1
|
Kim J, Park YK, Ryu MS, Ha G, Yang HJ, Jeong DY. Enhanced phytoremediation and biosorption of cationic methylene blue dye by Acidomyces acidophilus ATCC 26774. Prep Biochem Biotechnol 2025; 55:634-642. [PMID: 40015265 DOI: 10.1080/10826068.2025.2471891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
In this study, the enhancement of the phytoremediation and biosorption properties of the cationic dye methylene blue using Acidomyces acidophilus ATCC 26774 were investigated. Inoculation with A. acidophilus ATCC 26774 increased the length of Bassica juncea roots by 82.3% and stems by 37.7% in the presence of 50 mg/L MB dye. Furthermore, the dried biomass of A. acidophilus ATCC 26774 showed superior removal capacity (87.1%) of MB dye. The maximum adsorption capacities of the biomass were investigated at pH 11 (176.8 mg/g) and 0.09 g/20 ml dried biomass (120.3 mg/g), respectively. The influence of contact times (0-360 min) and initial concentrations (30.0-357.5 mg/L) on the biosorption of MB dye was also investigated. In addition, A. acidophilus ATCC 26774 was characterized by Fourier transform infrared spectroscopy (FT-IR) and point of zero charge (pHpzc). Equilibrium biosorption isotherms and kinetics results showed a Langmuir isotherm and pseudo-second-order kinetic models that fit well for MB dye biosorption. Monolayer biosorption, intraparticle diffusion, and chemisorption are predicted to play key roles in MB dye biosorption. In conclusion, A. acidophilus ATCC 26774 is proposed as an excellent plant growth promoting fungus and biosorbent with potential applications in the removal of cationic MB dye from the environment.
Collapse
Affiliation(s)
- Jinwon Kim
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, Korea
| | - Young-Kyoung Park
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, Korea
| | - Myeong-Seon Ryu
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, Korea
| | - Gwangsu Ha
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, Korea
| | - Hee-Jong Yang
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, Korea
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, Korea
| |
Collapse
|
2
|
Purcarea C, Ruginescu R, Banciu RM, Vasilescu A. Extremozyme-Based Biosensors for Environmental Pollution Monitoring: Recent Developments. BIOSENSORS 2024; 14:143. [PMID: 38534250 PMCID: PMC10968539 DOI: 10.3390/bios14030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Extremozymes combine high specificity and sensitivity with the ability to withstand extreme operational conditions. This work presents an overview of extremozymes that show potential for environmental monitoring devices and outlines the latest advances in biosensors utilizing these unique molecules. The characteristics of various extremozymes described so far are presented, underlining their stability and operational conditions that make them attractive for biosensing. The biosensor design is discussed based on the detection of photosynthesis-inhibiting herbicides as a case study. Several biosensors for the detection of pesticides, heavy metals, and phenols are presented in more detail to highlight interesting substrate specificity, applications or immobilization methods. Compared to mesophilic enzymes, the integration of extremozymes in biosensors faces additional challenges related to lower availability and high production costs. The use of extremozymes in biosensing does not parallel their success in industrial applications. In recent years, the "collection" of recognition elements was enriched by extremozymes with interesting selectivity and by thermostable chimeras. The perspectives for biosensor development are exciting, considering also the progress in genetic editing for the oriented immobilization of enzymes, efficient folding, and better electron transport. Stability, production costs and immobilization at sensing interfaces must be improved to encourage wider applications of extremozymes in biosensors.
Collapse
Affiliation(s)
- Cristina Purcarea
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (C.P.); (R.R.)
| | - Robert Ruginescu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (C.P.); (R.R.)
| | - Roberta Maria Banciu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
- Department of Analytical and Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
| |
Collapse
|
3
|
Differential Activity of the Extracellular Phenoloxidases in Different Strains of the Phytopathogenic Fungus, Microdochium nivale. J Fungi (Basel) 2022; 8:jof8090918. [PMID: 36135643 PMCID: PMC9502619 DOI: 10.3390/jof8090918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
To cause plant diseases, phytopathogenic fungi use numerous extracellular enzymes, among which, the phenoloxidases (POs) seem underestimated for the pathogens of non-woody plants. Our study aimed to (1) compare extracellular PO activities (lignin peroxidase, Mn peroxidase, laccase, and tyrosinase) in differentially virulent strains (inhabiting winter rye in a single field) of the phytopathogenic species, Microdochium nivale; (2) check whether these activities are responsive to host plant metabolites; and (3) search for correlations between the activities, lignin-decomposing capacity, and virulence. All strains displayed all four enzymatic activities, but their levels and dynamics depended on the particular strain. The activities displayed the hallmarks of co-regulation and responsiveness to the host plant extract. No relationships between the virulence of strains and levels of their extracellular PO activities or lignin-degrading capacity were revealed. We consider that different strains may rely on different POs for plant colonization, and that different POs contribute to the “uniqueness” of the enzymatic cocktails that are delivered into host plant tissues by different virulent strains of M. nivale. Our study supports the hypothesis of the differential behavior of closely related M. nivale strains, and discusses an important role of POs in the interactions of phytopathogens with herbaceous plants.
Collapse
|
4
|
Kumar A, Singh AK, Bilal M, Chandra R. Extremophilic Ligninolytic Enzymes: Versatile Biocatalytic Tools with Impressive Biotechnological Potential. Catal Letters 2022. [DOI: 10.1007/s10562-021-03800-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Chan WK, Wildeboer D, Garelick H, Purchase D. Competition of As and other Group 15 elements for surface binding sites of an extremophilic Acidomyces acidophilus isolated from a historical tin mining site. Extremophiles 2018; 22:795-809. [PMID: 30039469 DOI: 10.1007/s00792-018-1039-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 07/09/2018] [Indexed: 11/30/2022]
Abstract
An arsenic-resistant fungal strain, designated WKC-1, was isolated from a waste roaster pile in a historical tin mine in Cornwall, UK and successfully identified to be Acidomyces acidophilus using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS) proteomic-based biotyping approach. WKC-1 showed considerable resistance to As5+ and Sb5+ where the minimal inhibitory concentration (MIC) were 22500 and 100 mg L-1, respectively, on Czapex-Dox Agar (CDA) medium; it was substantially more resistant to As5+ than the reference strains CBS 335.97 and CCF 4251. In a modified CDA medium containing 0.02 mg L-1 phosphate, WKC-1 was able to remove 70.30% of As5+ (100 mg L-1). Sorption experiment showed that the maximum capacity of As5+ uptake was 170.82 mg g-1 dry biomass as predicted by the Langmuir model. The presence of Sb5+ reduced the As5+ uptake by nearly 40%. Based on the Fourier-transform infrared spectroscopy (FT-IR) analysis, we propose that Sb is competing with As for these sorption sites: OH, NH, CH, SO3 and PO4 on the fungal cell surface. To our knowledge, this is the first report on the impact of other Group 15 elements on the biosorption of As5+ in Acidomyces acidophilus.
Collapse
Affiliation(s)
- Wai Kit Chan
- Department of Natural Science, Faculty of Science and Technology, Middlesex University, The Burroughs, London, NW4 4BT, UK
| | - Dirk Wildeboer
- Department of Natural Science, Faculty of Science and Technology, Middlesex University, The Burroughs, London, NW4 4BT, UK
| | - Hemda Garelick
- Department of Natural Science, Faculty of Science and Technology, Middlesex University, The Burroughs, London, NW4 4BT, UK
| | - Diane Purchase
- Department of Natural Science, Faculty of Science and Technology, Middlesex University, The Burroughs, London, NW4 4BT, UK.
| |
Collapse
|
6
|
The StLAC2 gene is required for cell wall integrity, DHN-melanin synthesis and the pathogenicity of Setosphaeria turcica. Fungal Biol 2017; 121:589-601. [PMID: 28606354 DOI: 10.1016/j.funbio.2017.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 04/01/2017] [Accepted: 04/06/2017] [Indexed: 11/21/2022]
Abstract
Laccases are blue multicopper oxidases, play important roles in various biological processes. These processes include fungal dihydroxynaphthalene (DHN)-melanin biosynthesis and pathogenicity, cellular growth, morphogenesis, and differentiation. This study investigated functions of the laccase gene StLAC2 in Setosphaeria turcica. The Δlac2 mutant colony color was distinct from that of the S. turcica wild-type (WT) isolate, and the mutants exhibited defective conidial formation. In contrast to the WT, the mutants exhibited a lighter color on the 2, 2-azino-di-[3-ethylbenzo-thia-zolin-sulphonate] (ABTS) plates, and the intracellular laccase activity was lower. Notably, StLAC2 gene loss correlated with decreased DHN-melanin biosynthesis and affected the integrity of the cell wall, where the StLAC2 gene mutants showed thinner, more transparent walls with a higher number of mitochondria than the WT. The Δlac2 mutants also lost their pathogenicity in maize. The results indicated that the StLAC2 gene involved in cell wall integrity, melanin biosynthesis and appressorial and conidial formation.
Collapse
|
7
|
Boonen F, Vandamme AM, Etoundi E, Pigneur LM, Housen I. Identification and characterization of a novel multicopper oxidase from Acidomyces acidophilus with ferroxidase activity. Biochimie 2014; 102:37-46. [DOI: 10.1016/j.biochi.2014.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/10/2014] [Indexed: 11/28/2022]
|
8
|
Fermentation optimization, cloning and sequence analysis of the laccase gene from Shiraia sp. SUPER-H168. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0893-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
9
|
Tian F, Hou M, Chen L, Gao Y, Zhang X, Ji M, Wu G. Proteomic analysis of schistosomiasis japonica vaccine candidate antigens recognized by UV-attenuated cercariae-immunized porcine serum IgG2. Parasitol Res 2013; 112:2791-803. [PMID: 23715679 DOI: 10.1007/s00436-013-3447-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/29/2013] [Indexed: 12/24/2022]
Abstract
Many studies have showed that the radiation-attenuated cercariae (RAC) vaccine could induce the high protection of laboratory animals to resist the schistosoma infection by cellular and humoral mechanism. Here, we aimed to identify possible vaccine antigens by using specific IgG2 antibody from RAC-vaccinated pigs or vaccination and challenge pigs. The antigens from the schistosomal soluble worm antigen preparation (SWAP) recognized by the porcine IgG2 antibody were obtained using immunoprecipitation technique. These antigens were separated by 2-D electrophoresis, and 116 spots were successfully identified by MALDI-TOF MS from about 400 putative spots in gels. Among these spots, 113 spots could match to the Schistosoma japonicum. These identified proteins in four groups were classified by Gene Ontology (Go) database, and the mainly functions of these proteins were involved in binding, catalytic activity (thioredoxin peroxidase-2, et al.), signal transduction class (MAP Kinase, et al.), cell process (the heat shock 70-kDa protein 9B, et al.), and the intracellular component (tektin, et al.). Our methods suggested that it was possible to pull-down the interesting proteins recognized by specific antibodies. Our results may provide new clues for exploring the mechanism of high protection induced by RAC and shed some light on the research for anti-schistosomiasis japonica vaccine.
Collapse
Affiliation(s)
- Fang Tian
- Department of Pathogen Biology& Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Structural and phylogenetic analysis of laccases from Trichoderma: a bioinformatic approach. PLoS One 2013; 8:e55295. [PMID: 23383142 PMCID: PMC3561346 DOI: 10.1371/journal.pone.0055295] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/20/2012] [Indexed: 11/19/2022] Open
Abstract
The genus Trichoderma includes species of great biotechnological value, both for their mycoparasitic activities and for their ability to produce extracellular hydrolytic enzymes. Although activity of extracellular laccase has previously been reported in Trichoderma spp., the possible number of isoenzymes is still unknown, as are the structural and functional characteristics of both the genes and the putative proteins. In this study, the system of laccases sensu stricto in the Trichoderma species, the genomes of which are publicly available, were analyzed using bioinformatic tools. The intron/exon structure of the genes and the identification of specific motifs in the sequence of amino acids of the proteins generated in silico allow for clear differentiation between extracellular and intracellular enzymes. Phylogenetic analysis suggests that the common ancestor of the genus possessed a functional gene for each one of these enzymes, which is a characteristic preserved in T. atroviride and T. virens. This analysis also reveals that T. harzianum and T. reesei only retained the intracellular activity, whereas T. asperellum added an extracellular isoenzyme acquired through horizontal gene transfer during the mycoparasitic process. The evolutionary analysis shows that in general, extracellular laccases are subjected to purifying selection, and intracellular laccases show neutral evolution. The data provided by the present study will enable the generation of experimental approximations to better understand the physiological role of laccases in the genus Trichoderma and to increase their biotechnological potential.
Collapse
|
11
|
Differential regulation by organic compounds and heavy metals of multiple laccase genes in the aquatic hyphomycete Clavariopsis aquatica. Appl Environ Microbiol 2012; 78:4732-9. [PMID: 22544244 DOI: 10.1128/aem.00635-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To advance the understanding of the molecular mechanisms controlling microbial activities involved in carbon cycling and mitigation of environmental pollution in freshwaters, the influence of heavy metals and natural as well as xenobiotic organic compounds on laccase gene expression was quantified using quantitative real-time PCR (qRT-PCR) in an exclusively aquatic fungus (the aquatic hyphomycete Clavariopsis aquatica) for the first time. Five putative laccase genes (lcc1 to lcc5) identified in C. aquatica were differentially expressed in response to the fungal growth stage and potential laccase inducers, with certain genes being upregulated by, e.g., the lignocellulose breakdown product vanillic acid, the endocrine disruptor technical nonylphenol, manganese, and zinc. lcc4 is inducible by vanillic acid and most likely encodes an extracellular laccase already excreted during the trophophase of the organism, suggesting a function during fungal substrate colonization. Surprisingly, unlike many laccases of terrestrial fungi, none of the C. aquatica laccase genes was found to be upregulated by copper. However, copper strongly increases extracellular laccase activity in C. aquatica, possibly due to stabilization of the copper-containing catalytic center of the enzyme. Copper was found to half-saturate laccase activity already at about 1.8 μM, in favor of a fungal adaptation to low copper concentrations of aquatic habitats.
Collapse
|
12
|
Ramos JAT, Barends S, Verhaert RMD, de Graaff LH. The Aspergillus niger multicopper oxidase family: analysis and overexpression of laccase-like encoding genes. Microb Cell Fact 2011; 10:78. [PMID: 21981827 PMCID: PMC3200161 DOI: 10.1186/1475-2859-10-78] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 10/08/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Many filamentous fungal genomes contain complex groups of multicopper oxidase (MCO) coding genes that makes them a good source for new laccases with potential biotechnological interest. A bioinformatics analysis of the Aspergillus niger ATCC 1015 genome resulted in the identification of thirteen MCO genes. Ten of them were cloned and homologously overexpressed. RESULTS A bioinformatic analysis of the A. niger ATCC 1015 genome revealed the presence of 13 MCO genes belonging to three different subfamilies on the basis of their phylogenetic relationships: ascomycete laccases, fungal pigment MCOs and fungal ferroxidases. According to in silico amino acid sequence analysis, the putative genes encoding for functional extracellular laccases (mcoA, mcoB, mcoC, mcoD, mcoE, mcoF, mcoG, mcoI, mcoJ and mcoM) were placed under the control of the glaA promoter and overexpressed in A. niger N593. Enzyme activity plate assays with several common laccase substrates showed that all genes are actually expressed and code for active MCOs. Interestingly, expressed enzymes show different substrate specificities. In addition, optimization of fungal pigment MCOs extracellular production was investigated. The performance of the widely used glucoamylase signal sequence (ssGlaA) in McoA secretion was studied. Results obtained suggest that ssGlaA do not yield higher levels of secreted McoA when compared to its native secretion signal. Also, McoB synthesis was investigated using different nitrogen sources in minimal medium liquid cultures. Higher yields of extracellular McoB were achieved with (NH4)2 tartrate. CONCLUSIONS Aspergillus niger is a good source of new laccases. The different substrate specificity observed in plate assays makes them interesting to be purified and biochemically compared. The homologous signal sequence of McoA has been shown to be a good choice for its extracellular overexpression. From the nitrogen sources tested (NH4)2 tartrate has been found to be the most appropriate for McoB production in A. niger.
Collapse
Affiliation(s)
- Juan A Tamayo Ramos
- Fungal Systems Biology, Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
13
|
Piscitelli A, Giardina P, Lettera V, Pezzella C, Sannia G, Faraco V. Induction and transcriptional regulation of laccases in fungi. Curr Genomics 2011; 12:104-12. [PMID: 21966248 PMCID: PMC3129044 DOI: 10.2174/138920211795564331] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/01/2011] [Accepted: 03/14/2011] [Indexed: 11/22/2022] Open
Abstract
Fungal laccases are phenol oxidases widely studied for their use in several industrial applications, including pulp bleaching in paper industry, dye decolourisation, detoxification of environmental pollutants and revalorization of wastes and wastewaters. The main difficulty in using these enzymes at industrial scale ensues from their production costs. Elucidation of the components and the mechanisms involved in regulation of laccase gene expression is crucial for increasing the productivity of native laccases in fungi. Laccase gene transcription is regulated by metal ions, various aromatic compounds related to lignin or lignin derivatives, nitrogen and carbon sources. In this manuscript, most of the published results on fungal laccase induction, as well as analyses of both the sequences and putative functions of laccase gene promoters are reviewed. Analyses of promoter sequences allow defining a correlation between the observed regulatory effects on laccase gene transcription and the presence of specific responsive elements, and postulating, in some cases, a mechanism for their functioning. Only few reports have investigated the molecular mechanisms underlying laccase regulation by different stimuli. The reported analyses suggest the existence of a complex picture of laccase regulation phenomena acting through a variety of cis acting elements. However, the general mechanisms for laccase transcriptional regulation are far from being unravelled yet.
Collapse
Affiliation(s)
| | | | | | | | | | - Vincenza Faraco
- University of Naples “Federico II”, Dipartimento di Chimica Organica e Biochimica, Complesso Universitario Monte S. Angelo, via Cintia 4, 80126 Napoli, Italy
| |
Collapse
|
14
|
Cañas AI, Camarero S. Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 2010; 28:694-705. [PMID: 20471466 DOI: 10.1016/j.biotechadv.2010.05.002] [Citation(s) in RCA: 420] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 04/21/2010] [Accepted: 04/30/2010] [Indexed: 11/27/2022]
Abstract
Laccases are oxidoreductases which oxidize a variety of aromatic compounds using oxygen as the electron acceptor and producing water as by-product. The interest for these old enzymes (first described in 19th century) has progressively increased due to their outstanding biotechnological applicability. The presence of redox mediators is required for a number of biotechnological applications, providing the oxidation of complex substrates not oxidized by the enzyme alone. The efficiency of laccase-mediator systems to degrade recalcitrant compounds has been demonstrated, but still the high cost and possible toxicity of artificial mediators hamper their application at the industrial scale. Here, we present a general outlook of how alternative mediators can change this tendency. We focus on phenolic compounds related to lignin polymer that promotes the in vitro transformation of recalcitrant non-phenolic structures by laccase and are seemingly the natural mediators of laccases. The use of eco-friendly mediators easily available from lignocellulose, could contribute to the industrial implementation of laccases and the development of the 21th century biorefineries.
Collapse
Affiliation(s)
- Ana I Cañas
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, Madrid, Spain
| | | |
Collapse
|
15
|
Solé M, Kellner H, Brock S, Buscot F, Schlosser D. Extracellular laccase activity and transcript levels of putative laccase genes during removal of âthe xenoestrogen technical nonylphenol by the aquatic hyphomyceteClavariopsis aquatica. FEMS Microbiol Lett 2008; 288:47-54. [DOI: 10.1111/j.1574-6968.2008.01333.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
16
|
Junghanns C, Parra R, Keshavarz T, Schlosser D. Towards Higher Laccase Activities Produced by Aquatic Ascomycetous Fungi Through Combination of Elicitors and an Alternative Substrate. Eng Life Sci 2008. [DOI: 10.1002/elsc.200800042] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
17
|
Martin C, Pecyna M, Kellner H, Jehmlich N, Junghanns C, Benndorf D, von Bergen M, Schlosser D. Purification and biochemical characterization of a laccase from the aquatic fungus Myrioconium sp. UHH 1-13-18-4 and molecular analysis of the laccase-encoding gene. Appl Microbiol Biotechnol 2007; 77:613-24. [PMID: 17955194 DOI: 10.1007/s00253-007-1207-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 09/12/2007] [Accepted: 09/13/2007] [Indexed: 11/25/2022]
Abstract
Myrioconium sp. strain UHH 1-13-18-4 is an ascomycete anamorph isolated from the river Saale, Central Germany. An extracellular, monomeric, and glycosylated laccase with a molecular mass of 72.7 kDa as determined by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry and an isoelectric point below 2.8 was purified from CuSO(4) and vanillic acid amended liquid fungal cultures grown in malt extract medium. The catalytic efficiencies (k(cat)/K(m)) for the oxidation of syringaldazine, 2,6-dimethoxyphenol, and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonate) were 67.3, 46.9, and 28.2 s(-1) mM(-1), respectively, with K(m) values of 4.2, 67.8, and 104.9 microM. After pre-incubation at different pH values and temperatures for 1 h, more than 80% of the initial laccase activity was retained between pH 4 to 6 and 15 degrees C. The laccase-encoding gene was identified and sequenced at both the genomic and complementary DNA (cDNA) level, and corresponding structural characteristics and putative regulatory elements of the promoter region are reported. The identification of two tryptic peptides of the purified enzyme by mass spectrometry confirmed the identity of the functional laccase protein with the translated genomic sequence of the Myrioconium sp. laccase. Myrioconium sp. laccase shows the highest degree of identity with laccases from ascomycetes belonging to the family Sclerotiniaceae, order Helotiales.
Collapse
Affiliation(s)
- C Martin
- UFZ, Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|