1
|
Yang QT, Xu XX, Zhan ZH, Zhong J, Kwong S, Zhang J. Evolutionary Multitask Optimization for Multiform Feature Selection in Classification. IEEE TRANSACTIONS ON CYBERNETICS 2025; 55:1673-1686. [PMID: 40031579 DOI: 10.1109/tcyb.2025.3535722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Feature selection (FS) is a significant research topic in machine learning and artificial intelligence, but it becomes complicated in the high dimensional search space due to the vast number of features. Evolutionary computation (EC) has been widely used in solving FS by modeling it as an expensive wrapper-form optimization task, where a classifier is used to obtain classification accuracy for fitness evaluation (FE). In this article, we propose that the FS problem can be also modeled as a cheap filter-form optimization task, where the FE is based on the relevance and redundancy of the selected features. The wrapper-form optimization task is beneficial for classification accuracy while the filter-form optimization task has the strength of a lighter computational cost. Therefore, different from existing multitask-based FS that uses various wrapper-form optimization tasks, this article uses a multiform optimization technique to model the FS problem as a wrapper-form optimization task and a filter-form optimization task simultaneously. An evolutionary multitask FS (EMTFS) algorithm for parallel tacking these two tasks is proposed followed by, in which a two-channel knowledge transfer strategy is proposed to transfer positive knowledge across the two tasks. Experiments on widely used public datasets show that EMTFS can select as few features as possible on the premise of superior classification accuracy than the compared state-of-the-art FS algorithms.
Collapse
|
2
|
Dar SA, Imtiaz N. Classification of neuroimaging data in Alzheimer's disease using particle swarm optimization: A systematic review. APPLIED NEUROPSYCHOLOGY. ADULT 2025; 32:545-556. [PMID: 36719791 DOI: 10.1080/23279095.2023.2169886] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AIM Particle swarm optimization (PSO) is an algorithm that involves the optimization of Non-linear and Multidimensional problems to reach the best solutions with minimal parameterization. This metaheuristic model has frequently been used in the Pathological domain. This optimization model has been used in diverse forms while predicting Alzheimer's disease. It is a robust algorithm that works on linear and multi-modal data while predicting Alzheimer's disease. PSO techniques have been in action for quite some time for detecting various diseases and this paper systematically reviews the papers on various kinds of PSO techniques. METHODS To perform the systematic review, PRISMA guidelines were followed and a Boolean search ("particle swarm optimization" OR "PSO") AND Neuroimaging AND (Alzheimer's disease prediction OR classification OR diagnosis) were performed. The query was run in 4-reputed databases: Google Scholar, Scopus, Science Direct, and Wiley publications. RESULTS For the final analysis, 10 papers were incorporated for qualitative and quantitative synthesis. PSO has shown a dominant character while handling the uni-modal as well as the multi-modal data while predicting the conversion from MCI to Alzheimer's. It can be seen from the table that almost all the 10 reviewed papers had MRI-driven data. The accuracy rate was accentuated while adding other modalities or Neurocognitive measures. CONCLUSIONS Through this algorithm, we are providing an opportunity to other researchers to compare this algorithm with other state-of-the-art algorithms, while seeing the classification accuracy, with the aim of early prediction and progression of MCI into Alzheimer's disease.
Collapse
Affiliation(s)
- Suhail Ahmad Dar
- Department of Psychology, Aligarh Muslim University, Aligarh, India
| | - Nasheed Imtiaz
- Department of Psychology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
3
|
Liang J. The application of artificial intelligence-assisted technology in cultural and creative product design. Sci Rep 2024; 14:31069. [PMID: 39730833 DOI: 10.1038/s41598-024-82281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
This study proposes a novel artificial intelligence (AI)-assisted design model that combines Variational Autoencoders (VAE) with reinforcement learning (RL) to enhance innovation and efficiency in cultural and creative product design. By introducing AI-driven decision support, the model streamlines the design workflow and significantly improves design quality. The study establishes a comprehensive framework and applies the model to four distinct design tasks, with extensive experiments validating its performance. Key factors, including creativity, cultural adaptability, and practical application, are evaluated through structured surveys and expert feedback. The results reveal that the VAE + RL model surpasses alternative approaches across multiple criteria. Highlights include a user satisfaction rate of 95%, a Structural Similarity Index (SSIM) score of 0.92, model accuracy of 93%, and a loss reduction to 0.07. These findings confirm the model's superiority in generating high-quality designs and achieving high user satisfaction. Additionally, the model exhibits strong generalization capabilities and operational efficiency, offering valuable insights and data support for future advancements in cultural product design technology.
Collapse
Affiliation(s)
- Jing Liang
- School of Fashion Media, Jiangxi Institute of Fashion Technology, Nanchang, 330000, China.
| |
Collapse
|
4
|
Xiao K, Li R, Lin S, Huang X. Enhancing eco-sensing in aquatic environments: Fish jumping behavior automatic recognition using YOLOv5. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107137. [PMID: 39520842 DOI: 10.1016/j.aquatox.2024.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Contemporary research on ichthyological behavior predominantly investigates underwater environments. However, the intricate nature of aquatic ecosystems often hampers subaqueous observations of fish behavior due to interference. Transitioning the observational perspective from subaqueous to supra-aquatic enables a more direct assessment of fish physiology and habitat conditions. In this study, we utilized the YOLOv5 convolutional neural network target detection model to develop a fish jumping behavior (FJB) recognition model. A dataset comprising 877 images of fish jumping, captured via a camera in a reservoir, was assembled for model training and validation. After training and validating the model, its recognition accuracy was further tested in real aquatic environments. The results show that YOLOv5 outperforms YOLOv7, YOLOv8, and YOLOv9 in detecting splashes. Post 50 training epochs, YOLOv5 achieved over 97 % precision and recall in the validation set, with an F1 score exceeding 0.9. Furthermore, an enhanced YOLOv5-SN model was devised by integrating specific rules related to ripple size variation and duration, attributable to fish jumping. This modification significantly mitigates noise interference in the detection process. The model's robustness against weather variations ensures reliable detection of fish jumping behavior under diverse meteorological conditions, including rain, cloudiness, and sunshine. Different meteorological elements exert varying effects on fish jumping behavior. The research results can lay the foundation for intelligent perception in aquatic ecology assessment and aquaculture.
Collapse
Affiliation(s)
- Kaibang Xiao
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, PR China; Key Laboratory of Disaster Prevention and Structural Safety of the Ministry of Education, College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, PR China
| | - Ronghui Li
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, PR China; Key Laboratory of Disaster Prevention and Structural Safety of the Ministry of Education, College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, PR China.
| | - Senhai Lin
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, PR China; Key Laboratory of Disaster Prevention and Structural Safety of the Ministry of Education, College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, PR China
| | - Xianyu Huang
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, PR China; Key Laboratory of Disaster Prevention and Structural Safety of the Ministry of Education, College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
5
|
Cai T, Zhang S, Ye Z, Zhou W, Wang M, He Q, Chen Z, Bai W. Cooperative metaheuristic algorithm for global optimization and engineering problems inspired by heterosis theory. Sci Rep 2024; 14:28876. [PMID: 39572622 PMCID: PMC11582625 DOI: 10.1038/s41598-024-78761-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
Swarm Intelligence-based metaheuristic algorithms are widely applied to global optimization and engineering design problems. However, these algorithms often suffer from two main drawbacks: susceptibility to the local optima in large search space and slow convergence rate. To address these issues, this paper develops a novel cooperative metaheuristic algorithm (CMA), which is inspired by heterosis theory. Firstly, simulating hybrid rice optimization algorithm (HRO) constucted based on heterosis theory, the population is sorted by fitness and divided into three subpopulations, corresponding to the maintainer, restorer, and sterile line in HRO, respectively, which engage in cooperative evolution. Subsequently, in each subpopulation, a novel three-phase local optima avoidance technique-Search-Escape-Synchronize (SES) is introduced. In the search phase, the well-established Particle Swarm Optimization algorithm (PSO) is used for global exploration. During the escape phase, escape energy is dynamically calculated for each agent. If it exceeds a threshold, a large-scale Lévy flight jump is performed; otherwise, PSO continues to conduct the local search. In the synchronize phase, the best solutions from subpopulations are shared through an elite-based strategy, while the classical Ant Colony Optimization algorithm is employed to perform fine-tuned local optimization near the shared optimal solutions. This process accelerates convergence, maintains population diversity, and ensures a balanced transition between global exploration and local exploitation. To validate the effectiveness of CMA, this study evaluates the algorithm using 26 well-known benchmark functions and 5 real-world engineering problems. Experimental results demonstrate that CMA outperforms the 10 state-of-the-art algorithms evaluated in the study, which is a very promising for engineering optimization problem solving.
Collapse
Affiliation(s)
- Ting Cai
- School of Computer Science, Hubei University of Technology, Wuhan, 430000, China
| | - Songsong Zhang
- School of Computer Science, Hubei University of Technology, Wuhan, 430000, China
| | - Zhiwei Ye
- School of Computer Science, Hubei University of Technology, Wuhan, 430000, China.
| | - Wen Zhou
- School of Computer Science, Hubei University of Technology, Wuhan, 430000, China
| | - Mingwei Wang
- School of Computer Science, Hubei University of Technology, Wuhan, 430000, China
| | - Qiyi He
- School of Computer Science, Hubei University of Technology, Wuhan, 430000, China
| | - Ziyuan Chen
- School of Computer Science, Hubei University of Technology, Wuhan, 430000, China
| | - Wanfang Bai
- Xining Big Data Service Administration, Xining, 810000, China
| |
Collapse
|
6
|
Arif M, Ur Rehman F, Sekanina L, Malik AS. A comprehensive survey of evolutionary algorithms and metaheuristics in brain EEG-based applications. J Neural Eng 2024; 21:051002. [PMID: 39321840 DOI: 10.1088/1741-2552/ad7f8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Electroencephalography (EEG) has emerged as a primary non-invasive and mobile modality for understanding the complex workings of the human brain, providing invaluable insights into cognitive processes, neurological disorders, and brain-computer interfaces. Nevertheless, the volume of EEG data, the presence of artifacts, the selection of optimal channels, and the need for feature extraction from EEG data present considerable challenges in achieving meaningful and distinguishing outcomes for machine learning algorithms utilized to process EEG data. Consequently, the demand for sophisticated optimization techniques has become imperative to overcome these hurdles effectively. Evolutionary algorithms (EAs) and other nature-inspired metaheuristics have been applied as powerful design and optimization tools in recent years, showcasing their significance in addressing various design and optimization problems relevant to brain EEG-based applications. This paper presents a comprehensive survey highlighting the importance of EAs and other metaheuristics in EEG-based applications. The survey is organized according to the main areas where EAs have been applied, namely artifact mitigation, channel selection, feature extraction, feature selection, and signal classification. Finally, the current challenges and future aspects of EAs in the context of EEG-based applications are discussed.
Collapse
Affiliation(s)
- Muhammad Arif
- Institute of Networked and Embedded Systems,University of Klagenfurt, 9020 Klagenfurt, Austria
- Ubiquitous Sensing Systems Lab, University of Klagenfurt-Silicon Austria Labs, 9020 Klagenfurt, Austria
| | - Faizan Ur Rehman
- Electrical Engineering Department, Karachi Institute of Economics and Technology, Karachi, Pakistan
| | - Lukas Sekanina
- Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
| | - Aamir Saeed Malik
- Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
7
|
Felix-Saul JC, García-Valdez M, Merelo Guervós JJ, Castillo O. Extending Genetic Algorithms with Biological Life-Cycle Dynamics. Biomimetics (Basel) 2024; 9:476. [PMID: 39194455 DOI: 10.3390/biomimetics9080476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
In this paper, we aim to enhance genetic algorithms (GAs) by integrating a dynamic model based on biological life cycles. This study addresses the challenge of maintaining diversity and adaptability in GAs by incorporating stages of birth, growth, reproduction, and death into the algorithm's framework. We consider an asynchronous execution of life cycle stages to individuals in the population, ensuring a steady-state evolution that preserves high-quality solutions while maintaining diversity. Experimental results demonstrate that the proposed extension outperforms traditional GAs and is as good or better than other well-known and well established algorithms like PSO and EvoSpace in various benchmark problems, particularly regarding convergence speed and solution qu/ality. The study concludes that incorporating biological life-cycle dynamics into GAs enhances their robustness and efficiency, offering a promising direction for future research in evolutionary computation.
Collapse
Affiliation(s)
- J C Felix-Saul
- Division of Graduate Studies and Research, Tijuana Institute of Technology, Tecnológico Nacional de México (TecNM), Tijuana 22414, Mexico
| | - Mario García-Valdez
- Division of Graduate Studies and Research, Tijuana Institute of Technology, Tecnológico Nacional de México (TecNM), Tijuana 22414, Mexico
| | - Juan J Merelo Guervós
- Department of Computer Engineering, Automatics and Robotics, University of Granada, 18071 Granada, Spain
| | - Oscar Castillo
- Division of Graduate Studies and Research, Tijuana Institute of Technology, Tecnológico Nacional de México (TecNM), Tijuana 22414, Mexico
| |
Collapse
|
8
|
Jiang J, Wu J, Luo J, Yang X, Huang Z. MOBCA: Multi-Objective Besiege and Conquer Algorithm. Biomimetics (Basel) 2024; 9:316. [PMID: 38921196 PMCID: PMC11201474 DOI: 10.3390/biomimetics9060316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
The besiege and conquer algorithm has shown excellent performance in single-objective optimization problems. However, there is no literature on the research of the BCA algorithm on multi-objective optimization problems. Therefore, this paper proposes a new multi-objective besiege and conquer algorithm to solve multi-objective optimization problems. The grid mechanism, archiving mechanism, and leader selection mechanism are integrated into the BCA to estimate the Pareto optimal solution and approach the Pareto optimal frontier. The proposed algorithm is tested with MOPSO, MOEA/D, and NSGAIII on the benchmark function IMOP and ZDT. The experiment results show that the proposed algorithm can obtain competitive results in terms of the accuracy of the Pareto optimal solution.
Collapse
Affiliation(s)
- Jianhua Jiang
- Center for Artificial Intelligence, Jilin University of Finance and Economics, Changchun 130117, China; (J.W.); (J.L.); (X.Y.)
- Jilin Province Key Laboratory of Fintech, Jilin University of Finance and Economics, Changchun 130117, China
| | - Jiaqi Wu
- Center for Artificial Intelligence, Jilin University of Finance and Economics, Changchun 130117, China; (J.W.); (J.L.); (X.Y.)
- Jilin Province Key Laboratory of Fintech, Jilin University of Finance and Economics, Changchun 130117, China
| | - Jinmeng Luo
- Center for Artificial Intelligence, Jilin University of Finance and Economics, Changchun 130117, China; (J.W.); (J.L.); (X.Y.)
- Jilin Province Key Laboratory of Fintech, Jilin University of Finance and Economics, Changchun 130117, China
| | - Xi Yang
- Center for Artificial Intelligence, Jilin University of Finance and Economics, Changchun 130117, China; (J.W.); (J.L.); (X.Y.)
- Jilin Province Key Laboratory of Fintech, Jilin University of Finance and Economics, Changchun 130117, China
| | - Zulu Huang
- College of Foreign Languages, Jilin Agricultural University, Changchun 130118, China;
| |
Collapse
|
9
|
Wu SH, Zhan ZH, Tan KC, Zhang J. Transferable Adaptive Differential Evolution for Many-Task Optimization. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:7295-7308. [PMID: 37022822 DOI: 10.1109/tcyb.2023.3234969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The evolutionary multitask optimization (EMTO) algorithm is a promising approach to solve many-task optimization problems (MaTOPs), in which similarity measurement and knowledge transfer (KT) are two key issues. Many existing EMTO algorithms estimate the similarity of population distribution to select a set of similar tasks and then perform KT by simply mixing individuals among the selected tasks. However, these methods may be less effective when the global optima of the tasks greatly differ from each other. Therefore, this article proposes to consider a new kind of similarity, namely, shift invariance, between tasks. The shift invariance is defined that the two tasks are similar after linear shift transformation on both the search space and the objective space. To identify and utilize the shift invariance between tasks, a two-stage transferable adaptive differential evolution (TRADE) algorithm is proposed. In the first evolution stage, a task representation strategy is proposed to represent each task by a vector that embeds the evolution information. Then, a task grouping strategy is proposed to group the similar (i.e., shift invariant) tasks into the same group while the dissimilar tasks into different groups. In the second evolution stage, a novel successful evolution experience transfer method is proposed to adaptively utilize the suitable parameters by transferring successful parameters among similar tasks within the same group. Comprehensive experiments are carried out on two representative MaTOP benchmarks with a total of 16 instances and a real-world application. The comparative results show that the proposed TRADE is superior to some state-of-the-art EMTO algorithms and single-task optimization algorithms.
Collapse
|
10
|
Yang J, Zhang Y, Jin T, Lei Z, Todo Y, Gao S. Maximum Lyapunov exponent-based multiple chaotic slime mold algorithm for real-world optimization. Sci Rep 2023; 13:12744. [PMID: 37550464 PMCID: PMC10406909 DOI: 10.1038/s41598-023-40080-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023] Open
Abstract
Slime mold algorithm (SMA) is a nature-inspired algorithm that simulates the biological optimization mechanisms and has achieved great results in various complex stochastic optimization problems. Owing to the simulated biological search principle of slime mold, SMA has a unique advantage in global optimization problem. However, it still suffers from issues of missing the optimal solution or collapsing to local optimum when facing complicated problems. To conquer these drawbacks, we consider adding a novel multi-chaotic local operator to the bio-shock feedback mechanism of SMA to compensate for the lack of exploration of the local solution space with the help of the perturbation nature of the chaotic operator. Based on this, we propose an improved algorithm, namely MCSMA, by investigating how to improve the probabilistic selection of chaotic operators based on the maximum Lyapunov exponent (MLE), an inherent property of chaotic maps. We implement the comparison between MCSMA with other state-of-the-art methods on IEEE Congress on Evolution Computation (CEC) i.e., CEC2017 benchmark test suits and CEC2011 practical problems to demonstrate its potency and perform dendritic neuron model training to test the robustness of MCSMA on classification problems. Finally, the parameters' sensitivities of MCSMA, the utilization of the solution space, and the effectiveness of the MLE are adequately discussed.
Collapse
Affiliation(s)
- Jiaru Yang
- Faculty of Engineering, University of Toyama, Toyama-shi, 930-8555, Japan
| | - Yu Zhang
- Faculty of Engineering, University of Toyama, Toyama-shi, 930-8555, Japan
| | - Ting Jin
- School of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhenyu Lei
- Faculty of Engineering, University of Toyama, Toyama-shi, 930-8555, Japan
| | - Yuki Todo
- Faculty of Electrical, Information and Communication Engineering, Kanazawa University, Ishikawa, 9201192, Japan
| | - Shangce Gao
- Faculty of Engineering, University of Toyama, Toyama-shi, 930-8555, Japan.
| |
Collapse
|
11
|
Zhao H, Tang L, Li JR, Liu J. Strengthening evolution-based differential evolution with prediction strategy for multimodal optimization and its application in multi-robot task allocation. Appl Soft Comput 2023. [DOI: 10.1016/j.asoc.2023.110218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
12
|
Li JY, Du KJ, Zhan ZH, Wang H, Zhang J. Distributed Differential Evolution With Adaptive Resource Allocation. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:2791-2804. [PMID: 35286273 DOI: 10.1109/tcyb.2022.3153964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Distributed differential evolution (DDE) is an efficient paradigm that adopts multiple populations for cooperatively solving complex optimization problems. However, how to allocate fitness evaluation (FE) budget resources among the distributed multiple populations can greatly influence the optimization ability of DDE. Therefore, this article proposes a novel three-layer DDE framework with adaptive resource allocation (DDE-ARA), including the algorithm layer for evolving various differential evolution (DE) populations, the dispatch layer for dispatching the individuals in the DE populations to different distributed machines, and the machine layer for accommodating distributed computers. In the DDE-ARA framework, three novel methods are further proposed. First, a general performance indicator (GPI) method is proposed to measure the performance of different DEs. Second, based on the GPI, a FE allocation (FEA) method is proposed to adaptively allocate the FE budget resources from poorly performing DEs to well-performing DEs for better search efficiency. This way, the GPI and FEA methods achieve the ARA in the algorithm layer. Third, a load balance strategy is proposed in the dispatch layer to balance the FE burden of different computers in the machine layer for improving load balance and algorithm speedup. Moreover, theoretical analyses are provided to show why the proposed DDE-ARA framework can be effective and to discuss the lower bound of its optimization error. Extensive experiments are conducted on all the 30 functions of CEC 2014 competitions at 10, 30, 50, and 100 dimensions, and some state-of-the-art DDE algorithms are adopted for comparisons. The results show the great effectiveness and efficiency of the proposed framework and the three novel methods.
Collapse
|
13
|
Chaudhary KC. A modified version of the ABC algorithm and evaluation of its performance. Heliyon 2023; 9:e16086. [PMID: 37223708 PMCID: PMC10200850 DOI: 10.1016/j.heliyon.2023.e16086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
The artificial bee colony (ABC) optimization algorithm has been widely used to solve the global optimization problems. Many versions of ABC algorithm exist in the literature intending to achieve optimum solution for problems in different domains. Some modifications of the ABC algorithm are general and can be applied to any problem domain, while some are application dependent. This paper proposes a modified version of the ABC algorithm named as, MABC-SS (modified artificial bee colony algorithm with selection strategy), that can be applied to any problem domain. The algorithm is modified in terms of population initialization and update of a bee position using the old and a new food source equation based on the algorithm's performance in the previous iteration. The selection strategy is measured based on a novel approach called the rate of change. The population initialization in any optimization algorithm plays an important role in achieving the global optimum. The algorithm proposed in the paper uses random and an opposition-based learning technique to initialize the population and updates a bee's position after exceeding a certain number of trial limits. The rate of change is based on the average cost and is calculated for the past two iterations and compared for a method to be used in the current iteration to achieve the best result. The proposed algorithm is experimented with 35 benchmark test functions and 10 real world test functions. The findings indicate that the proposed algorithm is able to achieve the optimal result in most cases. The proposed algorithm is compared with the original ABC algorithm, modified versions of the ABC algorithm, and other algorithms in the literature using the test mentioned above. The parameters such as population size, number of iterations and runs were kept same for comparison with non-variants of ABC. In case of ABC variants, ABC specific parameters such as abandonment limit factor (0.6) and acceleration coefficient (1) were kept same. Results indicate that in 40% of the traditional benchmark test functions, the suggested algorithm works better than other variants of ABC (ABC, GABC, MABC, MEABC, BABC, and KFABC), while 30% of the traditional benchmark test functions are comparable. The proposed algorithm was compared to non-variants of ABC as well. The results show that the proposed algorithm achieved the best mean result in 50% of the CEC2019 benchmark test functions and in 94% of the classical benchmark test functions. The result is confirmed by Wilcoxon sum ranked test which shows that MABC-SS achieved statistically significant result in 48% of the classical and 70% of the CEC2019 benchmark test functions when compared with the original ABC. Overall, based on assessment and comparison in benchmark test functions used in this paper, the suggested algorithm is superior to others.
Collapse
|
14
|
Yalagudige Dharmegowda I, Madarakallu Muniyappa L, Suresh AB, Gowdru Chandrashekarappa MP, Pradeep N. Optimization for waste coconut and fish oil derived biodiesel with MgO nanoparticle blend: Grey relational analysis, grey wolf optimization, driving training based optimization and election based optimization algorithm. FUEL 2023; 338:127249. [DOI: 10.1016/j.fuel.2022.127249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
|
15
|
Jiang Y, Zhan ZH, Tan KC, Zhang J. Optimizing Niche Center for Multimodal Optimization Problems. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:2544-2557. [PMID: 34919526 DOI: 10.1109/tcyb.2021.3125362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Many real-world optimization problems require searching for multiple optimal solutions simultaneously, which are called multimodal optimization problems (MMOPs). For MMOPs, the algorithm is required both to enlarge population diversity for locating more global optima and to enhance refine ability for increasing the accuracy of the obtained solutions. Thus, numerous niching techniques have been proposed to divide the population into different niches, and each niche is responsible for searching on one or more peaks. However, it is often a challenge to distinguish proper individuals as niche centers in existing niching approaches, which has become a key issue for efficiently solving MMOPs. In this article, the niche center distinguish (NCD) problem is treated as an optimization problem and an NCD-based differential evolution (NCD-DE) algorithm is proposed. In NCD-DE, the niches are formed by using an internal genetic algorithm (GA) to online solve the NCD optimization problem. In the internal GA, a fitness-entropy measurement objective function is designed to evaluate whether a group of niche centers (i.e., encoded by a chromosome in the internal GA) is promising. Moreover, to enhance the exploration and exploitation abilities of NCD-DE in solving the MMOPs, a niching and global cooperative mutation strategy that uses both niche and population information is proposed to generate new individuals. The proposed NCD-DE is compared with some state-of-the-art and recent well-performing algorithms. The experimental results show that NCD-DE achieves better or competitive performance on both the accuracy and completeness of the solutions than the compared algorithms.
Collapse
|
16
|
Power Optimization for Mixed Polarity Reed–Muller Circuits Based on Multilevel Adaptive Memetic Algorithm. INT J INTELL SYST 2023. [DOI: 10.1155/2023/3510001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Power optimization can reduce heat dissipation costs and has become an important step of circuit logic synthesis. Because the power optimization for mixed polarity Reed–Muller (MPRM) circuits is a combinatorial optimization problem, in this paper, we first propose a multilevel adaptive memetic algorithm (MAMA), which includes global exploration optimizer, local heuristic optimizer, and initial population optimizer. We use the proposed differential evolution optimization, simulated annealing optimization, and data matching algorithm to make the population evolve. Moreover, based on the proposed matrix decomposition strategy and parallel polarity conversion algorithm, we propose a power optimization approach (POA) for MPRM circuits, which searches for an MPRM circuit with a minimum power using the MAMA. Experimental results demonstrated the effectiveness and superiority of the POA in optimizing the power of MPRM circuits.
Collapse
|
17
|
Multiround Transfer Learning and Modified Generative Adversarial Network for Lung Cancer Detection. INT J INTELL SYST 2023. [DOI: 10.1155/2023/6376275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Lung cancer has been the leading cause of cancer death for many decades. With the advent of artificial intelligence, various machine learning models have been proposed for lung cancer detection (LCD). Typically, challenges in building an accurate LCD model are the small-scale datasets, the poor generalizability to detect unseen data, and the selection of useful source domains and prioritization of multiple source domains for transfer learning. In this paper, a multiround transfer learning and modified generative adversarial network (MTL-MGAN) algorithm is proposed for LCD. The MTL transfers the knowledge between the prioritized source domains and target domain to get rid of exhaust search of datasets prioritization among multiple datasets, maximizing the transferability with a multiround transfer learning process, and avoiding negative transfer via customization of loss functions in the aspects of domain, instance, and feature. In regard to the MGAN, it not only generates additional training data but also creates intermediate domains to bridge the gap between the source domains and target domains. 10 benchmark datasets are chosen for the performance evaluation and analysis of the MTL-MGAN. The proposed algorithm has significantly improved the accuracy compared with related works. To examine the contributions of the individual components of the MTL-MGAN, ablation studies are conducted to confirm the effectiveness of the prioritization algorithm, the MTL, the negative transfer avoidance via loss functions, and the MGAN. The research implications are to confirm the feasibility of multiround transfer learning to enhance the optimal solution of the target model and to provide a generic approach to bridge the gap between the source domain and target domain using MGAN.
Collapse
|
18
|
Liu SC, Chen ZG, Zhan ZH, Jeon SW, Kwong S, Zhang J. Many-Objective Job-Shop Scheduling: A Multiple Populations for Multiple Objectives-Based Genetic Algorithm Approach. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:1460-1474. [PMID: 34516383 DOI: 10.1109/tcyb.2021.3102642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The job-shop scheduling problem (JSSP) is a challenging scheduling and optimization problem in the industry and engineering, which relates to the work efficiency and operational costs of factories. The completion time of all jobs is the most commonly considered optimization objective in the existing work. However, factories focus on both time and cost objectives, including completion time, total tardiness, advance time, production cost, and machine loss. Therefore, this article first time proposes a many-objective JSSP that considers all these five objectives to make the model more practical to reflect the various demands of factories. To optimize these five objectives simultaneously, a novel multiple populations for multiple objectives (MPMO) framework-based genetic algorithm (GA) approach, called MPMOGA, is proposed. First, MPMOGA employs five populations to optimize the five objectives, respectively. Second, to avoid each population only focusing on its corresponding single objective, an archive sharing technique (AST) is proposed to store the elite solutions collected from the five populations so that the populations can obtain optimization information about the other objectives from the archive. This way, MPMOGA can approximate different parts of the entire Pareto front (PF). Third, an archive update strategy (AUS) is proposed to further improve the quality of the solutions in the archive. The test instances in the widely used test sets are adopted to evaluate the performance of MPMOGA. The experimental results show that MPMOGA outperforms the compared state-of-the-art algorithms on most of the test instances.
Collapse
|
19
|
Developing Nonlinear Customer Preferences Models for Product Design Using Opining Mining and Multiobjective PSO-Based ANFIS Approach. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2023; 2023:6880172. [PMID: 36860421 PMCID: PMC9970701 DOI: 10.1155/2023/6880172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 02/22/2023]
Abstract
Online customer reviews can clearly show the customer experience, and the improvement suggestions based on the experience, which are helpful to product optimization and design. However, the research on establishing a customer preference model based on online customer reviews is not ideal, and the following research problems are found in previous studies. Firstly, the product attribute is not involved in the modelling if the corresponding setting cannot be found in the product description. Secondly, the fuzziness of customers' emotions in online reviews and nonlinearity in the models were not appropriately considered. Thirdly, the adaptive neuro-fuzzy inference system (ANFIS) is an effective way to model customer preferences. However, if the number of inputs is large, the modelling process will be failed due to the complex structure and long computational time. To solve the above-given problems, this paper proposed multiobjective particle swarm optimization (PSO) based ANFIS and opinion mining, to build customer preference model by analyzing the content of online customer reviews. In the process of online review analysis, the opinion mining technology is used to conduct comprehensive analysis on customer preference and product information. According to the analysis of information, a new method for establishing customer preference model is proposed, that is, a multiobjective PSO based ANFIS. The results show that the introducing of multiobjective PSO method into ANFIS can effectively solve the defects of ANFIS itself. Taking hair dryer as a case study, it is found that the proposed approach performs better than fuzzy regression, fuzzy least-squares regression, and genetic programming based fuzzy regression in modelling customer preference.
Collapse
|
20
|
Yu H, Shi J, Qian J, Wang S, Li S. Single dendritic neural classification with an effective spherical search-based whale learning algorithm. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:7594-7632. [PMID: 37161164 DOI: 10.3934/mbe.2023328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
McCulloch-Pitts neuron-based neural networks have been the mainstream deep learning methods, achieving breakthrough in various real-world applications. However, McCulloch-Pitts neuron is also under longtime criticism of being overly simplistic. To alleviate this issue, the dendritic neuron model (DNM), which employs non-linear information processing capabilities of dendrites, has been widely used for prediction and classification tasks. In this study, we innovatively propose a hybrid approach to co-evolve DNM in contrast to back propagation (BP) techniques, which are sensitive to initial circumstances and readily fall into local minima. The whale optimization algorithm is improved by spherical search learning to perform co-evolution through dynamic hybridizing. Eleven classification datasets were selected from the well-known UCI Machine Learning Repository. Its efficiency in our model was verified by statistical analysis of convergence speed and Wilcoxon sign-rank tests, with receiver operating characteristic curves and the calculation of area under the curve. In terms of classification accuracy, the proposed co-evolution method beats 10 existing cutting-edge non-BP methods and BP, suggesting that well-learned DNMs are computationally significantly more potent than conventional McCulloch-Pitts types and can be employed as the building blocks for the next-generation deep learning methods.
Collapse
Affiliation(s)
- Hang Yu
- College of Computer Science and Technology, Taizhou University, Taizhou 225300, China
| | - Jiarui Shi
- Department of Engineering, Wesoft Company Ltd., Kawasaki-shi 210-0024, Japan
| | - Jin Qian
- College of Computer Science and Technology, Taizhou University, Taizhou 225300, China
| | - Shi Wang
- College of Computer Science and Technology, Taizhou University, Taizhou 225300, China
| | - Sheng Li
- College of Computer Science and Technology, Taizhou University, Taizhou 225300, China
| |
Collapse
|
21
|
Papetti DM, Tangherloni A, Farinati D, Cazzaniga P, Vanneschi L. Simplifying Fitness Landscapes Using Dilation Functions Evolved With Genetic Programming. IEEE COMPUT INTELL M 2023. [DOI: 10.1109/mci.2022.3222096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | | | - Davide Farinati
- NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus de Campolide, PORTUGAL
| | | | - Leonardo Vanneschi
- NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus de Campolide, PORTUGAL
| |
Collapse
|
22
|
A two-stage adaptive penalty method based on co-evolution for constrained evolutionary optimization. COMPLEX INTELL SYST 2023. [DOI: 10.1007/s40747-022-00965-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AbstractPenalty function method is popular for constrained evolutionary optimization. However, it is non-trivial to set a proper penalty factor for a constrained optimization problem. This paper takes advantage of co-evolution to adjust the penalty factor and proposes a two-stage adaptive penalty method. In the co-evolution stage, the population is divided into multiple subpopulations, each of which is associated with a penalty factor. Through the co-evolution of these subpopulations, the performance of penalty factors can be evaluated. Since different penalty factors are used, the subpopulations will evolve along different directions. Thus, exploration can be enhanced. In the shuffle stage, all subpopulations are merged into a population and the best penalty factor from the co-evolution stage is used to guide the evolution. In this manner, the information interaction among subpopulations can be facilitated; thus, exploitation can be promoted. By executing these two stages iteratively, the feasible optimum could be obtained finally. In the two-stage evolutionary process, the search algorithm is designed based on two trial vector generation strategies of differential evolution. Additionally, a restart mechanism is designed to help the population avoid stagnating in the infeasible region. Extensive experiments demonstrate the effectiveness of the proposed method.
Collapse
|
23
|
Artificial Bee Colony Algorithm based on Online Fitness Landscape Analysis. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
DSGA: A Distributed Segment-Based Genetic Algorithm for Multi-Objective Outsourced Database Partitioning. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Ma M, Shen L, Sun X. Optimization of e-commerce logistics service quality considering multiple consumption psychologies. Front Psychol 2022; 13:956418. [PMID: 36132194 PMCID: PMC9484527 DOI: 10.3389/fpsyg.2022.956418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
This work is developed to improve the current quality of e-commerce logistics services. From the perspective of multiple consumer psychology, based on e-commerce, consumer psychology, and other related theories, vegetable e-commerce B is selected as the research object. The commodity quality, accuracy, and timeliness of commodity distribution and other factors of e-commerce B are discussed through questionnaire survey. Then, according to customers’ opinions about “e-commerce B’s distribution and professional aspects that need to be improved,” the research is conducted. Finally, the direction of follow-up optimization is proposed from four different perspectives of multiple consumption psychology. The research results show that more than 89% of the surveyed customers believe that e-commerce B does a good job in terms of commodity quality, accuracy, and timeliness of commodity distribution, and has a high level of logistics service. However, 26.34% of customers hope that e-commerce B can strengthen the protection of personal privacy, 24.97% hope that the platform can add “delay insurance” for goods, and 39.54% hope that the logistics information of purchased goods can be updated in real time. Therefore, e-commerce B needs to be optimized and improved continuously in the future development. Therefore, research on the optimization of logistics service quality of e-commerce is performed under multiple consumption psychology, which provides certain help for the rapid development of subsequent e-commerce.
Collapse
|
26
|
Li T, Zhan ZH, Xu JC, Yang Q, Ma YY. A binary individual search strategy-based bi-objective evolutionary algorithm for high-dimensional feature selection. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.07.183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Zhou X, Wu Y, Zhong M, Wang M. Artificial bee colony algorithm based on adaptive neighborhood topologies. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
A novel committee machine to predict the quantity of impurities in hot metal produced in blast furnace. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2022.107814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Wang BC, Liu ZZ, Song W. Solving constrained optimization problems via multifactorial evolution. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Big Data Value Calculation Method Based on Particle Swarm Optimization Algorithm. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:5356164. [PMID: 35814581 PMCID: PMC9270169 DOI: 10.1155/2022/5356164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
SI is a relatively recent technology that was inspired by observations of natural social insects and artificial systems. This system comprises multiple individual agents who rely on collective behavior in decentralized and self-organized networks. One of the biggest difficulties for existing computer techniques is learning from such large datasets, which is addressed utilizing big data. Big data-based categorization refers to the challenge of determining which set of classifications a new discovery belongs to. This classification is based on a training set of data that comprises observations that have been assigned to a certain category. In this paper, CIN-big data value calculation based on particle swarm optimization (BD-PSO) algorithm is proposed by operating in local optima and to improve the operating efficiency. The convergence speed of the particle swarm optimization (PSO), which operates in the local optima, is improved by big data-based particle swarm optimization (BD-PSO). It improves computing efficiency by improving the method, resulting in a reduction in calculation time. The performance of the BD-PSO is tested on four benchmark dataset, which is taken from the UCI. The datasets used for evaluation are wine, iris, blood transfusion, and zoo. SVM and CG-CNB are the two existing methods used for the comparison of BD-PSO. It achieves 92% of accuracy, 92% of precision, 92% of recall, and 1.34 of F1 measure, and time taken for execution is 149 ms, which in turn outperforms the existing approaches. It achieves robust solutions and identifies appropriate intelligent technique related to the optimization problem.
Collapse
|
31
|
Assessment of Ship-Overtaking Situation Based on Swarm Intelligence Improved KDE. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7219661. [PMID: 35694582 PMCID: PMC9177300 DOI: 10.1155/2022/7219661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022]
Abstract
This paper proposes a data-driven risk assessment model for ship overtaking based on the particle swarm optimization (PSO) improved kernel density estimation (KDE). By minimizing the mean square error between the real probability distribution of the ship overtaking point and the kernel density estimation probability distribution calculated by the current kernel density bandwidth, the longitude and latitude of the ship overtaking point are displayed by the color corresponding to the probability as the cost objective function of the search bandwidth of the algorithm. This can better show the distribution of the overtaking points of channel propagation traffic flow. A probability-based ship-overtaking risk evaluation model is developed through the bandwidth and density analysis optimized by an intelligent algorithm. In order to speed up searching the optimal variable width of the kernel density estimator for ship encountering positions, an improved adaptive variable-width kernel density estimator is proposed. The latter reduces the risk of too smooth probability density estimation phenomenon. Its convergence is proved. Finally, the model can efficiently evaluate the risk status of ship overtaking and provide navigational auxiliary decision support for pilots.
Collapse
|
32
|
Wang Y, Li J, Chen C, Zhang J, Zhan Z. Scale adaptive fitness evaluation‐based particle swarm optimisation for hyperparameter and architecture optimisation in neural networks and deep learning. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY 2022. [DOI: 10.1049/cit2.12106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Ye‐Qun Wang
- School of Computer Science and Engineering South China University of Technology Guangzhou China
| | - Jian‐Yu Li
- School of Computer Science and Engineering South China University of Technology Guangzhou China
| | - Chun‐Hua Chen
- School of Software Engineering South China University of Technology Guangzhou China
| | - Jun Zhang
- Hanyang University Ansan South Korea
| | - Zhi‐Hui Zhan
- School of Computer Science and Engineering South China University of Technology Guangzhou China
| |
Collapse
|
33
|
Compressed-Encoding Particle Swarm Optimization with Fuzzy Learning for Large-Scale Feature Selection. Symmetry (Basel) 2022. [DOI: 10.3390/sym14061142] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Particle swarm optimization (PSO) is a promising method for feature selection. When using PSO to solve the feature selection problem, the probability of each feature being selected and not being selected is the same in the beginning and is optimized during the evolutionary process. That is, the feature selection probability is optimized from symmetry (i.e., 50% vs. 50%) to asymmetry (i.e., some are selected with a higher probability, and some with a lower probability) to help particles obtain the optimal feature subset. However, when dealing with large-scale features, PSO still faces the challenges of a poor search performance and a long running time. In addition, a suitable representation for particles to deal with the discrete binary optimization problem of feature selection is still in great need. This paper proposes a compressed-encoding PSO with fuzzy learning (CEPSO-FL) for the large-scale feature selection problem. It uses the N-base encoding method for the representation of particles and designs a particle update mechanism based on the Hamming distance and a fuzzy learning strategy, which can be performed in the discrete space. It also proposes a local search strategy to dynamically skip some dimensions when updating particles, thus reducing the search space and reducing the running time. The experimental results show that CEPSO-FL performs well for large-scale feature selection problems. The solutions obtained by CEPSO-FL contain small feature subsets and have an excellent performance in classification problems.
Collapse
|
34
|
Chen ZG, Zhan ZH, Kwong S, Zhang J. Evolutionary Computation for Intelligent Transportation in Smart Cities: A Survey [Review Article]. IEEE COMPUT INTELL M 2022. [DOI: 10.1109/mci.2022.3155330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Differential Elite Learning Particle Swarm Optimization for Global Numerical Optimization. MATHEMATICS 2022. [DOI: 10.3390/math10081261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although particle swarm optimization (PSO) has been successfully applied to solve optimization problems, its optimization performance still encounters challenges when dealing with complicated optimization problems, especially those with many interacting variables and many wide and flat local basins. To alleviate this issue, this paper proposes a differential elite learning particle swarm optimization (DELPSO) by differentiating the two guiding exemplars as much as possible to direct the update of each particle. Specifically, in this optimizer, particles in the current swarm are divided into two groups, namely the elite group and non-elite group, based on their fitness. Then, particles in the non-elite group are updated by learning from those in the elite group, while particles in the elite group are not updated and directly enter the next generation. To comprise fast convergence and high diversity at the particle level, we let each particle in the non-elite group learn from two differential elites in the elite group. In this way, the learning effectiveness and the learning diversity of particles is expectedly improved to a large extent. To alleviate the sensitivity of the proposed DELPSO to the newly introduced parameters, dynamic adjustment strategies for parameters were further designed. With the above two main components, the proposed DELPSO is expected to compromise the search intensification and diversification well to explore and exploit the solution space properly to obtain promising performance. Extensive experiments conducted on the widely used CEC 2017 benchmark set with three different dimension sizes demonstrated that the proposed DELPSO achieves highly competitive or even much better performance than state-of-the-art PSO variants.
Collapse
|
36
|
|
37
|
Stochastic Triad Topology Based Particle Swarm Optimization for Global Numerical Optimization. MATHEMATICS 2022. [DOI: 10.3390/math10071032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Particle swarm optimization (PSO) has exhibited well-known feasibility in problem optimization. However, its optimization performance still encounters challenges when confronted with complicated optimization problems with many local areas. In PSO, the interaction among particles and utilization of the communication information play crucial roles in improving the learning effectiveness and learning diversity of particles. To promote the communication effectiveness among particles, this paper proposes a stochastic triad topology to allow each particle to communicate with two random ones in the swarm via their personal best positions. Then, unlike existing studies that employ the personal best positions of the updated particle and the neighboring best position of the topology to direct its update, this paper adopts the best one and the mean position of the three personal best positions in the associated triad topology as the two guiding exemplars to direct the update of each particle. To further promote the interaction diversity among particles, an archive is maintained to store the obsolete personal best positions of particles and is then used to interact with particles in the triad topology. To enhance the chance of escaping from local regions, a random restart strategy is probabilistically triggered to introduce initialized solutions to the archive. To alleviate sensitivity to parameters, dynamic adjustment strategies are designed to dynamically adjust the associated parameter settings during the evolution. Integrating the above mechanism, a stochastic triad topology-based PSO (STTPSO) is developed to effectively search complex solution space. With the above techniques, the learning diversity and learning effectiveness of particles are largely promoted and thus the developed STTPSO is expected to explore and exploit the solution space appropriately to find high-quality solutions. Extensive experiments conducted on the commonly used CEC 2017 benchmark problem set with different dimension sizes substantiate that the proposed STTPSO achieves highly competitive or even much better performance than state-of-the-art and representative PSO variants.
Collapse
|
38
|
BinGSO: galactic swarm optimization powered by binary artificial algae algorithm for solving uncapacitated facility location problems. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07058-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Stochastic Cognitive Dominance Leading Particle Swarm Optimization for Multimodal Problems. MATHEMATICS 2022. [DOI: 10.3390/math10050761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Optimization problems become increasingly complicated in the era of big data and Internet of Things, which significantly challenges the effectiveness and efficiency of existing optimization methods. To effectively solve this kind of problems, this paper puts forward a stochastic cognitive dominance leading particle swarm optimization algorithm (SCDLPSO). Specifically, for each particle, two personal cognitive best positions are first randomly selected from those of all particles. Then, only when the cognitive best position of the particle is dominated by at least one of the two selected ones, this particle is updated by cognitively learning from the better personal positions; otherwise, this particle is not updated and directly enters the next generation. With this stochastic cognitive dominance leading mechanism, it is expected that the learning diversity and the learning efficiency of particles in the proposed optimizer could be promoted, and thus the optimizer is expected to explore and exploit the solution space properly. At last, extensive experiments are conducted on a widely acknowledged benchmark problem set with different dimension sizes to evaluate the effectiveness of the proposed SCDLPSO. Experimental results demonstrate that the devised optimizer achieves highly competitive or even much better performance than several state-of-the-art PSO variants.
Collapse
|
40
|
Multi-objective multi-criteria evolutionary algorithm for multi-objective multi-task optimization. COMPLEX INTELL SYST 2022. [DOI: 10.1007/s40747-022-00650-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractEvolutionary multi-objective multi-task optimization is an emerging paradigm for solving multi-objective multi-task optimization problem (MO-MTOP) using evolutionary computation. However, most existing methods tend to directly treat the multiple multi-objective tasks as different problems and optimize them by different populations, which face the difficulty in designing good knowledge transferring strategy among the tasks/populations. Different from existing methods that suffer from the difficult knowledge transfer, this paper proposes to treat the MO-MTOP as a multi-objective multi-criteria optimization problem (MO-MCOP), so that the knowledge of all the tasks can be inherited in a same population to be fully utilized for solving the MO-MTOP more efficiently. To be specific, the fitness evaluation function of each task in the MO-MTOP is treated as an evaluation criterion in the corresponding MO-MCOP, and therefore, the MO-MCOP has multiple relevant evaluation criteria to help the individual selection and evolution in different evolutionary stages. Furthermore, a probability-based criterion selection strategy and an adaptive parameter learning method are also proposed to better select the fitness evaluation function as the criterion. By doing so, the algorithm can use suitable evaluation criteria from different tasks at different evolutionary stages to guide the individual selection and population evolution, so as to find out the Pareto optimal solutions of all tasks. By integrating the above, this paper develops a multi-objective multi-criteria evolutionary algorithm framework for solving MO-MTOP. To investigate the proposed algorithm, extensive experiments are conducted on widely used MO-MTOPs to compare with some state-of-the-art and well-performing algorithms, which have verified the great effectiveness and efficiency of the proposed algorithm. Therefore, treating MO-MTOP as MO-MCOP is a potential and promising direction for solving MO-MTOP.
Collapse
|
41
|
Abstract
The dragonfly algorithm is a swarm intelligence optimization algorithm based on simulating the swarming behavior of dragonfly individuals. An efficient algorithm must have a symmetry of information between the participating entities. An improved dragonfly algorithm is proposed in this paper to further improve the global searching ability and the convergence speed of DA. The improved DA is named GGBDA, which adds Gaussian mutation and Gaussian barebone on the basis of DA. Gaussian mutation can randomly update the individual positions to avoid the algorithm falling into a local optimal solution. Gaussian barebone can quicken the convergent speed and strengthen local exploitation capacities. Enhancing algorithm efficiency relative to the symmetric concept is a critical challenge in the field of engineering design. To verify the superiorities of GGBDA, this paper sets 30 benchmark functions, which are taken from CEC2014 and 4 engineering design problems to compare GGBDA with other algorithms. The experimental result show that the Gaussian mutation and Gaussian barebone can effectively improve the performance of DA. The proposed GGBDA, similar to the DA, presents improvements in global optimization competence, search accuracy, and convergence performance.
Collapse
|
42
|
Li JY, Zhan ZH, Zhang J. Evolutionary Computation for Expensive Optimization: A Survey. MACHINE INTELLIGENCE RESEARCH 2022. [PMCID: PMC8777172 DOI: 10.1007/s11633-022-1317-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Expensive optimization problem (EOP) widely exists in various significant real-world applications. However, EOP requires expensive or even unaffordable costs for evaluating candidate solutions, which is expensive for the algorithm to find a satisfactory solution. Moreover, due to the fast-growing application demands in the economy and society, such as the emergence of the smart cities, the internet of things, and the big data era, solving EOP more efficiently has become increasingly essential in various fields, which poses great challenges on the problem-solving ability of optimization approach for EOP. Among various optimization approaches, evolutionary computation (EC) is a promising global optimization tool widely used for solving EOP efficiently in the past decades. Given the fruitful advancements of EC for EOP, it is essential to review these advancements in order to synthesize and give previous research experiences and references to aid the development of relevant research fields and real-world applications. Motivated by this, this paper aims to provide a comprehensive survey to show why and how EC can solve EOP efficiently. For this aim, this paper firstly analyzes the total optimization cost of EC in solving EOP. Then, based on the analysis, three promising research directions are pointed out for solving EOP, which are problem approximation and substitution, algorithm design and enhancement, and parallel and distributed computation. Note that, to the best of our knowledge, this paper is the first that outlines the possible directions for efficiently solving EOP by analyzing the total expensive cost. Based on this, existing works are reviewed comprehensively via a taxonomy with four parts, including the above three research directions and the real-world application part. Moreover, some future research directions are also discussed in this paper. It is believed that such a survey can attract attention, encourage discussions, and stimulate new EC research ideas for solving EOP and related real-world applications more efficiently.
Collapse
|