1
|
Grosicki M, Wojnar-Lason K, Mosiolek S, Mateuszuk L, Stojak M, Chlopicki S. Distinct profile of antiviral drugs effects in aortic and pulmonary endothelial cells revealed by high-content microscopy and cell painting assays. Toxicol Appl Pharmacol 2024; 490:117030. [PMID: 38981531 DOI: 10.1016/j.taap.2024.117030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Antiretroviral therapy have significantly improved the treatment of viral infections and reduced the associated mortality and morbidity rates. However, highly effective antiretroviral therapy (HAART) may lead to an increased risk of cardiovascular diseases, which could be related to endothelial toxicity. Here, seven antiviral drugs (remdesivir, PF-00835231, ritonavir, lopinavir, efavirenz, zidovudine and abacavir) were characterized against aortic (HAEC) and pulmonary (hLMVEC) endothelial cells, using high-content microscopy. The colourimetric study (MTS test) revealed similar toxicity profiles of all antiviral drugs tested in the concentration range of 1 nM-50 μM in aortic and pulmonary endothelial cells. Conversely, the drugs' effects on morphological parameters were more pronounced in HAECs as compared with hLMVECs. Based on the antiviral drugs' effects on the cytoplasmic and nuclei architecture (analyzed by multiple pre-defined parameters including SER texture and STAR morphology), the studied compounds were classified into five distinct morphological subgroups, each linked to a specific cellular response profile. In relation to morphological subgroup classification, antiviral drugs induced a loss of mitochondrial membrane potential, elevated ROS, changed lipid droplets/lysosomal content, decreased von Willebrand factor expression and micronuclei formation or dysregulated cellular autophagy. In conclusion, based on specific changes in endothelial cytoplasm, nuclei and subcellular morphology, the distinct endothelial response was identified for remdesivir, ritonavir, lopinavir, efavirenz, zidovudine and abacavir treatments. The effects detected in aortic endothelial cells were not detected in pulmonary endothelial cells. Taken together, high-content microscopy has proven to be a robust and informative method for endothelial drug profiling that may prove useful in predicting the organ-specific endothelial toxicity of various drugs.
Collapse
Affiliation(s)
- Marek Grosicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland.
| | - Kamila Wojnar-Lason
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland; Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Sylwester Mosiolek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Krakow, Poland
| | - Lukasz Mateuszuk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland; Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
2
|
Li S, Zhang F, Xiao X, Guo Y, Wen Z, Li M, Pu X. Prediction of Synergistic Drug Combinations for Prostate Cancer by Transcriptomic and Network Characteristics. Front Pharmacol 2021; 12:634097. [PMID: 33986671 PMCID: PMC8112211 DOI: 10.3389/fphar.2021.634097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/04/2021] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer (PRAD) is a major cause of cancer-related deaths. Current monotherapies show limited efficacy due to often rapidly emerging resistance. Combination therapies could provide an alternative solution to address this problem with enhanced therapeutic effect, reduced cytotoxicity, and delayed the appearance of drug resistance. However, it is prohibitively cost and labor-intensive for the experimental approaches to pick out synergistic combinations from the millions of possibilities. Thus, it is highly desired to explore other efficient strategies to assist experimental researches. Inspired by the challenge, we construct the transcriptomics-based and network-based prediction models to quickly screen the potential drug combination for Prostate cancer, and further assess their performance by in vitro assays. The transcriptomics-based method screens nine possible combinations. However, the network-based method gives discrepancies for at least three drug pairs. Further experimental results indicate the dose-dependent effects of the three docetaxel-containing combinations, and confirm the synergistic effects of the other six combinations predicted by the transcriptomics-based model. For the network-based predictions, in vitro tests give opposite results to the two combinations (i.e. mitoxantrone-cyproheptadine and cabazitaxel-cyproheptadine). Namely, the transcriptomics-based method outperforms the network-based one for the specific disease like Prostate cancer, which provide guideline for selection of the computational methods in the drug combination screening. More importantly, six combinations (the three mitoxantrone-containing and the three cabazitaxel-containing combinations) are found to be promising candidates to synergistically conquer Prostate cancer.
Collapse
Affiliation(s)
- Shiqi Li
- College of Chemistry, Sichuan University, Chengdu, China
| | - Fuhui Zhang
- College of Chemistry, Sichuan University, Chengdu, China
| | - Xiuchan Xiao
- School of Material Science and Environmental Engineering, Chengdu Technological University, Chengdu, China
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, China
| | - Zhining Wen
- College of Chemistry, Sichuan University, Chengdu, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, China
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Bertrand L, Velichkovska M, Toborek M. Cerebral Vascular Toxicity of Antiretroviral Therapy. J Neuroimmune Pharmacol 2021; 16:74-89. [PMID: 31209776 PMCID: PMC7952282 DOI: 10.1007/s11481-019-09858-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/27/2019] [Indexed: 01/14/2023]
Abstract
HIV infection is associated with comorbidities that are likely to be driven not only by HIV itself, but also by the toxicity of long-term use of antiretroviral therapy (ART). Indeed, increasing evidence demonstrates that the antiretroviral drugs used for HIV treatment have toxic effects resulting in various cellular and tissue pathologies. The blood-brain barrier (BBB) is a modulated anatomophysiological interface which separates and controls substance exchange between the blood and the brain parenchyma; therefore, it is particularly exposed to ART-induced toxicity. Balancing the health risks and gains of ART has to be considered in order to maximize the positive effects of therapy. The current review discusses the cerebrovascular toxicity of ART, with the focus on mitochondrial dysfunction. Graphical Abstract Graphical representation of the interactions between HIV, antiretroviral therapy (ART), and the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Luc Bertrand
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Room 528, 1011 NW 15th Street, Miami, FL, 33136, USA
| | - Martina Velichkovska
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Room 528, 1011 NW 15th Street, Miami, FL, 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Room 528, 1011 NW 15th Street, Miami, FL, 33136, USA.
| |
Collapse
|
4
|
Qiu Y, Maione F, Capano S, Meda C, Picconi O, Brundu S, Pisacane A, Sapino A, Palladino C, Barillari G, Monini P, Bussolino F, Ensoli B, Sgadari C, Giraudo E. HIV Protease Inhibitors Block HPV16-Induced Murine Cervical Carcinoma and Promote Vessel Normalization in Association with MMP-9 Inhibition and TIMP-3 Induction. Mol Cancer Ther 2020; 19:2476-2489. [PMID: 33082275 DOI: 10.1158/1535-7163.mct-20-0055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/09/2020] [Accepted: 10/01/2020] [Indexed: 11/16/2022]
Abstract
Antiretrovirals belonging to the human immunodeficiency virus (HIV) protease inhibitor (HIV-PI) class exert inhibitory effects across several cancer types by targeting tumor cells and its microenvironment. Cervical carcinoma represents a leading cause of morbidity and mortality, particularly in women doubly infected with high-risk human papillomaviruses (HR-HPV) and HIV; of note, combined antiretroviral therapy has reduced cervical carcinoma onset and progression in HIV-infected women. We evaluated the effectiveness and mechanism(s) of action of HIV-PI against cervical carcinoma using a transgenic model of HR-HPV-induced estrogen-promoted cervical carcinoma (HPV16/E2) and found that treatment of mice with ritonavir-boosted HIV-PI, including indinavir, saquinavir, and lopinavir, blocked the growth and promoted the regression of murine cervical carcinoma. This was associated with inhibition of tumor angiogenesis, coupled to downregulation of matrix metalloproteinase (MMP)-9, reduction of VEGF/VEGFR2 complex, and concomitant upregulation of tissue inhibitor of metalloproteinase-3 (TIMP-3). HIV-PI also promoted deposition of collagen IV at the epithelial and vascular basement membrane and normalization of both vessel architecture and functionality. In agreement with this, HIV-PI reduced tumor hypoxia and enhanced the delivery and antitumor activity of conventional chemotherapy. Remarkably, TIMP-3 expression gradually decreased during progression of human dysplastic lesions into cervical carcinoma. This study identified the MMP-9/VEGF proangiogenic axis and its modulation by TIMP-3 as novel HIV-PI targets for the blockade of cervical intraepithelial neoplasia/cervical carcinoma development and invasiveness and the normalization of tumor vessel functions. These findings may lead to new therapeutic indications of HIV-PI to treat cervical carcinoma and other tumors in either HIV-infected or uninfected patients.
Collapse
Affiliation(s)
- Yaqi Qiu
- Laboratory of Tumor Microenvironment, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.,Department of Science and Drug Technology, University of Turin, Candiolo, Turin, Italy
| | - Federica Maione
- Laboratory of Tumor Microenvironment, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.,Department of Science and Drug Technology, University of Turin, Candiolo, Turin, Italy
| | - Stefania Capano
- Laboratory of Tumor Microenvironment, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.,Department of Science and Drug Technology, University of Turin, Candiolo, Turin, Italy
| | - Claudia Meda
- Laboratory of Tumor Microenvironment, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.,Department of Science and Drug Technology, University of Turin, Candiolo, Turin, Italy
| | - Orietta Picconi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Serena Brundu
- Laboratory of Tumor Microenvironment, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.,Department of Science and Drug Technology, University of Turin, Candiolo, Turin, Italy
| | - Alberto Pisacane
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Anna Sapino
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.,Department of Medical Science, University of Turin, Candiolo, Turin, Italy
| | - Clelia Palladino
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Barillari
- Department of Medical Science, University of Turin, Candiolo, Turin, Italy
| | - Paolo Monini
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Federico Bussolino
- Laboratory of Vascular Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.,Department of Oncology, University of Turin, Candiolo, Turin, Italy
| | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Cecilia Sgadari
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy.
| | - Enrico Giraudo
- Laboratory of Tumor Microenvironment, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy. .,Department of Science and Drug Technology, University of Turin, Candiolo, Turin, Italy
| |
Collapse
|
5
|
Barillari G. The Impact of Matrix Metalloproteinase-9 on the Sequential Steps of the Metastatic Process. Int J Mol Sci 2020; 21:ijms21124526. [PMID: 32630531 PMCID: PMC7350258 DOI: 10.3390/ijms21124526] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
In industrialized countries, cancer is the second leading cause of death after cardiovascular disease. Most cancer patients die because of metastases, which consist of the self-transplantation of malignant cells in anatomical sites other than the one from where the tumor arose. Disseminated cancer cells retain the phenotypic features of the primary tumor, and display very poor differentiation indices and functional regulation. Upon arrival at the target organ, they replace preexisting, normal cells, thereby permanently compromising the patient's health; the metastasis can, in turn, metastasize. The spread of cancer cells implies the degradation of the extracellular matrix by a variety of enzymes, among which the matrix metalloproteinase (MMP)-9 is particularly effective. This article reviews the available published literature concerning the important role that MMP-9 has in the metastatic process. Additionally, information is provided on therapeutic approaches aimed at counteracting, or even preventing, the development of metastasis via the use of MMP-9 antagonists.
Collapse
Affiliation(s)
- Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 1 via Montpellier, 00133 Rome, Italy
| |
Collapse
|
6
|
Barillari G. The Anti-Angiogenic Effects of Anti-Human Immunodeficiency Virus Drugs. Front Oncol 2020; 10:806. [PMID: 32528888 PMCID: PMC7253758 DOI: 10.3389/fonc.2020.00806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 04/23/2020] [Indexed: 12/17/2022] Open
Abstract
The growth and metastasis of malignant tumors benefit from the formation of blood vessels within the tumor area. There, new vessels originate from angiogenesis (the sprouting of pre-existing neighboring vessels) and/or vasculogenesis (the mobilization of bone marrow-derived endothelial cell precursors which incorporate in tumor vasculature and then differentiate into mature endothelial cells). These events are induced by soluble molecules (the angiogenic factors) and modulated by endothelial cell interactions with the perivascular matrix. Given angiogenesis/vasculogenesis relevance to tumor progression, anti-angiogenic drugs are often employed to buttress surgery, chemotherapy or radiation therapy in the treatment of a wide variety of cancers. Most of the anti-angiogenic drugs have been developed to functionally impair the angiogenic vascular endothelial growth factor: however, this leaves other angiogenic factors unaffected, hence leading to drug resistance and escape. Other anti-angiogenic strategies have exploited classical inhibitors of enzymes remodeling the perivascular matrix. Disappointingly, these inhibitors have been found toxic and/or ineffective in clinical trials, even though they block angiogenesis in pre-clinical models. These findings are stimulating the identification of other anti-angiogenic compounds. In this regard, it is noteworthy that drugs utilized for a long time to counteract human immune deficiency virus (HIV) can directly and effectively hamper molecular pathways leading to blood vessel formation. In this review the mechanisms leading to angiogenesis and vasculogenesis, and their susceptibility to anti-HIV drugs will be discussed.
Collapse
Affiliation(s)
- Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
7
|
Prevention of early liver metastasis after pancreatectomy by perioperative administration of a nuclear factor-κB inhibitor in mice. Surgery 2019; 166:991-996. [PMID: 31353078 DOI: 10.1016/j.surg.2019.05.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 05/08/2019] [Accepted: 05/27/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Liver metastasis is a common problem after pancreatectomy for pancreatic cancer. In pancreatic cancer cells, nuclear factor-κB is activated constitutively. Nuclear factor-κB activates matrix metalloproteinase-2/9, which plays an important role in cancer metastasis. Because the serine protease inhibitor FUT-175 suppresses nuclear factor-κB, we hypothesized that perioperative treatment with FUT-175 for pancreatic cancer may help to prevent liver metastasis. METHODS We compared in vitro cell viability, cell invasiveness, nuclear factor-κB signaling, and the expression levels of matrix metalloproteinase signals between the control group (C group) and the FUT-175 group (F group) using the murine pancreatic cancer cells PAN02. In addition, we evaluated the in vivo effect of pretreatment with FUT-175 using an established model of liver metastasis in mice. Metastatic liver lesions were assessed with magnetic resonance imaging. Liver recurrence and overall survival were evaluated. Also, the antimetastatic effect of systemic administration of FUT-175 was examined. RESULTS FUT-175 did not suppress the cell viability of PAN02 cells at or after 24 hours of treatment (P > .05); however, cell invasion was suppressed in the F group compared with the C group (P < .05). The levels of nuclear factor-κB activation, membrane type-1 (MT-1) matrix metalloproteinase (MMP)/matrix metalloproteinase-14 (MMP-14), and matrix metalloproteinase-2/9 (MMP-2/9) were lower in the F group compared with the C group. In vivo, both disease-free and overall survivals were prolonged in the F group compared with the C group. Systemic administration was also effective in suppressing the number of metastases. CONCLUSION Perioperative treatment with FUT-175 may help to prevent early liver metastasis after pancreatectomy for pancreatic cancer.
Collapse
|
8
|
Lopinavir-NO, a nitric oxide-releasing HIV protease inhibitor, suppresses the growth of melanoma cells in vitro and in vivo. Invest New Drugs 2019; 37:1014-1028. [PMID: 30706336 DOI: 10.1007/s10637-019-00733-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/18/2019] [Indexed: 12/12/2022]
Abstract
We generated a nitric oxide (NO)-releasing derivative of the anti-HIV protease inhibitor lopinavir by linking the NO moiety to the parental drug. We investigated the effects of lopinavir and its derivative lopinavir-NO on melanoma cell lines in vitro and in vivo. Lopinavir-NO exhibited a twofold stronger anticancer action than lopinavir in vitro. These results were successfully translated into syngeneic models of melanoma in vivo, where a significant reduction in tumour volume was observed only in animals treated with lopinavir-NO. Both lopinavir and lopinavir-NO inhibited cell proliferation and induced the trans-differentiation of melanoma cells to Schwann-like cells. In melanoma cancer cell lines, both lopinavir and lopinavir-NO induced morphological changes, minor apoptosis and reactive oxygen species (ROS) production. However, caspase activation and autophagy were detected only in B16 cells, indicating a cell line-specific treatment response. Lopinavir-NO released NO intracellularly, and NO neutralization restored cell viability. Treatment with lopinavir-NO induced only a transient activation of Akt and inhibition of P70S6 kinase. The results of this study identify lopinavir-NO as a promising candidate for further clinical trials in melanoma and possibly other solid tumours.
Collapse
|
9
|
Barillari G, Monini P, Sgadari C, Ensoli B. The Impact of Human Papilloma Viruses, Matrix Metallo-Proteinases and HIV Protease Inhibitors on the Onset and Progression of Uterine Cervix Epithelial Tumors: A Review of Preclinical and Clinical Studies. Int J Mol Sci 2018; 19:E1418. [PMID: 29747434 PMCID: PMC5983696 DOI: 10.3390/ijms19051418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 12/15/2022] Open
Abstract
Infection of uterine cervix epithelial cells by the Human Papilloma Viruses (HPV) is associated with the development of dysplastic/hyperplastic lesions, termed cervical intraepithelial neoplasia (CIN). CIN lesions may regress, persist or progress to invasive cervical carcinoma (CC), a leading cause of death worldwide. CIN is particularly frequent and aggressive in women infected by both HPV and the Human Immunodeficiency Virus (HIV), as compared to the general female population. In these individuals, however, therapeutic regimens employing HIV protease inhibitors (HIV-PI) have reduced CIN incidence and/or clinical progression, shedding light on the mechanism(s) of its development. This article reviews published work concerning: (i) the role of HPV proteins (including HPV-E5, E6 and E7) and of matrix-metalloproteinases (MMPs) in CIN evolution into invasive CC; and (ii) the effect of HIV-PI on events leading to CIN progression such as basement membrane and extracellular matrix invasion by HPV-positive CIN cells and the formation of new blood vessels. Results from the reviewed literature indicate that CIN clinical progression can be monitored by evaluating the expression of MMPs and HPV proteins and they suggest the use of HIV-PI or their derivatives for the block of CIN evolution into CC in both HIV-infected and uninfected women.
Collapse
Affiliation(s)
- Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 1 via Montpellier, 00133 Rome, Italy.
| | - Paolo Monini
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 299 viale Regina Elena, 00161 Rome, Italy.
| | - Cecilia Sgadari
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 299 viale Regina Elena, 00161 Rome, Italy.
| | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 299 viale Regina Elena, 00161 Rome, Italy.
| |
Collapse
|
10
|
Barclay RA, Schwab A, DeMarino C, Akpamagbo Y, Lepene B, Kassaye S, Iordanskiy S, Kashanchi F. Exosomes from uninfected cells activate transcription of latent HIV-1. J Biol Chem 2017; 292:11682-11701. [PMID: 28536264 DOI: 10.1074/jbc.m117.793521] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/23/2017] [Indexed: 01/24/2023] Open
Abstract
HIV-1 infection causes AIDS, infecting millions worldwide. The virus can persist in a state of chronic infection due to its ability to become latent. We have previously shown a link between HIV-1 infection and exosome production. Specifically, we have reported that exosomes transport viral proteins and RNA from infected cells to neighboring uninfected cells. These viral products could then elicit an innate immune response, leading to activation of the Toll-like receptor and NF-κB pathways. In this study, we asked whether exosomes from uninfected cells could activate latent HIV-1 in infected cells. We observed that irrespective of combination antiretroviral therapy, both short- and long-length viral transcripts were increased in wild-type HIV-1-infected cells exposed to purified exosomes from uninfected cells. A search for a possible mechanism for this finding revealed that the exosomes increase RNA polymerase II loading onto the HIV-1 promoter in the infected cells. These viral transcripts, which include trans-activation response (TAR) RNA and a novel RNA that we termed TAR-gag, can then be packaged into exosomes and potentially be exported to neighboring uninfected cells, leading to increased cellular activation. To better decipher the exosome release pathways involved, we used siRNA to suppress expression of ESCRT (endosomal sorting complex required for transport) proteins and found that ESCRT II and IV significantly control exosome release. Collectively, these results imply that exosomes from uninfected cells activate latent HIV-1 in infected cells and that true transcriptional latency may not be possible in vivo, especially in the presence of combination antiretroviral therapy.
Collapse
Affiliation(s)
- Robert A Barclay
- Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Angela Schwab
- Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Catherine DeMarino
- Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Yao Akpamagbo
- Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | | | - Seble Kassaye
- Department of Medicine, Women's Inter-Agency HIV Study, Georgetown University Medical Center, Washington, D. C. 20007
| | - Sergey Iordanskiy
- Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110; Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110.
| |
Collapse
|
11
|
Bacigalupo I, Palladino C, Leone P, Toschi E, Sgadari C, Ensoli B, Barillari G. Inhibition of MMP-9 expression by ritonavir or saquinavir is associated with inactivation of the AKT/Fra-1 pathway in cervical intraepithelial neoplasia cells. Oncol Lett 2017; 13:2903-2908. [PMID: 28521396 PMCID: PMC5431249 DOI: 10.3892/ol.2017.5835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 10/19/2016] [Indexed: 01/07/2023] Open
Abstract
A reduced incidence and decreased clinical progression of uterine cervical intraepithelial neoplasia (CIN) has been observed in women infected with human immunodeficiency virus (HIV) treated with HIV-protease inhibitors (PIs). The HIV-PIs saquinavir (SQV) and ritonavir (RTV) have been demonstrated to efficiently inhibit invasion of human primary CIN cells by downregulating the expression of matrix metalloproteinase (MMP)-9. The present study further investigated the molecular mechanisms underlying the activity of SQV and RTV in CIN. The results of the present study indicate that the treatment of human primary CIN cells with SQV or RTV directly impairs events leading to MMP-9 expression, including the phosphorylation of AKT and the nuclear localisation of the Fos-related antigen transcription factor. In addition, neither SQV nor RTV affected the expression of human papilloma virus proteins, such as E6 or E7. In view of the important role that the AKT/Fra-1/MMP-9 signalling pathway serves in CIN progression to invasive cervical carcinoma, these data further support the use of HIV-PIs in the treatment of CIN in women infected with HIV and women who are not infected with HIV. Furthermore, the present study identified a molecular mechanism underlying the anti-invasive effects of SQV/RTV, providing useful information for the development of SQV/RTV derivatives, which may be employed as novel anticancer drugs.
Collapse
Affiliation(s)
- Ilaria Bacigalupo
- National Acquired Immune Deficiency Syndrome Center, National Institute of Health, I-00161 Rome, Italy
| | - Clelia Palladino
- National Acquired Immune Deficiency Syndrome Center, National Institute of Health, I-00161 Rome, Italy
| | - Patrizia Leone
- National Acquired Immune Deficiency Syndrome Center, National Institute of Health, I-00161 Rome, Italy
| | - Elena Toschi
- Department of Haematology, Oncology and Molecular Medicine, National Institute of Health, I-00161 Rome, Italy
| | - Cecilia Sgadari
- National Acquired Immune Deficiency Syndrome Center, National Institute of Health, I-00161 Rome, Italy
| | - Barbara Ensoli
- National Acquired Immune Deficiency Syndrome Center, National Institute of Health, I-00161 Rome, Italy
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, I-00133 Rome, Italy
| |
Collapse
|
12
|
Yang L, Wang P, Wu JF, Yang LM, Wang RR, Pang W, Li YG, Shen YM, Zheng YT, Li X. Design, synthesis and anti-HIV-1 evaluation of hydrazide-based peptidomimetics as selective gelatinase inhibitors. Bioorg Med Chem 2016; 24:2125-36. [DOI: 10.1016/j.bmc.2016.03.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/25/2016] [Accepted: 03/26/2016] [Indexed: 11/30/2022]
|
13
|
Deryugina EI, Quigley JP. Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature. Matrix Biol 2015; 44-46:94-112. [PMID: 25912949 PMCID: PMC5079283 DOI: 10.1016/j.matbio.2015.04.004] [Citation(s) in RCA: 314] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 12/21/2022]
Abstract
Metastasis is a distinct stage of cancer progression that requires the development of angiogenic blood vessels serving as conduits for tumor cell dissemination. An accumulated body of evidence indicates that metastasis-supporting neovasculature should possess certain structural characteristics allowing for the process of tumor cell intravasation, an active entry of cancer cells into the vessel interior. It appears that the development of tumor vessels with lumens of a distinctive size and support of these vessels by a discontinuous pericyte coverage constitute critical microarchitectural requirements to: (a) provide accessible points for vessel wall penetration by primary tumor cells; (b) provide enough lumen space for a tumor cell or cell aggregate upon intravasation; and (c) allow for sufficient rate of blood flow to carry away intravasated cells from the primary tumor to the next, proximal or distal site. This review will primarily focus on the functional roles of matrix metalloproteinases (MMPs), which catalytically trigger the development of an intravasation-sustaining neovasculature at the early stages of tumor growth and are also required for the maintenance of a metastasis-supporting state of blood vessels at later stages of cancer progression.
Collapse
Affiliation(s)
- Elena I Deryugina
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| | - James P Quigley
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|