes in center of mass kinematics were dependent on both the type and timing of exoskeleton torques. Plantarflexion torques produced upward and backward changes in velocity of the center of mass in mid-stance and upward and smaller forward velocity changes near toe-off. Eversion and inversion torques primarily produced lateral and medial changes in velocity in mid-stance, respectively. Intrinsic muscle properties reduced kinematic changes from exoskeleton torques. Our results provide mappings between ankle plantarflexion and inversion-eversion torques and changes in center of mass kinematics which can inform designers building exoskeletons aimed at stabilizing balance during walking. Our simulations and software are freely available and allow researchers to explore the effects of applied torques on balance and gait.
Collapse
Affiliation(s)
- Nicholas A. Bianco
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
| | - Steven H. Collins
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
| | - Karen Liu
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| | - Scott L. Delp
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, United States of America
| |
Collapse
|
6
|
Lora-Millan JS, Nabipour M, van Asseldonk E, Bayón C. Advances on mechanical designs for assistive ankle-foot orthoses. Front Bioeng Biotechnol 2023; 11:1188685. [PMID: 37485319 PMCID: PMC10361304 DOI: 10.3389/fbioe.2023.1188685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
Assistive ankle-foot orthoses (AAFOs) are powerful solutions to assist or rehabilitate gait on humans. Existing AAFO technologies include passive, quasi-passive, and active principles to provide assistance to the users, and their mechanical configuration and control depend on the eventual support they aim for within the gait pattern. In this research we analyze the state-of-the-art of AAFO and classify the different approaches into clusters, describing their basis and working principles. Additionally, we reviewed the purpose and experimental validation of the devices, providing the reader with a better view of the technology readiness level. Finally, the reviewed designs, limitations, and future steps in the field are summarized and discussed.
Collapse
Affiliation(s)
| | - Mahdi Nabipour
- Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
| | - Edwin van Asseldonk
- Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
| | - Cristina Bayón
- Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
| |
Collapse
|
7
|
Zhou Y. Recent advances in wearable actuated ankle-foot orthoses: Medical effects, design, and control. Proc Inst Mech Eng H 2023; 237:163-178. [PMID: 36515408 DOI: 10.1177/09544119221142335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This paper presents a survey on recent advances of wearable actuated ankle-foot orthoses (AAFOs). First of all, their medical functions are investigated. From the short-term aspect, they lead to rectification of pathological gaits, reduction of metabolic cost, and improvement of gait performance. After AAFO-based walking training with sufficient time, free walking performance can be enhanced. Then, key design factors are studied. First, primary design parameters are investigated. Second, common actuators are analysed. Third, human-robot interaction (HRI), ergonomics, safety, and application places, are considered. In the following section, control technologies are reviewed from the aspects of rehabilitation stages, gait feature quantities, and controller characteristics. Finally, existing problems are discussed; development trends are prospected.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Choi HS, Baek YS, In H. Ankle strategy assistance to improve gait stability using controllers based on in-shoe center of pressure in 2 degree-of-freedom powered ankle-foot orthoses: a clinical study. J Neuroeng Rehabil 2022; 19:114. [PMID: 36284358 PMCID: PMC9594937 DOI: 10.1186/s12984-022-01092-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background Although the ankle strategy is important for achieving frontal plane stability during one-leg stance, previously developed powered ankle–foot orthoses (PAFOs) did not involve ankle strategies because of hardware limitations. Weakness of movement in frontal plane is a factor that deteriorates gait stability and increases fall risk so it should not be overlooked in rehabilitation. Therefore, we used PAFO with subtalar joint for frontal plane movement and tried to confirm that the existence of it is important in balancing through clinical experiments. Methods We developed a proportional CoP controller to assist ankle strategy or stabilizing moment and enhance eversion to compensate for the tilting moment with 2 dof PAFO. It was true experimental study, and we recruited seven healthy subjects (30 ± 4 years) who did not experience any gait abnormality participated in walking experiments for evaluating the immediate effect of subtalar joint of PAFO on their gait stability. They walked on the treadmill with several cases of controllers for data acquisitions. Indices of gait stability and electromyography for muscle activity were measured and Wilcoxon signed-rank tests were used to identify meaningful changes. Results We found that subjects were most stable during walking (in terms of largest Lyapunov exponents, p < 0.008) with the assistance of the PAFO when their electromyographic activity was the most reduced (p < 0.008), although postural sway increased when a proportional CoP controller was used to assist the ankle strategy (p < 0.008). Other indices of gait stability, kinematic variability, showed no difference between the powered and unpowered conditions (p > 0.008). The results of the correlation analysis indicate that the actuator of the PAFO enhanced eversion and preserved the location of the CoP in the medial direction so that gait stability was not negatively affected or improved. Conclusions We verified that the developed 2 dof PAFO assists the ankle strategy by compensating for the tilting moment with proportional CoP controller and that wearer can walk in a stable state when the orthosis provides power for reducing muscle activity. This result is meaningful because an ankle strategy should be considered in the development of PAFOs for enhancing or even rehabilitating proprioception. Trial registration 7001988-202003-HR-833-03
Collapse
Affiliation(s)
- Ho Seon Choi
- grid.35541.360000000121053345Center for Healthcare Robotics, Korea Institute of Science and Technology, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454School of Mechanical Engineering, Yonsei University, Seoul, 02792 South Korea
| | - Yoon Su Baek
- grid.15444.300000 0004 0470 5454School of Mechanical Engineering, Yonsei University, Seoul, 02792 South Korea
| | - Hyunki In
- grid.35541.360000000121053345Center for Healthcare Robotics, Korea Institute of Science and Technology, Seoul, 03722 South Korea
| |
Collapse
|
9
|
Sarajchi M, Al-Hares MK, Sirlantzis K. Wearable Lower-Limb Exoskeleton for Children With Cerebral Palsy: A Systematic Review of Mechanical Design, Actuation Type, Control Strategy, and Clinical Evaluation. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2695-2720. [PMID: 34910636 DOI: 10.1109/tnsre.2021.3136088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Children with a neurological disorder such as cerebral palsy (CP) severely suffer from a reduced quality of life because of decreasing independence and mobility. Although there is no cure yet, a lower-limb exoskeleton (LLE) has considerable potential to help these children experience better mobility during overground walking. The research in wearable exoskeletons for children with CP is still at an early stage. This paper shows that the number of published papers on LLEs assisting children with CP has significantly increased in recent years; however, no research has been carried out to review these studies systematically. To fill up this research gap, a systematic review from a technical and clinical perspective has been conducted, based on the PRISMA guidelines, under three extended topics associated with "lower limb", "exoskeleton", and "cerebral palsy" in the databases Scopus and Web of Science. After applying several exclusion criteria, seventeen articles focused on fifteen LLEs were included for careful consideration. These studies address some consistent positive evidence on the efficacy of LLEs in improving gait patterns in children with CP. Statistical findings show that knee exoskeletons, brushless DC motors, the hierarchy control architecture, and CP children with spastic diplegia are, respectively, the most common mechanical design, actuator type, control strategy, and clinical characteristics for these LLEs. Clinical studies suggest ankle-foot orthosis as the primary medical solution for most CP gait patterns; nevertheless, only one motorized ankle exoskeleton has been developed. This paper shows that more research and contribution are needed to deal with open challenges in these LLEs.
Collapse
|