1
|
Korganbayev S, Bianchi L, Girgi C, Vergantino E, Santucci D, Faiella E, Saccomandi P. Fiber Bragg Grating Thermometry and Post-Treatment Ablation Size Analysis of Radiofrequency Thermal Ablation on Ex Vivo Liver, Kidney and Lung. SENSORS (BASEL, SWITZERLAND) 2025; 25:245. [PMID: 39797036 PMCID: PMC11723473 DOI: 10.3390/s25010245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025]
Abstract
Radiofrequency ablation (RFA) is a minimally invasive procedure that utilizes localized heat to treat tumors by inducing localized tissue thermal damage. The present study aimed to evaluate the temperature evolution and spatial distribution, ablation size, and reproducibility of ablation zones in ex vivo liver, kidney, and lung using a commercial device, i.e., Dophi™ R150E RFA system (Surgnova, Beijing, China), and to compare the results with the manufacturer's specifications. Optical fibers embedding arrays of fiber Bragg grating (FBG) sensors, characterized by 0.1 °C accuracy and 1.2 mm spatial resolution, were employed for thermometry during the procedures. Experiments were conducted for all the organs in two different configurations: single-electrode (200 W for 12 min) and double-electrode (200 W for 9 min). Results demonstrated consistent and reproducible ablation zones across all organ types, with variations in temperature distribution and ablation size influenced by tissue characteristics and RFA settings. Higher temperatures were achieved in the liver; conversely, the lung exhibited the smallest ablation zone and the lowest maximum temperatures. The study found that using two electrodes for 9 min produced larger, more rounded ablation areas compared to a single electrode for 12 min. Our findings support the efficacy of the RFA system and highlight the need for tailored RFA parameters based on organ type and tumor properties. This research provides insights into the characterization of RFA systems for optimizing RFA techniques and underscores the importance of accurate thermometry and precise procedural planning to enhance clinical outcomes.
Collapse
Affiliation(s)
- Sanzhar Korganbayev
- Department of Mechanical Engineering, Politecnico di Milano, Via Giuseppe La Masa 1, 20156 Milan, Italy; (S.K.); (L.B.); (C.G.)
| | - Leonardo Bianchi
- Department of Mechanical Engineering, Politecnico di Milano, Via Giuseppe La Masa 1, 20156 Milan, Italy; (S.K.); (L.B.); (C.G.)
| | - Clara Girgi
- Department of Mechanical Engineering, Politecnico di Milano, Via Giuseppe La Masa 1, 20156 Milan, Italy; (S.K.); (L.B.); (C.G.)
| | - Elva Vergantino
- Operative Research Unit of Radiology and Interventional Radiology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy; (E.V.); (D.S.); (E.F.)
- Research Unit of Radiology and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Domiziana Santucci
- Operative Research Unit of Radiology and Interventional Radiology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy; (E.V.); (D.S.); (E.F.)
- Research Unit of Radiology and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Eliodoro Faiella
- Operative Research Unit of Radiology and Interventional Radiology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy; (E.V.); (D.S.); (E.F.)
- Research Unit of Radiology and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, Via Giuseppe La Masa 1, 20156 Milan, Italy; (S.K.); (L.B.); (C.G.)
| |
Collapse
|
2
|
Fang Z, Wu C, Cao L, Wang T, Hong X, Moser MAJ, Zhang W, Zhang B. Development of non-invasive flexible directional microwave ablation for central lung cancer: a simulation study. Phys Med Biol 2024; 69:09NT04. [PMID: 38527368 DOI: 10.1088/1361-6560/ad3795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Transbronchial microwave ablation (MWA) with flexible antennas has gradually become an attractive alternative to percutaneous MWA for lung cancer due to its characteristic of non-invasiveness. However, flexible antennas for the precision ablation of lung tumors that are adjacent to critical bronchial structures are still not available. In this study, a non-invasive flexible directional (FD) antenna for early stage central lung tumors surrounding the bronchia was proposed. A comprehensive numerical MWA model with the FD antenna was developed in a real human-sized left lung model. The structure of the antenna and the treatment protocol were optimized by a generic algorithm for the precision ablation of two cases of early stage central lung cancer (i.e. spherical-like and ellipsoidal tumors). The electromagnetic efficiency of the optimized antenna was also improved by implementing an optimizedπ-matching network for impedance matching. The results indicate that the electromagnetic energy of MWA can be restricted to a particular area for precision ablation of specific lung tumors using the FD antenna. This study contributes to the field of lung cancer management with MWA.
Collapse
Affiliation(s)
- Zheng Fang
- Intelligent Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, People's Republic of China
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Chen Wu
- Intelligent Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, People's Republic of China
| | - Lin Cao
- Department of Automatic Control and Systems Engineering, the University of Sheffield, Sheffield, United Kingdom
| | - Tao Wang
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaowu Hong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
- Research Institute of Fudan University, Ningbo, People's Republic of China
| | - Michael A J Moser
- Department of Surgery, University of Saskatchewan, Saskatoon, Canada
| | - Wenjun Zhang
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Bing Zhang
- Intelligent Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Bianchi L, Fiorentini S, Gianella S, Gianotti S, Iadanza C, Asadi S, Saccomandi P. Measurement of Thermal Conductivity and Thermal Diffusivity of Porcine and Bovine Kidney Tissues at Supraphysiological Temperatures up to 93 °C. SENSORS (BASEL, SWITZERLAND) 2023; 23:6865. [PMID: 37571648 PMCID: PMC10422510 DOI: 10.3390/s23156865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
This experimental study aimed to characterize the thermal properties of ex vivo porcine and bovine kidney tissues in steady-state heat transfer conditions in a wider thermal interval (23.2-92.8 °C) compared to previous investigations limited to 45 °C. Thermal properties, namely thermal conductivity (k) and thermal diffusivity (α), were measured in a temperature-controlled environment using a dual-needle probe connected to a commercial thermal property analyzer, using the transient hot-wire technique. The estimation of measurement uncertainty was performed along with the assessment of regression models describing the trend of measured quantities as a function of temperature to be used in simulations involving heat transfer in kidney tissue. A direct comparison of the thermal properties of the same tissue from two different species, i.e., porcine and bovine kidney tissues, with the same experimental transient hot-wire technique, was conducted to provide indications on the possible inter-species variabilities of k and α at different selected temperatures. Exponential fitting curves were selected to interpolate the measured values for both porcine and bovine kidney tissues, for both k and α. The results show that the k and α values of the tissues remained rather constant from room temperature up to the onset of water evaporation, and a more marked increase was observed afterward. Indeed, at the highest investigated temperatures, i.e., 90.0-92.8 °C, the average k values were subject to 1.2- and 1.3-fold increases, compared to their nominal values at room temperature, in porcine and bovine kidney tissue, respectively. Moreover, at 90.0-92.8 °C, 1.4- and 1.2-fold increases in the average values of α, compared to baseline values, were observed for porcine and bovine kidney tissue, respectively. No statistically significant differences were found between the thermal properties of porcine and bovine kidney tissues at the same selected tissue temperatures despite their anatomical and structural differences. The provided quantitative values and best-fit regression models can be used to enhance the accuracy of the prediction capability of numerical models of thermal therapies. Furthermore, this study may provide insights into the refinement of protocols for the realization of tissue-mimicking phantoms and the choice of tissue models for bioheat transfer studies in experimental laboratories.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy; (L.B.); (S.F.); (S.G.); (S.G.); (C.I.); (S.A.)
| |
Collapse
|