1
|
Ortiz-Ramírez JA, Cuéllar-Cruz M, Villagómez-Castro JC, López-Romero E. Fungal Glycosidases in Sporothrix Species and Candida albicans. J Fungi (Basel) 2023; 9:919. [PMID: 37755027 PMCID: PMC10532485 DOI: 10.3390/jof9090919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Glycoside hydrolases (GHs) are enzymes that participate in many biological processes of fungi and other organisms by hydrolyzing glycosidic linkages in glycosides. They play fundamental roles in the degradation of carbohydrates and the assembly of glycoproteins and are important subjects of studies in molecular biology and biochemistry. Based on amino acid sequence similarities and 3-dimensional structures in the carbohydrate-active enzyme (CAZy), they have been classified in 171 families. Members of some of these families also exhibit the activity of trans-glycosydase or glycosyl transferase (GT), i.e., they create a new glycosidic bond in a substrate instead of breaking it. Fungal glycosidases are important for virulence by aiding tissue adhesion and colonization, nutrition, immune evasion, biofilm formation, toxin release, and antibiotic resistance. Here, we review fungal glycosidases with a particular emphasis on Sporothrix species and C. albicans, two well-recognized human pathogens. Covered issues include a brief account of Sporothrix, sporotrichosis, the different types of glycosidases, their substrates, and mechanism of action, recent advances in their identification and characterization, their potential biotechnological applications, and the limitations and challenges of their study given the rather poor available information.
Collapse
Affiliation(s)
| | | | | | - Everardo López-Romero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| |
Collapse
|
2
|
López-Ramírez LA, Martínez-Duncker I, Márquez-Márquez A, Vargas-Macías AP, Mora-Montes HM. Silencing of ROT2, the Encoding Gene of the Endoplasmic Reticulum Glucosidase II, Affects the Cell Wall and the Sporothrix schenckii-Host Interaction. J Fungi (Basel) 2022; 8:1220. [PMID: 36422041 PMCID: PMC9692468 DOI: 10.3390/jof8111220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 08/01/2023] Open
Abstract
Sporothrix schenckii is a member of the Sporothrix pathogenic clade and one of the most common etiological agents of sporotrichosis, a subcutaneous fungal infection that affects both animal and human beings. Like other fungal pathogens, the Sporothrix cell wall is composed of structural polysaccharides and glycoproteins that are covalently modified with both N-linked and O-linked glycans. Thus far, little is known about the N-linked glycosylation pathway in this organism or its contribution to cell wall composition and interaction with the host. Here, we silenced ROT2, which encodes the catalytic subunit of the endoplasmic reticulum α-glucosidase II, a processing enzyme key for the N-linked glycan core processing. Silencing of ROT2 led to the accumulation of the Glc2Man9GlcNAC2 glycan core at the cell wall and a reduction in the total content of N-linked glycans found in the wall. However, the highly silenced mutants showed a compensatory mechanism with increased content of cell wall O-linked glycans. The phenotype of mutants with intermediate levels of ROT2 silencing was more informative, as they showed changes in the cell wall composition and exposure of β-1.3-glucans and chitin at the cell surface. Furthermore, the ability to stimulate cytokine production by human mononuclear cells was affected, along with the phagocytosis by human monocyte-derived macrophages, in a mannose receptor-, complement receptor 3-, and TLR4-dependent stimulation. In an insect model of experimental sporotrichosis, these mutant cells showed virulence attenuation. In conclusion, S. schenckii ROT2 is required for proper N-linked glycosylation, cell wall organization and composition, and interaction with the host.
Collapse
Affiliation(s)
- Luz A. López-Ramírez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Mexico
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Anayeli Márquez-Márquez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Mexico
| | - Ana P. Vargas-Macías
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Mexico
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Mexico
| |
Collapse
|
3
|
Garcia-Gonzalez M, Minguet-Lobato M, Plou FJ, Fernandez-Lobato M. Molecular characterization and heterologous expression of two α-glucosidases from Metschnikowia spp, both producers of honey sugars. Microb Cell Fact 2020; 19:140. [PMID: 32652991 PMCID: PMC7353701 DOI: 10.1186/s12934-020-01397-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND α-Glucosidases are widely distributed enzymes with a varied substrate specificity that are traditionally used in biotechnological industries based on oligo- and polysaccharides as starting materials. According to amino acid sequence homology, α-glucosidases are included into two major families, GH13 and GH31. The members of family GH13 contain several α-glucosidases with confirmed hydrolytic activity on sucrose. Previously, a sucrose splitting activity from the nectar colonizing yeast Metschnikowia reukaufii which produced rare sugars with α-(1→1), α-(1→3) and α-(1→6) glycosidic linkages from sucrose was described. RESULTS In this study, genes codifying for α-glucosidases from the nectaries yeast M. gruessii and M. reukaufii were characterised and heterologously expressed in Escherichia coli for the first time. Recombinant proteins (Mg-αGlu and Mr-αGlu) were purified and biochemically analysed. Both enzymes mainly displayed hydrolytic activity towards sucrose, maltose and p-nitrophenyl-α-D-glucopyranoside. Structural analysis of these proteins allowed the identification of common features from the α-amylase family, in particular from glycoside hydrolases that belong to family GH13. The three acidic residues comprising the catalytic triad were identified and their relevance for the protein hydrolytic mechanism confirmed by site-directed mutagenesis. Recombinant enzymes produced oligosaccharides naturally present in honey employing sucrose as initial substrate and gave rise to mixtures with the same products profile (isomelezitose, trehalulose, erlose, melezitose, theanderose and esculose) previously obtained with M. reukaufii cell extracts. Furthermore, the same enzymatic activity was detected with its orthologous Mg-αGlu from M. gruessii. Interestingly, the isomelezitose amounts obtained in reactions mediated by the recombinant proteins, ~ 170 g/L, were the highest reported so far. CONCLUSIONS Mg/Mr-αGlu were heterologously overproduced and their biochemical and structural characteristics analysed. The recombinant α-glucosidases displayed excellent properties in terms of mild reaction conditions, in addition to pH and thermal stability. Besides, the enzymes produced a rare mixture of hetero-gluco-oligosaccharides by transglucosylation, mainly isomelezitose and trehalulose. These compounds are natural constituents of honey which purification from this natural source is quite unviable, what make these enzymes very interesting for the biotechnological industry. Finally, it should be remarked that these sugars have potential applications as food additives due to their suitable sweetness, viscosity and humectant capacity.
Collapse
Affiliation(s)
- Martin Garcia-Gonzalez
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CSIC-UAM), University Autonomous from Madrid. C/Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain
| | - Marina Minguet-Lobato
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CSIC-UAM), University Autonomous from Madrid. C/Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC, C/Marie Curie, 2. Cantoblanco, 28049, Madrid, Spain
| | - Maria Fernandez-Lobato
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CSIC-UAM), University Autonomous from Madrid. C/Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
4
|
Lopes-Bezerra LM, Mora-Montes HM, Zhang Y, Nino-Vega G, Rodrigues AM, de Camargo ZP, de Hoog S. Sporotrichosis between 1898 and 2017: The evolution of knowledge on a changeable disease and on emerging etiological agents. Med Mycol 2018. [DOI: 10.1093/mmy/myx103] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Leila M Lopes-Bezerra
- Laboratory of Cellular Mycology and Proteomics, Department of Cell Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Hector M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Mexico
| | - Yu Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Gustavo Nino-Vega
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Mexico
| | - Anderson Messias Rodrigues
- Cell Biology Division, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Zoilo Pires de Camargo
- Cell Biology Division, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, and Center of Expertise in Mycology of Radboudumc/CWZ, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Trujillo-Esquivel E, Martínez-Álvarez JA, Clavijo-Giraldo DM, Hernández NV, Flores-Martínez A, Ponce-Noyola P, Mora-Montes HM. The Sporothrix schenckii Gene Encoding for the Ribosomal Protein L6 Has Constitutive and Stable Expression and Works as an Endogenous Control in Gene Expression Analysis. Front Microbiol 2017; 8:1676. [PMID: 28919888 PMCID: PMC5585144 DOI: 10.3389/fmicb.2017.01676] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/18/2017] [Indexed: 12/29/2022] Open
Abstract
Sporothrix schenckii is one of the causative agents of sporotrichosis, a worldwide-distributed mycosis that affects humans and other mammals. The interest in basic and clinical features of this organism has significantly increased in the last years, yet little progress in molecular aspects has been reported. Gene expression analysis is a set of powerful tools that helps to assess the cell response to changes in the extracellular environment, the genetic networks controlling metabolic pathways, and the adaptation to different growth conditions. Most of the quantitative methodologies used nowadays require data normalization, and this is achieved measuring the expression of endogenous control genes. Reference genes, whose expression is assumed to suffer minimal changes regardless the cell morphology, the stage of the cell cycle or the presence of harsh extracellular conditions are commonly used as controls in Northern blotting assays, microarrays, and semi-quantitative or quantitative RT-PCR. Since the biology of the organisms is usually species specific, it is difficult to find a reliable group of universal genes that can be used as controls for data normalization in experiments addressing the gene expression, regardless the taxonomic classification of the organism under study. Here, we compared the transcriptional stability of the genes encoding for elongation factor 1A, Tfc1, a protein involved in transcription initiation on Pol III promoters, ribosomal protein L6, histone H2A, β-actin, β-tubulin, glyceraldehyde 3-phosphate dehydrogenase, UAF30, the upstream activating factor 30, and the transcription initiation factor TFIID subunit 10, during the fungal growth in different culture media and cell morphologies. Our results indicated that only the gene encoding for the ribosomal protein L6 showed a stable and constant expression. Furthermore, it displayed not transcriptional changes when S. schenckii infected larvae of Galleria mellonella or interacted with immune cells. Therefore, this gene could be used as control for data normalization in expression assays. As a proof of concept, this gene was used to assess the expression of genes encoding for glycosidases involved in the protein N-linked glycosylation pathway, a histidine kinase whose expression is regulated during the fungal dimorphism, and a glycosidase that participates in sucrose assimilation.
Collapse
Affiliation(s)
- Elías Trujillo-Esquivel
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de GuanajuatoGuanajuato, Mexico
| | - José A Martínez-Álvarez
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de GuanajuatoGuanajuato, Mexico
| | - Diana M Clavijo-Giraldo
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de GuanajuatoGuanajuato, Mexico
| | - Nahúm V Hernández
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de GuanajuatoGuanajuato, Mexico
| | - Alberto Flores-Martínez
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de GuanajuatoGuanajuato, Mexico
| | - Patricia Ponce-Noyola
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de GuanajuatoGuanajuato, Mexico
| | - Héctor M Mora-Montes
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de GuanajuatoGuanajuato, Mexico
| |
Collapse
|
6
|
Enzymatic characterization of clinical and environmental Cryptococcus neoformans strains isolated in Italy. Rev Iberoam Micol 2017; 34:77-82. [PMID: 28215482 DOI: 10.1016/j.riam.2016.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 02/01/2016] [Accepted: 04/08/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Cryptococcus neoformans is an encapsulated yeast causing mainly opportunistic infections. The virulence factors involved in cryptococcosis pathogenesis include the presence and the size of the polysaccharide capsule, the production of melanin by phenoloxidase, the growth at 37°C and the enzyme secretion like proteinase, phospholipase and urease. Many other enzymes are secreted by C. neoformans but their role in the fungus virulence is not yet known. AIMS In order to investigate this topic, we compared the phospholipase production between strains from patients and from bird droppings, and we examined its relationship to phenoloxidase production. We further characterized the strains by determining the activity of 19 different extracellular enzymes. METHODS Two hundred and five Italian C. neoformans clinical isolates and 32 environmental isolates were tested. Phenoloxidase production was determined by the development of brown colonies on Staib's agar. Extracellular phospholipase activity was performed using the semiquantitative egg-yolk plate method. API ZYM commercial kit was used to observe the production and the activity of 19 different extracellular enzymes. RESULTS Statistical analysis of the results showed a significantly higher phospholipase activity in the clinical isolates than in the environmental isolates. No significant difference about the phenoloxidase production between both groups was found. Regarding the 19 extracellular enzymes tested using the API ZYM commercial kit, acid phosphatase showed the highest enzymatic activity in both groups. Concerning the enzyme α-glucosidase, the clinical isolates presented a significantly higher positivity percentage than the environmental isolates. A hundred percent positivity in the enzyme leucine arylamidase production was observed in both groups, but the clinical isolates metabolized a significantly greater amount of substrate. CONCLUSIONS The higher phospholipase production in the clinical isolates group confirms the possible role of this enzyme in the cryptococcosis pathogenesis. The extracellular activities of the enzymes acid phosphatase, α-glucosidase and leucine arylamidase, tested by means of the API ZYM commercial kit, appear to be very interesting. Many studies indicate that these enzymes are involved in the virulence of bacteria and parasites; our results suggest their possible role as virulence factors in Cryptococcus infections too.
Collapse
|
7
|
Li M, Liu X, Liu Z, Sun Y, Liu M, Wang X, Zhang H, Zheng X, Zhang Z. Glycoside Hydrolase MoGls2 Controls Asexual/Sexual Development, Cell Wall Integrity and Infectious Growth in the Rice Blast Fungus. PLoS One 2016; 11:e0162243. [PMID: 27607237 PMCID: PMC5015852 DOI: 10.1371/journal.pone.0162243] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/21/2016] [Indexed: 11/18/2022] Open
Abstract
N-linked glycosylation is a way of glycosylation for newly synthesized protein, which plays a key role in the maturation and transport of proteins. Glycoside hydrolases (GHs) are essential in this process, and are involved in processing of N-linked glycoproteins or degradation of carbohydrate structures. Here, we identified and characterized MoGls2 in Magnaporthe oryzae, which is a yeast glucosidase II homolog Gls2 and is required for trimming the final glucose in N-linked glycans and normal cell wall synthesis. Target deletion of MoGLS2 in M. oryzae resulted in a reduced mycelial growth, an increased conidial production, delayed conidial germination and loss the ability of sexual reproduction. Pathogenicity assays revealed that the ΔMogls2 mutant showed significantly decreased in virulence and infectious growth. Further studies showed that the mutant was less sensitive to salt and osmotic stress, and increased sensitivity to cell wall stresses. Additionally, the ΔMogls2 mutant showed a defect in cell wall integrity. Our results indicate that MoGls2 is a key protein for the growth and development of M. oryzae, involving in the regulation of asexual/sexual development, stress response, cell wall integrity and infectious growth.
Collapse
Affiliation(s)
- Mengying Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Zhixi Liu
- Agricultural Bureau of Ningxiang County, Changsha 410600, China
| | - Yi Sun
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xiaoli Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- * E-mail:
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| |
Collapse
|
8
|
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete JDJ, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiol Mol Biol Rev 2016; 80:205-327. [PMID: 26864432 PMCID: PMC4771370 DOI: 10.1128/mmbr.00040-15] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.
Collapse
Affiliation(s)
- Monika Schmoll
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | - Christoph Dattenböck
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Doris Tisch
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Mario Ivan Alemán
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | - Scott E Baker
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Brown
- University of Otago, Department of Biochemistry and Genetics, Dunedin, New Zealand
| | | | - José Cetz-Chel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - Luis Delaye
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | | | - Alexa Frischmann
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | - Monica García-Esquivel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - David R Greenwood
- The University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Miguel Hernández-Oñate
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | - Joanna S Kruszewska
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Robert Lawry
- Lincoln University, Bio-Protection Research Centre, Lincoln, Canterbury, New Zealand
| | | | | | | | | | | | | | - Sebastian Piłsyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aroa Rodriguez-Iglesias
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | | | - Chih-Li Wang
- National Chung-Hsing University, Department of Plant Pathology, Taichung, Taiwan
| | - Ting-Fang Wang
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Susanne Zeilinger
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria University of Innsbruck, Institute of Microbiology, Innsbruck, Austria
| | | | - Alfredo Herrera-Estrella
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| |
Collapse
|
9
|
Crystal structure and substrate-binding mode of GH63 mannosylglycerate hydrolase from Thermus thermophilus HB8. J Struct Biol 2015; 190:21-30. [DOI: 10.1016/j.jsb.2015.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 11/20/2022]
|
10
|
Lopes-Bezerra LM, Lozoya-Pérez NE, López-Ramírez LA, Martínez-Álvarez JA, Teixeira MM, Felipe MSS, Flores-Carreón A, Mora-Montes HM. Functional characterization of Sporothrix schenckii glycosidases involved in the N-linked glycosylation pathway. Med Mycol 2014; 53:60-8. [PMID: 25526779 DOI: 10.1093/mmy/myu057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Protein glycosylation pathways are conserved metabolic processes in eukaryotic organisms and are required for cell fitness. In fungal pathogens, the N-linked glycosylation pathway is indispensable for proper cell wall composition and virulence. In Sporothrix schenckii sensu stricto, the causative agent of sporotrichosis, little is known about this glycosylation pathway. Here, using a genome-wide screening for putative members of the glycosyl hydrolase (CAZy - GH) families 47 and 63, which group enzymes involved in the processing step during N-linked glycan maturation, we found seven homologue genes belonging to family 47 and one to family 63. The eight genes were individually expressed in C. albicans null mutants lacking either MNS1 (for members of family 47) or CWH41 (for the member of family 63). Our results indicate that SsCWH41 is the functional ortholog of CaCWH41, whereas SsMNS1 is the functional ortholog of CaMNS1. The remaining genes of family 47 encode Golgi mannosidases and endoplasmic reticulum degradation-enhancing alpha-mannosidase-like proteins (EDEMs). Since these GH families gather proteins used as target for drugs to control cell growth, identification of these genes could help in the design of antifungals that could be used to treat sporotrichosis and other fungal diseases. In addition, to our knowledge, we are the first to report that Golgi mannosidases and EDEMs are expressed and characterized in yeast cells.
Collapse
Affiliation(s)
- Leila M Lopes-Bezerra
- Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nancy E Lozoya-Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, colonia Noria Alta, Guanajuato, Guanajuato, México
| | - Luz A López-Ramírez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, colonia Noria Alta, Guanajuato, Guanajuato, México
| | - José A Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, colonia Noria Alta, Guanajuato, Guanajuato, México
| | - Marcus M Teixeira
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Maria S S Felipe
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Arturo Flores-Carreón
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, colonia Noria Alta, Guanajuato, Guanajuato, México
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, colonia Noria Alta, Guanajuato, Guanajuato, México
| |
Collapse
|
11
|
Teixeira MM, de Almeida LGP, Kubitschek-Barreira P, Alves FL, Kioshima ÉS, Abadio AKR, Fernandes L, Derengowski LS, Ferreira KS, Souza RC, Ruiz JC, de Andrade NC, Paes HC, Nicola AM, Albuquerque P, Gerber AL, Martins VP, Peconick LDF, Neto AV, Chaucanez CB, Silva PA, Cunha OL, de Oliveira FFM, dos Santos TC, Barros ALN, Soares MA, de Oliveira LM, Marini MM, Villalobos-Duno H, Cunha MML, de Hoog S, da Silveira JF, Henrissat B, Niño-Vega GA, Cisalpino PS, Mora-Montes HM, Almeida SR, Stajich JE, Lopes-Bezerra LM, Vasconcelos ATR, Felipe MSS. Comparative genomics of the major fungal agents of human and animal Sporotrichosis: Sporothrix schenckii and Sporothrix brasiliensis. BMC Genomics 2014; 15:943. [PMID: 25351875 PMCID: PMC4226871 DOI: 10.1186/1471-2164-15-943] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/25/2014] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The fungal genus Sporothrix includes at least four human pathogenic species. One of these species, S. brasiliensis, is the causal agent of a major ongoing zoonotic outbreak of sporotrichosis in Brazil. Elsewhere, sapronoses are caused by S. schenckii and S. globosa. The major aims on this comparative genomic study are: 1) to explore the presence of virulence factors in S. schenckii and S. brasiliensis; 2) to compare S. brasiliensis, which is cat-transmitted and infects both humans and cats with S. schenckii, mainly a human pathogen; 3) to compare these two species to other human pathogens (Onygenales) with similar thermo-dimorphic behavior and to other plant-associated Sordariomycetes. RESULTS The genomes of S. schenckii and S. brasiliensis were pyrosequenced to 17x and 20x coverage comprising a total of 32.3 Mb and 33.2 Mb, respectively. Pair-wise genome alignments revealed that the two species are highly syntenic showing 97.5% average sequence identity. Phylogenomic analysis reveals that both species diverged about 3.8-4.9 MYA suggesting a recent event of speciation. Transposable elements comprise respectively 0.34% and 0.62% of the S. schenckii and S. brasiliensis genomes and expansions of Gypsy-like elements was observed reflecting the accumulation of repetitive elements in the S. brasiliensis genome. Mitochondrial genomic comparisons showed the presence of group-I intron encoding homing endonucleases (HE's) exclusively in S. brasiliensis. Analysis of protein family expansions and contractions in the Sporothrix lineage revealed expansion of LysM domain-containing proteins, small GTPases, PKS type1 and leucin-rich proteins. In contrast, a lack of polysaccharide lyase genes that are associated with decay of plants was observed when compared to other Sordariomycetes and dimorphic fungal pathogens, suggesting evolutionary adaptations from a plant pathogenic or saprobic to an animal pathogenic life style. CONCLUSIONS Comparative genomic data suggest a unique ecological shift in the Sporothrix lineage from plant-association to mammalian parasitism, which contributes to the understanding of how environmental interactions may shape fungal virulence. . Moreover, the striking differences found in comparison with other dimorphic fungi revealed that dimorphism in these close relatives of plant-associated Sordariomycetes is a case of convergent evolution, stressing the importance of this morphogenetic change in fungal pathogenesis.
Collapse
Affiliation(s)
- Marcus M Teixeira
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | | | - Paula Kubitschek-Barreira
- />Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | - Fernanda L Alves
- />Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
- />Grupo Informática de Biossistemas, Centro de Pesquisas René Rachou, FIOCRUZ, Minas, Belo Horizonte, MG Brazil
| | - Érika S Kioshima
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
- />Departamento de Análises Clínicas, Universidade Estadual de Maringá, Maringá, PR Brazil
| | - Ana KR Abadio
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Larissa Fernandes
- />Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Ceilândia, Brasília, DF Brazil
| | - Lorena S Derengowski
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Karen S Ferreira
- />Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, São Paulo, SP Brazil
| | - Rangel C Souza
- />Laboratório Nacional de Computação Científica, Petrópolis, RJ Brazil
| | - Jeronimo C Ruiz
- />Grupo Informática de Biossistemas, Centro de Pesquisas René Rachou, FIOCRUZ, Minas, Belo Horizonte, MG Brazil
| | - Nathalia C de Andrade
- />Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | - Hugo C Paes
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - André M Nicola
- />Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF Brazil
- />Programa de pós-graduação em Medicina Tropical, Universidade de Brasília, Brasília, DF Brazil
| | - Patrícia Albuquerque
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
- />Programa de pós-graduação em Medicina Tropical, Universidade de Brasília, Brasília, DF Brazil
| | | | - Vicente P Martins
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Luisa DF Peconick
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Alan Viggiano Neto
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Claudia B Chaucanez
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Patrícia A Silva
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Oberdan L Cunha
- />Laboratório Nacional de Computação Científica, Petrópolis, RJ Brazil
| | | | - Tayná C dos Santos
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Amanda LN Barros
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Marco A Soares
- />Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Luciana M de Oliveira
- />Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
- />Programa de pós-graduação em Bioinformática, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Marjorie M Marini
- />Departamento de Microbiologia Imunobiologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP Brazil
| | - Héctor Villalobos-Duno
- />Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela
| | - Marcel ML Cunha
- />Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | - Sybren de Hoog
- />CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - José F da Silveira
- />Departamento de Microbiologia Imunobiologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP Brazil
| | - Bernard Henrissat
- />Centre National de la Recherche Scientifique, Aix-Marseille, Université, CNRS, Marseille, France
| | - Gustavo A Niño-Vega
- />Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela
| | - Patrícia S Cisalpino
- />Grupo Informática de Biossistemas, Centro de Pesquisas René Rachou, FIOCRUZ, Minas, Belo Horizonte, MG Brazil
| | | | - Sandro R Almeida
- />Departamento de Análises Clínicas e Toxicológicas, Universidade de São Paulo, São Paulo, SP Brazil
| | - Jason E Stajich
- />Department of Plant Pathology & Microbiology, University of California, Riverside, CA USA
| | - Leila M Lopes-Bezerra
- />Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | | | - Maria SS Felipe
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
- />Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF Brazil
| |
Collapse
|
12
|
Li DD, Wang Y, Dai BD, Li XX, Zhao LX, Cao YB, Yan L, Jiang YY. ECM17-dependent methionine/cysteine biosynthesis contributes to biofilm formation in Candida albicans. Fungal Genet Biol 2012; 51:50-9. [PMID: 23246394 DOI: 10.1016/j.fgb.2012.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/06/2012] [Accepted: 11/28/2012] [Indexed: 11/29/2022]
Abstract
Candida albicans has become the fourth leading pathogen of nosocomial bloodstream infections largely due to biofilm formation on implanted medical devices. Previous microarray data indicated that almost all genes in methionine (Met)/cysteine (Cys) biosynthesis pathway were up-regulated during biofilm formation, especially during the adherence period. In this work, we studied the role of Met/Cys biosynthesis pathway by disrupting ECM17, a gene encoding sulfite reductase in C. albicans. It was found that the ecm17Δ/Δ mutant failed to catalyze the biochemical reaction from sulfite to H(2)S and hardly grew in media lacking Met and Cys. NaSH, the donor of H(2)S, dose-dependently improved the growth of ecm17Δ/Δ in media lacking a sulfur source. Sufficient Met/Cys supply inhibited the expression of ECM17 in a dose-dependent manner. These results validated the important role of ECM17 in Met/Cys biosynthesis. Interestingly, the ecm17Δ/Δ mutant showed diminished ability to form biofilm, attenuated adhesion on abiotic substrate and decreased filamentation on solid SLD medium, especially under conditions lacking Met/Cys. Further results indicated that ECM17 affected the expressions of ALS3, CSH1, HWP1 and ECE1, and that the cAMP-protein kinase A (PKA) pathway was associated with ECM17 and Met/Cys biosynthesis pathway. These results provide new insights into the role of Met/Cys biosynthesis pathway in regulating cAMP-PKA pathway and benefiting biofilm formation.
Collapse
Affiliation(s)
- De-Dong Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Robledo-Ortiz CI, Flores-Carreón A, Hernández-Cervantes A, Álvarez-Vargas A, Lee KK, Díaz-Jiménez DF, Munro CA, Cano-Canchola C, Mora-Montes HM. Isolation and functional characterization of Sporothrix schenckii ROT2, the encoding gene for the endoplasmic reticulum glucosidase II. Fungal Biol 2012; 116:910-8. [DOI: 10.1016/j.funbio.2012.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 06/06/2012] [Accepted: 06/15/2012] [Indexed: 12/20/2022]
|
14
|
Miyazaki T, Matsumoto Y, Matsuda K, Kurakata Y, Matsuo I, Ito Y, Nishikawa A, Tonozuka T. Heterologous expression and characterization of processing α-glucosidase I from Aspergillus brasiliensis ATCC 9642. Glycoconj J 2011; 28:563-71. [PMID: 22020441 DOI: 10.1007/s10719-011-9356-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/06/2011] [Accepted: 10/06/2011] [Indexed: 01/12/2023]
Abstract
A gene for processing α-glucosidase I from a filamentous fungus, Aspergillus brasiliensis (formerly called Aspergillus niger) ATCC 9642 was cloned and fused to a glutathione S-transferase tag. The active construct with the highest production level was a truncation mutant deleting the first 16 residues of the hydrophobic N-terminal domain. This fusion enzyme hydrolyzed pyridylaminated (PA-) oligosaccharides Glc(3)Man(9)GlcNAc(2)-PA and Glc(3)Man(4)-PA and the products were identified as Glc(2)Man(9)GlcNAc(2)-PA and Glc(2)Man(4)-PA, respectively. Saturation curves were obtained for both Glc(3)Man(9)GlcNAc(2)-PA and Glc(3)Man(4)-PA, and the K (m) values for both substrates were estimated in the micromolar range. When 1 μM Glc(3)Man(4)-PA was used as a substrate, the inhibitors kojibiose and 1-deoxynojirimycin had similar effects on the enzyme; at 20 μM concentration, both inhibitors reduced activity by 50%.
Collapse
Affiliation(s)
- Takatsugu Miyazaki
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Purification and partial biochemical characterization of a membrane-bound type II-like α-glucosidase from the yeast morphotype of Sporothrix schenckii. Antonie van Leeuwenhoek 2011; 101:313-22. [DOI: 10.1007/s10482-011-9636-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 08/22/2011] [Indexed: 01/13/2023]
|