1
|
Tian Y, Hu C, An M, He X, Wang H, Yi C. Fabrication and Characterization of Carbon Nanotube Filled PDMS Hybrid Membranes for Enhanced Ethanol Recovery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12294-12304. [PMID: 36890695 DOI: 10.1021/acsami.2c20553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ethanol separation via the pervaporation process has shown growing application potential in solvent recovery and the bioethanol industry. In the continuous pervaporation process, polymeric membranes such as hydrophobic polydimethylsiloxane (PDMS) have been developed to enrich/separate ethanol from dilute aqueous solutions. However, its practical application remains largely limited due to the relatively low separation efficiency, especially in selectivity. In view of this, hydrophobic carbon nanotube (CNT) filled PDMS mixed matrix membranes (MMMs) aimed at high-efficiency ethanol recovery were fabricated in this work. The filler K-MWCNTs was prepared by functionalizing MWCNT-NH2 with epoxy-containing silane coupling agent (KH560) to improve the affinity between fillers and PDMS matrix. With K-MWCNT loading increased from 1 wt % to 10 wt %, membranes showed higher surface roughness and water contact angle was improved from 115° to 130°. The swelling degree of K-MWCNT/PDMS MMMs (2 wt %) in water were also reduced from 10 wt % to 2.5 wt %. Pervaporation performance for K-MWCNT/PDMS MMMs under varied feed concentrations and temperatures were evaluated. The results supported that the K-MWCNT/PDMS MMMs at 2 wt % K-MWCNT loading showed the optimum separation performance (compared with pure PDMS membranes), with the separation factor improved from 9.1 to 10.4, and the permeate flux increased by 50% (40-60 °C, at 6 wt % feed ethanol concentration). This work provides a promising method for preparing a PDMS composite with both high permeate flux and selectivity, which showed great potential for bioethanol production and alcohol separation in industry.
Collapse
Affiliation(s)
- Yuhong Tian
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Changfeng Hu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mingzhe An
- Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry, Yibin 644000, China
| | - Xinping He
- Department of Chemical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hong Wang
- Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry, Yibin 644000, China
| | - Chunhai Yi
- Department of Chemical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
Song J, Meng Q, Wang J, Guo X, Wei P, Dong J, Shi Q. Length exclusion separation of acetone/butanol using ZIF-302 derivatives with adjustable ellipsoidal cage sizes. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
3
|
Pérez-Botella E, Valencia S, Rey F. Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chem Rev 2022; 122:17647-17695. [PMID: 36260918 PMCID: PMC9801387 DOI: 10.1021/acs.chemrev.2c00140] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Zeolites have been widely used as catalysts, ion exchangers, and adsorbents since their industrial breakthrough in the 1950s and continue to be state-of the-art adsorbents in many separation processes. Furthermore, their properties make them materials of choice for developing and emerging separation applications. The aim of this review is to put into context the relevance of zeolites and their use and prospects in adsorption technology. It has been divided into three different sections, i.e., zeolites, adsorption on nanoporous materials, and chemical separations by zeolites. In the first section, zeolites are explained in terms of their structure, composition, preparation, and properties, and a brief review of their applications is given. In the second section, the fundamentals of adsorption science are presented, with special attention to its industrial application and our case of interest, which is adsorption on zeolites. Finally, the state-of-the-art relevant separations related to chemical and energy production, in which zeolites have a practical or potential applicability, are presented. The replacement of some of the current separation methods by optimized adsorption processes using zeolites could mean an improvement in terms of sustainability and energy savings. Different separation mechanisms and the underlying adsorption properties that make zeolites interesting for these applications are discussed.
Collapse
Affiliation(s)
| | | | - Fernando Rey
- . Phone: +34 96 387 78 00.
Fax: +34 96 387 94
44
| |
Collapse
|
4
|
Review of alternative technologies for acetone-butanol-ethanol separation: Principles, state-of-the-art, and development trends. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Adsorptive separation of butanol, acetone and ethanol in zeolite imidazolate frameworks with desirable pore apertures. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Adsorptive recovery of butanol, propanol, and ethanol using activated carbon based on residual sludge industrial (ACRS). J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Li H, Wang H, Darwesh OM, Du J, Liu S, Li C, Fang J. Separation of biobutanol from ABE fermentation broth using lignin as adsorbent: A totally sustainable approach with effective utilization of lignocellulose. Int J Biol Macromol 2021; 174:11-21. [PMID: 33465363 DOI: 10.1016/j.ijbiomac.2021.01.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
Adsorption is considered to be a promising butanol recovery method for solving the issue of inhibition in the ABE (acetone-butanol-ethanol) fermentation. As a byproduct in the second generation biobutanol industry, lignin was found to be a good adsorbent for the butanol enrichment. It is conducive to the full utilization of renewable lignocellulose biomass resource. Kinetic and equilibrium experiments indicated that lignin had a satisfactory adsorption rate and capacity that are comparable to those of many synthetic materials. Multicomponent adsorption experiments revealed that lignin had higher adsorption selectivity toward butanol than that of ethanol and acetone. The adsorption capacity of lignin for butanol first increased and then gradually decreased with increasing temperature. And maximum adsorption capacity reached 304.66 mg g-1 at 313 K. The inflection point of temperature is close to the ABE fermentation temperature of 310 K. The condensed butanol by desorption was 145 g L-1, with a satisfying regeneration performance. 1H NMR and FT-IR spectra indicated that the aromatic units of lignin formed π-systems with A/B/E. The π-system is particularly significant for butanol due to its longer hydrocarbon chain. These results could contribute to the emerging lignin-based materials for butanol separation.
Collapse
Affiliation(s)
- Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Haoyang Wang
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Osama M Darwesh
- Agricultural Microbiology Department, Agricultural and Biological Research Division, National Research Centre, Cairo, Egypt
| | - Jingjing Du
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Shan Liu
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Chunli Li
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Jing Fang
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China.
| |
Collapse
|
8
|
Energy-Saving and Sustainable Separation of Bioalcohols by Adsorption on Bone Char. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/6615766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The separation of ethanol, propanol, and butanol from aqueous solutions was studied using adsorption on bone char. Adsorption kinetics and thermodynamic parameters of this separation method were studied at different conditions of pH and temperature. Results showed that the maximum adsorption capacities of these bioalcohols were obtained at pH 6 and 20°C. An exothermic separation was identified, which can be mainly associated to hydrophobic interactions between bone char surface and bioalcohols. Binary adsorption studies were also performed using mixtures of these bioalcohols. An antagonistic adsorption was observed for all bioalcohols where the ethanol and propanol separation was significantly affected by butanol. A model based on an artificial neural network was proposed to correlate both single and binary adsorption isotherms of these bioalcohols with bone char. It was concluded that the bone char could be an interesting adsorbent for the sustainable separation and recovery of bioalcohols from fermentation broths, which are actually considered emerging liquid biofuels and relevant industrial chemicals.
Collapse
|
9
|
Li H, Wang H, Miao Q, Du J, Li C, Fang J. High-Efficiency Adsorbent for Biobutanol Separation Developed from Lignin by Solvents Fractionation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
- Guangdong Provincial Key Lab of Green Chemical Product Technology, Wushan Road, Guangzhou 510000, PR China
- Tianjin Key Laboratory of Chemical Process Safety, Tianjin 300401, China
| | - Haoyang Wang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Qingya Miao
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jingjing Du
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Chunli Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jing Fang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
- Tianjin Key Laboratory of Chemical Process Safety, Tianjin 300401, China
| |
Collapse
|
10
|
Techno-Economic Analysis (TEA) of Different Pretreatment and Product Separation Technologies for Cellulosic Butanol Production from Oil Palm Frond. ENERGIES 2020. [DOI: 10.3390/en13010181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Among the driving factors for the high production cost of cellulosic butanol lies the pretreatment and product separation sections, which often demand high amounts of energy, chemicals, and water. In this study, techno-economic analysis of several pretreatments and product separation technologies were conducted and compared. Among the pretreatment technologies evaluated, low-moisture anhydrous ammonia (LMAA) pretreatment has shown notable potential with a pretreatment cost of $0.16/L butanol. Other pretreatment technologies evaluated were autohydrolysis, soaking in aqueous ammonia (SAA), and soaking in sodium hydroxide solution (NaOH) with pretreatment costs of $1.98/L, $3.77/L, and $0.61/L, respectively. Evaluation of different product separation technologies for acetone-butanol-ethanol (ABE) fermentation process have shown that in situ stripping has the lowest separation cost, which was $0.21/L. Other product separation technologies tested were dual extraction, adsorption, and membrane pervaporation, with the separation costs of $0.38/L, $2.25/L, and $0.45/L, respectively. The evaluations have shown that production of cellulosic butanol using combined LMAA pretreatment and in situ stripping or with dual extraction recorded among the lowest butanol production cost. However, dual extraction model has a total solvent productivity of approximately 6% higher than those of in situ stripping model.
Collapse
|
11
|
Life-Cycle Assessment (LCA) of Different Pretreatment and Product Separation Technologies for Butanol Bioprocessing from Oil Palm Frond. ENERGIES 2019. [DOI: 10.3390/en13010155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Environmental impact assessment is a crucial aspect of biofuels production to ensure that the process generates emissions within the designated limits. In typical cellulosic biofuel production process, the pretreatment and downstream processing stages were reported to require a high amount of chemicals and energy, thus generating high emissions. Cellulosic butanol production while using low moisture anhydrous ammonia (LMAA) pretreatment was expected to have a low chemical, water, and energy footprint, especially when the process was combined with more efficient downstream processing technologies. In this study, the quantification of environmental impact potentials from cellulosic butanol production plants was conducted with modeled different pretreatment and product separation approaches. The results have shown that LMAA pretreatment possessed a potential for commercialization by having low energy requirements when compared to the other modeled pretreatments. With high safety measures that reduce the possibility of anhydrous ammonia leaking to the air, LMAA pretreatment resulted in GWP of 5.72 kg CO2 eq./L butanol, ecotoxicity potential of 2.84 × 10−6 CTU eco/L butanol, and eutrophication potential of 0.011 kg N eq./L butanol. The lowest energy requirement in biobutanol production (19.43 MJ/L), as well as better life-cycle energy metrics performances (NEV of 24.69 MJ/L and NER of 2.27) and environmental impacts potentials (GWP of 3.92 kg N eq./L butanol and ecotoxicity potential of 2.14 × 10−4 CTU eco/L butanol), were recorded when the LMAA pretreatment was combined with the membrane pervaporation process in the product separation stage.
Collapse
|
12
|
Pereira JPC, Overbeek W, Gudiño-Reyes N, Andrés-García E, Kapteijn F, van der Wielen LAM, Straathof AJJ. Integrated Vacuum Stripping and Adsorption for the Efficient Recovery of (Biobased) 2-Butanol. Ind Eng Chem Res 2019; 58:296-305. [PMID: 30774191 PMCID: PMC6369677 DOI: 10.1021/acs.iecr.8b03043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/29/2018] [Accepted: 12/12/2018] [Indexed: 11/29/2022]
Abstract
![]()
Biobased
2-butanol offers high potential as biofuel, but its toxicity
toward microbial hosts calls for efficient techniques to alleviate
product inhibition in fermentation processes. Aiming at the selective
recovery of 2-butanol, the feasibility of a process combining in situ vacuum stripping followed by vapor adsorption has
been assessed using mimicked fermentation media. The experimental
vacuum stripping of model solutions and corn stover hydrolysate closely
aligned with mass transfer model predictions. However, the presence
of lignocellulosic impurities affected 2-butanol recovery yields resulting
from vapor condensation, which decreased from 96 wt % in model solutions
to 40 wt % using hydrolysate. For the selective recovery of 2-butanol
from a vapor mixture enriched in water and carbon dioxide, silicalite
materials were the most efficient, particularly at low alcohol partial
pressures. Integrating in situ vacuum stripping with
vapor adsorption using HiSiv3000 proved useful to effectively concentrate
2-butanol above its azeotropic composition (>68 wt %), facilitating
further product purification.
Collapse
|
13
|
Azimi H, Ebneyamini A, Tezel FH, Thibault J. Separation of Organic Compounds from ABE Model Solutions via Pervaporation Using Activated Carbon/PDMS Mixed Matrix Membranes. MEMBRANES 2018; 8:E40. [PMID: 29996486 PMCID: PMC6161144 DOI: 10.3390/membranes8030040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 11/17/2022]
Abstract
The pervaporation separation of organic compounds from acetone-butanol-ethanol (ABE) fermentation model solutions was studied using activated carbon (AC) nanoparticle-poly (dimethylsiloxane) (PDMS) mixed matrix membranes (MMM). The effects of the operating conditions and nanoparticle loading content on the membrane performance have been investigated. While the separation factor increased continuously, with an increase in the concentration of nanoparticles, the total flux reached a maximum in the MMM with 8 wt % nanoparticle loading in PDMS. Both the separation factor for ABE and the total permeation flux more than doubled for the MMM in comparison to those of neat PDMS membranes prepared in this study.
Collapse
Affiliation(s)
- Hoda Azimi
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON K1N 6N5, Canada.
| | - Arian Ebneyamini
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON K1N 6N5, Canada.
| | - F Handan Tezel
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON K1N 6N5, Canada.
| | - Jules Thibault
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
14
|
Azimi H, Tezel FH, Thibault J. The impact of pH on VLE, pervaporation, and adsorption of butyric acid in dilute solutions. CAN J CHEM ENG 2017. [DOI: 10.1002/cjce.23093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hoda Azimi
- Department of Chemical and Biological Engineering; University of Ottawa; Ottawa, ON K1N 6N5 Canada
| | - F. Handan Tezel
- Department of Chemical and Biological Engineering; University of Ottawa; Ottawa, ON K1N 6N5 Canada
| | - Jules Thibault
- Department of Chemical and Biological Engineering; University of Ottawa; Ottawa, ON K1N 6N5 Canada
| |
Collapse
|
15
|
Goerlitz R, Weisleder L, Wuttig S, Trippel S, Karstens K, Goetz P, Niebelschuetz H. Bio-butanol downstream processing: regeneration of adsorbents and selective exclusion of fermentation by-products. ADSORPTION 2017. [DOI: 10.1007/s10450-017-9918-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Farzaneh A, DeJaco RF, Ohlin L, Holmgren A, Siepmann JI, Grahn M. Comparative Study of the Effect of Defects on Selective Adsorption of Butanol from Butanol/Water Binary Vapor Mixtures in Silicalite-1 Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8420-8427. [PMID: 28767246 DOI: 10.1021/acs.langmuir.7b02097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A promising route for sustainable 1-butanol (butanol) production is ABE (acetone, butanol, ethanol) fermentation. However, recovery of the products is challenging because of the low concentrations obtained in the aqueous solution, thus hampering large-scale production of biobutanol. Membrane and adsorbent-based technologies using hydrophobic zeolites are interesting alternatives to traditional separation techniques (e.g., distillation) for energy-efficient separation of butanol from aqueous mixtures. To maximize the butanol over water selectivity of the material, it is important to reduce the number of hydrophilic adsorption sites. This can, for instance, be achieved by reducing the density of lattice defect sites where polar silanol groups are found. The density of silanol defects can be reduced by preparing the zeolite at neutral pH instead of using traditional synthesis solutions with high pH. In this work, binary adsorption of butanol and water in two silicalite-1 films was studied using in situ attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy under equal experimental conditions. One of the films was prepared in fluoride medium, whereas the other one was prepared at high pH using traditional synthesis conditions. The amounts of water and butanol adsorbed from binary vapor mixtures of varying composition were determined at 35 and 50 °C, and the corresponding adsorption selectivities were also obtained. Both samples showed very high selectivities (100-23 000) toward butanol under the conditions studied. The sample having low density of defects, in general, showed ca. a factor 10 times higher butanol selectivity than the sample having a higher density of defects at the same experimental conditions. This difference was due to a much lower adsorption of water in the sample with low density of internal defects. Analysis of molecular simulation trajectories provides insights on the local selectivities in the zeolite channel network and at the film surface.
Collapse
Affiliation(s)
| | - Robert F DeJaco
- Department of Chemical Engineering and Materials Science and Department of Chemistry and Chemical Theory Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Lindsay Ohlin
- Chemical Technology, Luleå University of Technology , SE-971 87 Luleå, Sweden
| | - Allan Holmgren
- Chemical Technology, Luleå University of Technology , SE-971 87 Luleå, Sweden
| | - J Ilja Siepmann
- Department of Chemical Engineering and Materials Science and Department of Chemistry and Chemical Theory Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Mattias Grahn
- Chemical Technology, Luleå University of Technology , SE-971 87 Luleå, Sweden
| |
Collapse
|
17
|
Van der Perre S, Gelin P, Claessens B, Martin-Calvo A, Cousin Saint Remi J, Duerinck T, Baron GV, Palomino M, Sánchez LY, Valencia S, Shang J, Singh R, Webley PA, Rey F, Denayer JFM. Intensified Biobutanol Recovery by using Zeolites with Complementary Selectivity. CHEMSUSCHEM 2017; 10:2968-2977. [PMID: 28585778 DOI: 10.1002/cssc.201700667] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Indexed: 06/07/2023]
Abstract
A vapor-phase adsorptive recovery process is proposed as an alternative way to isolate biobutanol from acetone-butanol-ethanol (ABE) fermentation media, offering several advantages compared to liquid phase separation. The effect of water, which is still present in large quantities in the vapor phase, on the adsorption of the organics could be minimized by using hydrophobic zeolites. Shape-selective all-silica zeolites CHA and LTA were prepared and evaluated with single-component isotherms and breakthrough experiments. These zeolites show opposite selectivities; adsorption of ethanol is favorable on all-silica CHA, whereas the LTA topology has a clear preference for butanol. The molecular sieving properties of both zeolites allow easy elimination of acetone from the mixture. The molecular interaction mechanisms are studied by density functional theory (DFT) simulations. The effects of mixture composition, humidity and total pressure of the vapor stream on the selectivity and separation behavior are investigated. Desorption profiles are studied to maximize butanol purity and recovery. The combination of LTA with CHA-type zeolites (Si-CHA or SAPO-34) in sequential adsorption columns with alternating adsorption and desorption steps allows butanol to be recovered in unpreceded purity and yield. A butanol purity of 99.7 mol % could be obtained at nearly complete butanol recovery, demonstrating the effectiveness of this technique for biobutanol separation processes.
Collapse
Affiliation(s)
- Stijn Van der Perre
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Pierre Gelin
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Benjamin Claessens
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Ana Martin-Calvo
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Julien Cousin Saint Remi
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Tim Duerinck
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Gino V Baron
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Miguel Palomino
- Instituto de Tecnologia Quimica, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, Valencia, 46022, Spain
| | - Ledys Y Sánchez
- Instituto de Tecnologia Quimica, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, Valencia, 46022, Spain
| | - Susana Valencia
- Instituto de Tecnologia Quimica, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, Valencia, 46022, Spain
| | - Jin Shang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, SAR, P.R. China
| | - Ranjeet Singh
- Chemical and Biomolecular Engineering, The University of Melbourne, Melbourne, 3010, Australia
| | - Paul A Webley
- Chemical and Biomolecular Engineering, The University of Melbourne, Melbourne, 3010, Australia
| | - Fernando Rey
- Instituto de Tecnologia Quimica, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, Valencia, 46022, Spain
| | - Joeri F M Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
18
|
Xue C, Liu F, Xu M, Tang IC, Zhao J, Bai F, Yang ST. Butanol production in acetone-butanol-ethanol fermentation with in situ product recovery by adsorption. BIORESOURCE TECHNOLOGY 2016; 219:158-168. [PMID: 27484672 DOI: 10.1016/j.biortech.2016.07.111] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 06/06/2023]
Abstract
Activated carbon Norit ROW 0.8, zeolite CBV901, and polymeric resins Dowex Optipore L-493 and SD-2 with high specific loadings and partition coefficients were studied for n-butanol adsorption. Adsorption isotherms were found to follow Langmuir model, which can be used to estimate the amount of butanol adsorbed in acetone-butanol-ethanol (ABE) fermentation. In serum-bottle fermentation with in situ adsorption, activated carbon showed the best performance with 21.9g/L of butanol production. When operated in a fermentor, free- and immobilized-cell fermentations with adsorption produced 31.6g/L and 54.6g/L butanol with productivities of 0.30g/L·h and 0.45g/L·h, respectively. Thermal desorption produced a condensate containing ∼167g/L butanol, which resulted in a highly concentrated butanol solution of ∼640g/L after spontaneous phase separation. This in situ product recovery process with activated carbon is energy efficient and can be easily integrated with ABE fermentation for n-butanol production.
Collapse
Affiliation(s)
- Chuang Xue
- Department of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China; Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Fangfang Liu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Mengmeng Xu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - I-Ching Tang
- Bioprocessing Innovative Company, 4734 Bridle Path Court, Dublin, OH 43017, USA
| | - Jingbo Zhao
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Fengwu Bai
- Department of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Shang-Tian Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
19
|
A Review of Process-Design Challenges for Industrial Fermentation of Butanol from Crude Glycerol by Non-Biphasic Clostridium pasteurianum. FERMENTATION-BASEL 2016. [DOI: 10.3390/fermentation2020013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Abdehagh N, Tezel FH, Thibault J. Multicomponent adsorption modeling: isotherms for ABE model solutions using activated carbon F-400. ADSORPTION 2016. [DOI: 10.1007/s10450-016-9784-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Baral NR, Slutzky L, Shah A, Ezeji TC, Cornish K, Christy A. Acetone-butanol-ethanol fermentation of corn stover: current production methods, economic viability and commercial use. FEMS Microbiol Lett 2016; 363:fnw033. [DOI: 10.1093/femsle/fnw033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/08/2016] [Indexed: 12/24/2022] Open
|
22
|
Recovery of butanol from model ABE fermentation broths using MFI adsorbent: a comparison between traditional beads and a structured adsorbent in the form of a film. ADSORPTION 2016. [DOI: 10.1007/s10450-016-9759-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
|
24
|
Staggs KW, Nielsen DR. Improving n-butanol production in batch and semi-continuous processes through integrated product recovery. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|