1
|
Zhou ZY, Bai SJ, He J, Xiong QX, Zhong ZD, Lu CW, Kuang LF, Jian ZR, Gu JL, Liu MZ, Li PF, Wang EL, Wang GX, Ling F, Yu Q, Liu T. Pathogenicity, ultrastructure and genomics analysis of Nocardia seriolae isolated from largemouth bass (Micropterus salmoides). Microb Pathog 2025; 205:107715. [PMID: 40383242 DOI: 10.1016/j.micpath.2025.107715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 05/09/2025] [Accepted: 05/16/2025] [Indexed: 05/20/2025]
Abstract
Fish granulomatous diseases induced by Nocardia seriolae have caused significant economic losses in global aquaculture. Understanding the structural and genetic basis of N. seriolae' s survival and immune evasion strategies is crucial. However, while some aspects of its pathogenicity have been explored, a comprehensive characterization of its ultrastructural features and the associated genetic determinants, especially in direct correlation, has remained incompletely elucidated. In this study, we utilized specialized staining methods to further characterize the pathology of chronic granulomatous inflammation induced by N. seriolae in largemouth bass (Micropterus salmoides). Using scanning electron microscope (SEM) and transmission electron microscope (TEM), we revealed further insights into the morphological (surface structure, cell wall) and intracellular features (mesosomes, ribosomes, lipids) of N. seriolae, alongside diverse division patterns. Through genomic analysis, the gene clusters related to cell wall synthesis and cell division were characterized, including peptidoglycan, arabinogalactan, mycolic acids (MAs) synthesis, and the division and cell wall (DCW) gene cluster, highlighting the conservation and potential functions of these genes in these processes. In conclusion, these findings provide crucial foundational knowledge regarding the ultrastructure and genetic determinants potentially involved in the pathogenicity of N. seriolae. By integrating detailed ultrastructural observations with genomic insights, this study enhances our understanding of its complex biology and aims to strengthen the foundation for the development of prevention, control, and detection methods for fish granulomatous diseases.
Collapse
Affiliation(s)
- Zheng-Yang Zhou
- Hainan Institute of Northwest A&F University, Sanya, Hainan Province, 572024, PR China; College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, PR China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Shang-Jie Bai
- Hainan Institute of Northwest A&F University, Sanya, Hainan Province, 572024, PR China; College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, PR China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jie He
- Chengdu Lilai Biotechnology Co., Ltd., Chengdu, Sichuan, 610000, PR China
| | - Quan-Xin Xiong
- Chengdu Lilai Biotechnology Co., Ltd., Chengdu, Sichuan, 610000, PR China
| | - Zhen-Dong Zhong
- Chengdu Lilai Biotechnology Co., Ltd., Chengdu, Sichuan, 610000, PR China
| | - Chen-Wang Lu
- Hainan Institute of Northwest A&F University, Sanya, Hainan Province, 572024, PR China; College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, PR China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Lin-Feng Kuang
- Hainan Institute of Northwest A&F University, Sanya, Hainan Province, 572024, PR China; College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, PR China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Zheng-Ran Jian
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, PR China
| | - Jin-Lai Gu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, PR China
| | - Ming-Zhu Liu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Sciences, Nanning, 530007, PR China
| | - Peng-Fei Li
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Sciences, Nanning, 530007, PR China
| | - Er-Long Wang
- Hainan Institute of Northwest A&F University, Sanya, Hainan Province, 572024, PR China; College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, PR China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Gao-Xue Wang
- Hainan Institute of Northwest A&F University, Sanya, Hainan Province, 572024, PR China; College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, PR China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Fei Ling
- Hainan Institute of Northwest A&F University, Sanya, Hainan Province, 572024, PR China; College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, PR China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Qing Yu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Sciences, Nanning, 530007, PR China.
| | - Tao Liu
- Hainan Institute of Northwest A&F University, Sanya, Hainan Province, 572024, PR China; College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, PR China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
2
|
Ramesh M, Behra PRK, Pettersson BMF, Dasgupta S, Kirsebom LA. Age-Dependent Pleomorphism in Mycobacterium monacense Cultures. Microorganisms 2025; 13:475. [PMID: 40142368 PMCID: PMC11946739 DOI: 10.3390/microorganisms13030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 03/28/2025] Open
Abstract
Changes in cell shape have been shown to be an integral part of the mycobacterial life cycle; however, systematic investigations into its patterns of pleomorphic behaviour in connection with stages or conditions of growth are scarce. We have studied the complete growth cycle of Mycobacterium monacense cultures, a Non-Tuberculous Mycobacterium (NTM), in solid as well as in liquid media. We provide data showing changes in cell shape from rod to coccoid and occurrence of refractive cells ranging from Phase Grey to phase Bright (PGB) in appearance upon ageing. Changes in cell shape could be correlated to the bi-phasic nature of the growth curves for M. monacense (and the NTM Mycobacterium boenickei) as measured by the absorbance of liquid cultures while growth measured by colony-forming units (CFU) on solid media showed a uniform exponential growth. Based on the complete M. monacense genome we identified genes involved in cell morphology, and analyses of their mRNA levels revealed changes at different stages of growth. One gene, dnaK_3 (encoding a chaperone), showed significantly increased transcript levels in stationary phase cells relative to exponentially growing cells. Based on protein domain architecture, we identified that the DnaK_3 N-terminus domain is an MreB-like homolog. Endogenous overexpression of M. monacense dnaK_3 in M. monacense was unsuccessful (appears to be lethal) while exogenous overexpression in Mycobacterium marinum resulted in morphological changes with an impact on the frequency of appearance of PGB cells. However, the introduction of an anti-sense "gene" targeting the M. marinum dnaK_3 did not show significant effects. Using dnaK_3-lacZ reporter constructs we also provide data suggesting that the morphological differences could be due to differences in the regulation of dnaK_3 in the two species. Together these data suggest that, although its regulation may vary between mycobacterial species, the dnaK_3 might have a direct or indirect role in the processes influencing mycobacterial cell shape.
Collapse
Affiliation(s)
| | | | | | | | - Leif A. Kirsebom
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, SE-751 24 Uppsala, Sweden; (M.R.); (P.R.K.B.); (B.M.F.P.); (S.D.)
| |
Collapse
|
3
|
Ayerakwa EA, Abban MK, Isawumi A, Mosi L. Profiling Mycobacterium ulcerans: sporulation, survival strategy and response to environmental factors. Future Sci OA 2023; 9:FSO845. [PMID: 37026027 PMCID: PMC10072065 DOI: 10.2144/fsoa-2022-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
Mycobacterium ulcerans is the causative agent of Buruli ulcer – a necrotizing skin infection. As an environmental pathogen, it has developed stress response mechanisms for survival. Similar to endospore formation in M. marinum, it is likely that M. ulcerans employs sporulation mechanisms for its survival and transmission. In this review, we modeled possible transmission routes and patterns of M. ulcerans from the environment to its host. We provided insights into the evolution of M. ulcerans and its genomic profiles. We discuss reservoirs of M. ulcerans as an environmental pathogen and its environmental survival. We comprehensively discuss sporulation as a possible stress response mechanism and modelled endospore formation in M. ulcerans. At last, we highlighted sporulation associated markers, which upon expression trigger endospore formation.
Collapse
|
4
|
Pradhan A, Mukkayyan N, Jakkala K, Ajitkumar P. Mycobacterial Populations Partly Change the Proportions of the Cells Undergoing Asymmetric/Symmetric Divisions in Response to Glycerol Levels in Growth Medium. Cells 2021; 10:1160. [PMID: 34064643 PMCID: PMC8151439 DOI: 10.3390/cells10051160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/25/2022] Open
Abstract
Twenty to thirty percent of the septating mycobacterial cells of the mid-log phase population showed highly deviated asymmetric constriction during division (ACD), while the remaining underwent symmetric constriction during division (SCD). The ACD produced short-sized cells (SCs) and normal/long-sized cells (NCs) as the sister-daughter cells, but with significant differential susceptibility to antibiotic/oxidative/nitrite stress. Here we report that, at 0.2% glycerol, formulated in the Middlebrook 7H9 medium, a significantly high proportion of the cells were divided by SCD. When the glycerol concentration decreased to 0.1% due to cell-growth/division, the ACD proportion gradually increased until the ACD:SCD ratio reached ~50:50. With further decrease in the glycerol levels, the SCD proportion increased with concomitant decrease in the ACD proportion. Maintenance of glycerol at 0.1%, through replenishment, held the ACD:SCD proportion at ~50:50. Transfer of the cells from one culture with a specific glycerol level to the supernatant from another culture, with a different glycerol level, made the cells change the ACD:SCD proportion to that of the culture from which the supernatant was taken. RT-qPCR data showed the possibility of diadenosine tetraphosphate phosphorylase (MSMEG_2932), phosphatidylinositol synthase (MSMEG_2933), and a Nudix family hydrolase (MSMEG_2936) involved in the ACD:SCD proportion-change in response to glycerol levels. We also discussed its physiological significance.
Collapse
Affiliation(s)
| | | | | | - Parthasarathi Ajitkumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India; (A.P.); (N.M.); (K.J.)
| |
Collapse
|
5
|
André AC, Debande L, Marteyn BS. The selective advantage of facultative anaerobes relies on their unique ability to cope with changing oxygen levels during infection. Cell Microbiol 2021; 23:e13338. [PMID: 33813807 DOI: 10.1111/cmi.13338] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022]
Abstract
Bacteria, including those that are pathogenic, have been generally classified according to their ability to survive and grow in the presence or absence of oxygen: aerobic and anaerobic bacteria, respectively. Strict aerobes require oxygen to grow (e.g., Neisseria), and strict anaerobes grow exclusively without, and do not survive oxygen exposure (e.g., Clostridia); aerotolerant bacteria (e.g., Lactobacilli) are insensitive to oxygen exposure. Facultative anaerobes (e.g., E. coli) have the unique ability to grow in the presence or in the absence of oxygen and are thus well-adapted to these changing conditions, which may constitute an underestimated selective advantage for infection. In the WHO antibiotic-resistant 'priority pathogens' list, facultative anaerobes are overrepresented (8 among 12 listed pathogens), consistent with clinical studies performed in populations particularly susceptible to infectious diseases. Bacteria aerobic respiratory chain plays a central role in oxygen consumption, leading to the formation of hypoxic infectious sites (infectious hypoxia). Facultative anaerobes have developed a wide diversity of aerotolerance and anaerotolerance strategies in vivo. However, at a single cell level, the modulation of the intracellular oxygen level in host infected cells remains elusive and will be discussed in this review. In conclusion, the ability of facultative bacteria to evolve in the presence or the absence of oxygen is essential for their virulence strategy and constitute a selective advantage. TAKE AWAY: Most life-threatening pathogenic bacteria are facultative anaerobes. Only facultative anaerobes are aerotolerant, anaerotolerant and capable of consuming O2 . Facultative anaerobes induce and are well adapted to cellular hypoxia.
Collapse
Affiliation(s)
- Antonin C André
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, Université de Strasbourg, Strasbourg, France.,Université de Paris, Paris, France
| | - Lorine Debande
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, Université de Strasbourg, Strasbourg, France
| | - Benoit S Marteyn
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, Université de Strasbourg, Strasbourg, France.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.,Institut Pasteur, Unité de Pathogenèse des Infections Vasculaires, Paris Cedex 15, France
| |
Collapse
|
6
|
de Wet TJ, Winkler KR, Mhlanga M, Mizrahi V, Warner DF. Arrayed CRISPRi and quantitative imaging describe the morphotypic landscape of essential mycobacterial genes. eLife 2020; 9:e60083. [PMID: 33155979 PMCID: PMC7647400 DOI: 10.7554/elife.60083] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/03/2020] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis possesses a large number of genes of unknown or predicted function, undermining fundamental understanding of pathogenicity and drug susceptibility. To address this challenge, we developed a high-throughput functional genomics approach combining inducible CRISPR-interference and image-based analyses of morphological features and sub-cellular chromosomal localizations in the related non-pathogen, M. smegmatis. Applying automated imaging and analysis to 263 essential gene knockdown mutants in an arrayed library, we derive robust, quantitative descriptions of bacillary morphologies consequent on gene silencing. Leveraging statistical-learning, we demonstrate that functionally related genes cluster by morphotypic similarity and that this information can be used to inform investigations of gene function. Exploiting this observation, we infer the existence of a mycobacterial restriction-modification system, and identify filamentation as a defining mycobacterial response to histidine starvation. Our results support the application of large-scale image-based analyses for mycobacterial functional genomics, simultaneously establishing the utility of this approach for drug mechanism-of-action studies.
Collapse
Affiliation(s)
- Timothy J de Wet
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape TownSouth Africa
| | - Kristy R Winkler
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape TownSouth Africa
| | - Musa Mhlanga
- Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape TownSouth Africa
- Department of Integrative Biomedical Sciences, University of Cape TownCape TownSouth Africa
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape TownSouth Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape TownCape TownSouth Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape TownSouth Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape TownCape TownSouth Africa
| |
Collapse
|
7
|
Mycobacteria Bovis osteomyelitis following intravesical BCG for bladder cancer. IDCases 2017; 10:75-78. [PMID: 29034173 PMCID: PMC5635337 DOI: 10.1016/j.idcr.2017.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/16/2017] [Accepted: 09/25/2017] [Indexed: 11/20/2022] Open
Abstract
Mycobacteria Bovis osteomyelitis is a rare adverse effect after Bacillus Calmette-Guerin (BCG) intravesical therapy. A 62-year-old male presented with acute spinal cord compression three months after completing his second course of therapy for bladder cancer. The first course with intravesical BCG was complicated with an episode of hematuria. He reported intermittent subjective fever for 3 weeks thereafter which resolved with Tylenol. Interferon-α2 B was added to the second cycle of intravesical BCG with the indication here being residual tumor, and was tolerated well. His complete blood count and liver function tests were unremarkable on admission. MRI showed features of osteomyelitis with cord compression at T4/T5. Biopsy of the affected bone showed caseating granuloma which was positive for acid fact bacilli, later confirmed to be Mycobacterium Bovis by PCR and pyrazinamide resistance. He was started on intravenous steroids and underwent spinal cord decompression. Rifampin, Isoniazid, and Ethambutol were then commenced. His weakness improved and after two months of therapy he was asymptomatic and back to his baseline function. Osteomyelitis is a rare but serious complication. Early diagnosis and treatment is important as the outcomes are good.
Collapse
|
8
|
Kirsebom LA, Dasgupta S, Fredrik Pettersson BM. Pleiomorphism in Mycobacterium. ADVANCES IN APPLIED MICROBIOLOGY 2016; 80:81-112. [PMID: 22794145 DOI: 10.1016/b978-0-12-394381-1.00004-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Morphological variants in mycobacterial cultures under different growth conditions, including aging of the culture, have been shown to include fibrous aggregates, biofilms, coccoids, and spores. Here we discuss the diversity in shape and size changes demonstrated by bacterial cells with special reference to pleiomorphism observed in Mycobacterium spp. in response to nutritional and other environmental stresses. Inherent asymmetry in cell division and compartmentalization of cell interior under different growth conditions might contribute toward the observed pleiomorphism in mycobacteria. The regulatory genes comprising the bacterial signaling pathway responsible for initiating morphogenesis are speculated upon from bioinformatic identifications of genes for known sensors, kinases, and phosphatases existing in mycobacterial genomes as well as on the basis of what is known in other bacteria.
Collapse
|
9
|
Watanabe M, Kojima H, Fukui M. Complete genome sequence and cell structure of Limnochorda pilosa, a Gram-negative spore-former within the phylum Firmicutes. Int J Syst Evol Microbiol 2016; 66:1330-1339. [PMID: 26743010 DOI: 10.1099/ijsem.0.000881] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Limnochorda pilosa is a pleomorphic facultative anaerobe and the sole species in the class Limnochordia, which has tentatively been placed in the phylum Firmicutes. In the present study, the complete genome sequence of L. pilosa HC45T was obtained and analysed. The genome size was 3.82 Mbp and the DNA G+C content was 69.73 %. Phylogenetic analyses based on the 30S-50S ribosomal proteins and 23S rRNA gene consistently indicated that L. pilosa is phylogenetically isolated from the other members of the phylum Firmicutes. Ultrastructural observation revealed that L. pilosa possesses a Gram-negative-type cell wall and the capacity to form endospores. Accordingly, the L. pilosa genome has characteristics that are specific to Gram-negative bacteria and contains many genes that are involved in sporulation. On the other hand, several sporulation genes were absent from the L. pilosa genome although they have been regarded as essential for the endospore-forming system of members of the phylum Firmicutes. The gyrB gene of L. pilosa possesses an intein sequence. The genome has a high percentage of GTG start codons and lacks several conserved genes related to cell division.
Collapse
Affiliation(s)
- Miho Watanabe
- The Institute of Low Temperature Science, Hokkaido University,Sapporo,Japan
- Graduate School of Environmental Science, Hokkaido University,Sapporo,Japan
| | - Hisaya Kojima
- The Institute of Low Temperature Science, Hokkaido University,Sapporo,Japan
| | - Manabu Fukui
- The Institute of Low Temperature Science, Hokkaido University,Sapporo,Japan
| |
Collapse
|
10
|
Comparative Sigma Factor-mRNA Levels in Mycobacterium marinum under Stress Conditions and during Host Infection. PLoS One 2015; 10:e0139823. [PMID: 26445268 PMCID: PMC4596819 DOI: 10.1371/journal.pone.0139823] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/14/2015] [Indexed: 11/28/2022] Open
Abstract
We have used RNASeq and qRT-PCR to study mRNA levels for all σ-factors in different Mycobacterium marinum strains under various growth and stress conditions. We also studied their levels in M. marinum from infected fish and mosquito larvae. The annotated σ-factors were expressed and transcripts varied in relation to growth and stress conditions. Some were highly abundant such as sigA, sigB, sigC, sigD, sigE and sigH while others were not. The σ-factor mRNA profiles were similar after heat stress, during infection of fish and mosquito larvae. The similarity also applies to some of the known heat shock genes such as the α-crystallin gene. Therefore, it seems probable that the physiological state of M. marinum is similar when exposed to these different conditions. Moreover, the mosquito larvae data suggest that this is the state that the fish encounter when infected, at least with respect to σ-factor mRNA levels. Comparative genomic analysis of σ-factor gene localizations in three M. marinum strains and Mycobacterium tuberculosis H37Rv revealed chromosomal rearrangements that changed the localization of especially sigA, sigB, sigD, sigE, sigF and sigJ after the divergence of these two species. This may explain the variation in species-specific expression upon exposure to different growth conditions.
Collapse
|
11
|
Uhía I, Williams KJ, Shahrezaei V, Robertson BD. Mycobacterial Growth. Cold Spring Harb Perspect Med 2015; 5:cshperspect.a021097. [PMID: 25957314 DOI: 10.1101/cshperspect.a021097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this work, we review progress made in understanding the molecular underpinnings of growth and division in mycobacteria, concentrating on work published since the last comprehensive review ( Hett and Rubin 2008). We have focused on exciting work making use of new time-lapse imaging technologies coupled with reporter-gene fusions and antimicrobial treatment to generate insights into how mycobacteria grow and divide in a heterogeneous manner. We try to reconcile the different observations reported, providing a model of how they might fit together. We also review the topic of mycobacterial spores, which has generated considerable discussion during the last few years. Resuscitation promoting factors, and regulation of growth and division, have also been actively researched, and we summarize progress in these areas.
Collapse
Affiliation(s)
- Iria Uhía
- Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Kerstin J Williams
- Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Vahid Shahrezaei
- Department of Mathematics, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Brian D Robertson
- Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
12
|
Singh KM, Reddy B, Patel AK, Panchasara H, Parmar N, Patel AB, Shah TM, Bhatt VD, Joshi CG. Metagenomic analysis of buffalo rumen microbiome: Effect of roughage diet on Dormancy and Sporulation genes. Meta Gene 2014; 2:252-68. [PMID: 25606408 PMCID: PMC4287859 DOI: 10.1016/j.mgene.2014.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/06/2014] [Accepted: 01/16/2014] [Indexed: 11/16/2022] Open
Abstract
Buffalo rumen microbiome experiences a variety of diet stress and represents reservoir of Dormancy and Sporulation genes. However, the information on genomic responses to such conditions is very limited. The Ion Torrent PGM next generation sequencing technology was used to characterize general microbial diversity and the repertoire of microbial genes present, including genes associated with Dormancy and Sporulation in Mehsani buffalo rumen metagenome. The research findings revealed the abundance of bacteria at the domain level and presence of Dormancy and Sporulation genes which were predominantly associated with the Clostridia and Bacilli taxa belonging to the phyla Firmicutes. Genes associated with Sporulation cluster and Sporulation orphans were increased from 50% to 100% roughage treatment, thereby promoting sporulation all along the treatments. The spore germination is observed to be the highest in the 75% roughage treatment both in the liquid and solid rumen fraction samples with respect to the decrease in the values of the genes associated with spore core dehydration, thereby facilitating spore core hydration which is necessary for spore germination.
Collapse
Affiliation(s)
- K M Singh
- Department of Animal Biotechnology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand 388 001, Gujarat, India
| | - B Reddy
- Department of Animal Biotechnology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand 388 001, Gujarat, India
| | - A K Patel
- Department of Animal Biotechnology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand 388 001, Gujarat, India
| | - H Panchasara
- Livestock Research Station, Sardar Krushinagar Agricultural University, India
| | - N Parmar
- Department of Animal Biotechnology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand 388 001, Gujarat, India
| | - A B Patel
- Department of Animal Biotechnology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand 388 001, Gujarat, India
| | - T M Shah
- Department of Animal Biotechnology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand 388 001, Gujarat, India
| | - V D Bhatt
- Department of Animal Biotechnology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand 388 001, Gujarat, India
| | - C G Joshi
- Department of Animal Biotechnology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand 388 001, Gujarat, India
| |
Collapse
|
13
|
|
14
|
Singh B, Nitharwal RG, Ramesh M, Pettersson BMF, Kirsebom LA, Dasgupta S. Asymmetric growth and division inMycobacteriumspp.: compensatory mechanisms for non-medial septa. Mol Microbiol 2013; 88:64-76. [DOI: 10.1111/mmi.12169] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Bhupender Singh
- Department of Cell and Molecular Biology; Uppsala University Biomedical Center; Box 596; 751 24; Uppsala; Sweden
| | - Ram Gopal Nitharwal
- Department of Cell and Molecular Biology; Uppsala University Biomedical Center; Box 596; 751 24; Uppsala; Sweden
| | - Malavika Ramesh
- Department of Cell and Molecular Biology; Uppsala University Biomedical Center; Box 596; 751 24; Uppsala; Sweden
| | - B. M. Fredrik Pettersson
- Department of Cell and Molecular Biology; Uppsala University Biomedical Center; Box 596; 751 24; Uppsala; Sweden
| | - Leif A. Kirsebom
- Department of Cell and Molecular Biology; Uppsala University Biomedical Center; Box 596; 751 24; Uppsala; Sweden
| | - Santanu Dasgupta
- Department of Cell and Molecular Biology; Uppsala University Biomedical Center; Box 596; 751 24; Uppsala; Sweden
| |
Collapse
|
15
|
Joyce G, Williams KJ, Robb M, Noens E, Tizzano B, Shahrezaei V, Robertson BD. Cell division site placement and asymmetric growth in mycobacteria. PLoS One 2012; 7:e44582. [PMID: 22970255 PMCID: PMC3438161 DOI: 10.1371/journal.pone.0044582] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 08/08/2012] [Indexed: 01/12/2023] Open
Abstract
Mycobacteria are members of the actinomycetes that grow by tip extension and lack apparent homologues of the known cell division regulators found in other rod-shaped bacteria. Previous work using static microscopy on dividing mycobacteria led to the hypothesis that these cells can grow and divide asymmetrically, and at a wide range of sizes, in contrast to the cell growth and division patterns observed in the model rod-shaped organisms. In this study, we test this hypothesis using live-cell time-lapse imaging of dividing Mycobacterium smegmatis labelled with fluorescent PBP1a, to probe peptidoglycan synthesis and label the cell septum. We demonstrate that the new septum is placed accurately at mid-cell, and that the asymmetric division observed is a result of differential growth from the cell tips, with a more than 2-fold difference in growth rate between fast and slow growing poles. We also show that the division site is not selected at a characteristic cell length, suggesting this is not an important cue during the mycobacterial cell cycle.
Collapse
Affiliation(s)
- Graham Joyce
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College, London, United Kingdom
| | - Kerstin J. Williams
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College, London, United Kingdom
| | - Matthew Robb
- Department of Mathematics, Imperial College, London, United Kingdom
| | - Elke Noens
- European Molecular Biology Laboratory, Hamburg, Germany
| | | | - Vahid Shahrezaei
- Department of Mathematics, Imperial College, London, United Kingdom
| | - Brian D. Robertson
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College, London, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Aldridge BB, Fernandez-Suarez M, Heller D, Ambravaneswaran V, Irimia D, Toner M, Fortune SM. Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science 2011; 335:100-4. [PMID: 22174129 DOI: 10.1126/science.1216166] [Citation(s) in RCA: 324] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cells use both deterministic and stochastic mechanisms to generate cell-to-cell heterogeneity, which enables the population to better withstand environmental stress. Here we show that, within a clonal population of mycobacteria, there is deterministic heterogeneity in elongation rate that arises because mycobacteria grow in an unusual, unipolar fashion. Division of the asymmetrically growing mother cell gives rise to daughter cells that differ in elongation rate and size. Because the mycobacterial cell division cycle is governed by time, not cell size, rapidly elongating cells do not divide more frequently than slowly elongating cells. The physiologically distinct subpopulations of cells that arise through asymmetric growth and division are differentially susceptible to clinically important classes of antibiotics.
Collapse
Affiliation(s)
- Bree B Aldridge
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Higgins D, Dworkin J. Recent progress in Bacillus subtilis sporulation. FEMS Microbiol Rev 2011; 36:131-48. [PMID: 22091839 DOI: 10.1111/j.1574-6976.2011.00310.x] [Citation(s) in RCA: 327] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 08/25/2011] [Accepted: 09/02/2011] [Indexed: 11/29/2022] Open
Abstract
The Gram-positive bacterium Bacillus subtilis can initiate the process of sporulation under conditions of nutrient limitation. Here, we review some of the last 5 years of work in this area, with a particular focus on the decision to initiate sporulation, DNA translocation, cell-cell communication, protein localization and spore morphogenesis. The progress we describe has implications not only just for the study of sporulation but also for other biological systems where homologs of sporulation-specific proteins are involved in vegetative growth.
Collapse
Affiliation(s)
- Douglas Higgins
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | |
Collapse
|
18
|
Shleeva MO, Kudykina YK, Vostroknutova GN, Suzina NE, Mulyukin AL, Kaprelyants AS. Dormant ovoid cells of Mycobacterium tuberculosis are formed in response to gradual external acidification. Tuberculosis (Edinb) 2011; 91:146-54. [PMID: 21262587 DOI: 10.1016/j.tube.2010.12.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 12/14/2010] [Accepted: 12/16/2010] [Indexed: 01/31/2023]
Abstract
It is believed that latent tuberculosis is associated with the persistence of Mycobacterium tuberculosis (MTB) in a dormant-like state. Dormant cells of MTB with coccoid morphology were produced in some in vivo studies, but similar forms were not produced in the known in vitro models in sufficient amounts to permit their characterization. This work demonstrates the efficient formation of phase-dark ovoid cells in MTB cultures within 150 days after the onset of stationary phase. During this time the medium underwent gradual acidification (pH 8.5 → 4.7) as a result of cellular metabolism. A rapid change in the external pH resulted in cell degradation and death. In common with the dormant forms found in other organisms, the ovoid cells had thickened cell walls, a low metabolic activity and elevated resistance to antibiotics and heating. The ovoid cells had lost the ability to form colonies on solid medium and were thus regarded as operationally «non-culturable». At an early stage in the acidification process (about 40 days post inoculation), the ovoid cells self-resuscitated when placed in fresh liquid medium. However, ovoid cells, stored for a prolonged time, required supernatant from active MTB cells, or externally added recombinant form of resuscitation promoting factor (Rpf) for successful resuscitation. It is suggested that the adaptation of cellular metabolism leading to gradual acidification of the external medium results in the formation of morphologically distinct dormant MTB cells in vitro. The model of MTB dormancy developed here could be a useful tool for the development of new drugs against latent TB.
Collapse
Affiliation(s)
- Margarita O Shleeva
- AN Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr 33, Moscow 119071, Russia.
| | | | | | | | | | | |
Collapse
|