1
|
Ben Abdallah M, Chamkha M, Karray F, Sayadi S. Microbial diversity in polyextreme salt flats and their potential applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11371-11405. [PMID: 38180652 DOI: 10.1007/s11356-023-31644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
Recent geological, hydrochemical, and mineralogical studies performed on hypersaline salt flats have given insights into similar geo-morphologic features on Mars. These salt-encrusted depressions are widely spread across the Earth, where they are characterized by high salt concentrations, intense UV radiation, high evaporation, and low precipitation. Their surfaces are completely dry in summer; intermittent flooding occurs in winter turning them into transitory hypersaline lakes. Thanks to new approaches such as culture-dependent, culture-independent, and metagenomic-based methods, it is important to study microbial life under polyextreme conditions and understand what lives in these dynamic ecosystems and how they function. Regarding these particular features, new halophilic microorganisms have been isolated from some salt flats and identified as excellent producers of primary and secondary metabolites and granules such as halocins, enzymes, carotenoids, polyhydroxyalkanoates, and exopolysaccharides. Additionally, halophilic microorganisms are implemented in heavy metal bioremediation and hypersaline wastewater treatment. As a result, there is a growing interest in the distribution of halophilic microorganisms around the world that can be looked upon as good models to develop sustainable biotechnological processes for all fields. This review provides insights into diversity, ecology, metabolism, and genomics of halophiles in hypersaline salt flats worldwide as well as their potential uses in biotechnology.
Collapse
Affiliation(s)
- Manel Ben Abdallah
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia.
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
2
|
Rafieyan S, Amoozegar MA, Makzum S, Salimi-Ashtiani M, Nikou MM, Ventosa A, Sanchez-Porro C. Marinobacter iranensis sp. nov., a slightly halophilic bacterium from a hypersaline lake. Int J Syst Evol Microbiol 2023; 73. [PMID: 37889849 DOI: 10.1099/ijsem.0.006083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023] Open
Abstract
A novel halophilic bacterium, strain 71-iT, was isolated from Inche-Broun hypersaline lake in Golestan province, in the north of Iran. It was a Gram-stain-negative, non-endospore forming, rod-shaped bacterium. It grew at 4-40 °C (optimum 30 °C), pH 6.0-11.0 (optimum pH 7.5) and with 0.5-15 % (w/v) NaCl [optimum 3 % (w/v) NaCl]. The results of phylogenetic analyses based on the 16S rRNA gene sequence comparison indicated its affiliation to the genus Marinobacter and the low percentage of identity with the most closely related species (97.5 %), indicated its placement as a novel species within this genus. Digital DNA-DNA hybridization (dDDH) values and average nucleotide identity (ANI) analyses of this strain against closely related species confirmed its condition of novel taxon. On the other hand, the percentage of the average amino acid identity (AAI) affiliated strain 71-iT within the genus Marinobacter. The DNA G+C content of this isolate was 57.7 mol%. The major fatty acids were C16 : 0 and C16 : 1ω7c and/or C16 : 1 ω6c. Ubiquinone-9 was the major isoprenoid quinone and diphosphatidylglycerol (DPG), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE) were the main polar lipids of this strain. On the basis of the phylogenomic and phenotypic (including chemotaxonomic) features, we propose strain 71-iT (= IBRC M 11023T = CECT 30160T = LMG 29252T) as the type strain of a novel species within the genus Marinobacter, with the name Marinobacter iranensis sp. nov. Genomic detections of this strain in various metagenomic databases indicate that it is a relatively abundant species in environments with low salinities (approximately 5 % salinity), but not in hypersaline habitats with high salt concentrations.
Collapse
Affiliation(s)
- Shokufeh Rafieyan
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR Tehran-Iran, Tehran, Iran
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, Faculty of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Somaye Makzum
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR Tehran-Iran, Tehran, Iran
| | - Mahsa Salimi-Ashtiani
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR Tehran-Iran, Tehran, Iran
| | - Mahdi Moshtaghi Nikou
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR Tehran-Iran, Tehran, Iran
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Cristina Sanchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
3
|
Cooper ZS, Rapp JZ, Shoemaker AMD, Anderson RE, Zhong ZP, Deming JW. Evolutionary Divergence of Marinobacter Strains in Cryopeg Brines as Revealed by Pangenomics. Front Microbiol 2022; 13:879116. [PMID: 35733954 PMCID: PMC9207381 DOI: 10.3389/fmicb.2022.879116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
Marinobacter spp. are cosmopolitan in saline environments, displaying a diverse set of metabolisms that allow them to competitively occupy these environments, some of which can be extreme in both salinity and temperature. Here, we introduce a distinct cluster of Marinobacter genomes, composed of novel isolates and in silico assembled genomes obtained from subzero, hypersaline cryopeg brines, relic seawater-derived liquid habitats within permafrost sampled near Utqiaġvik, Alaska. Using these new genomes and 45 representative publicly available genomes of Marinobacter spp. from other settings, we assembled a pangenome to examine how the new extremophile members fit evolutionarily and ecologically, based on genetic potential and environmental source. This first genus-wide genomic analysis revealed that Marinobacter spp. in general encode metabolic pathways that are thermodynamically favored at low temperature, cover a broad range of organic compounds, and optimize protein usage, e.g., the Entner–Doudoroff pathway, the glyoxylate shunt, and amino acid metabolism. The new isolates contributed to a distinct clade of subzero brine-dwelling Marinobacter spp. that diverged genotypically and phylogenetically from all other Marinobacter members. The subzero brine clade displays genomic characteristics that may explain competitive adaptations to the extreme environments they inhabit, including more abundant membrane transport systems (e.g., for organic substrates, compatible solutes, and ions) and stress-induced transcriptional regulatory mechanisms (e.g., for cold and salt stress) than in the other Marinobacter clades. We also identified more abundant signatures of potential horizontal transfer of genes involved in transcription, the mobilome, and a variety of metabolite exchange systems, which led to considering the importance of this evolutionary mechanism in an extreme environment where adaptation via vertical evolution is physiologically rate limited. Assessing these new extremophile genomes in a pangenomic context has provided a unique view into the ecological and evolutionary history of the genus Marinobacter, particularly with regard to its remarkable diversity and its opportunism in extremely cold and saline environments.
Collapse
Affiliation(s)
- Zachary S. Cooper
- School of Oceanography, University of Washington, Seattle, WA, United States
- Astrobiology Program, University of Washington, Seattle, WA, United States
- *Correspondence: Zachary S. Cooper, , orcid.org/0000-0001-6515-7971
| | - Josephine Z. Rapp
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Center for Northern Studies (CEN), Université Laval, Québec, QC, Canada
- Institute of Integrative Biology and Systems (IBIS), Université Laval, Québec, QC, Canada
| | - Anna M. D. Shoemaker
- Department of Earth Sciences, Montana State University, Bozeman, MT, United States
| | - Rika E. Anderson
- Department of Biology, Carleton College, Northfield, MN, United States
| | - Zhi-Ping Zhong
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, United States
- Department of Microbiology, Ohio State University, Columbus, OH, United States
- Center of Microbiome Science, Ohio State University, Columbus, OH, United States
| | - Jody W. Deming
- School of Oceanography, University of Washington, Seattle, WA, United States
- Astrobiology Program, University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
Oligo-heterotrophic Activity of Marinobacter subterrani Creates an Indirect Fe(II) Oxidation Phenotype in Gradient Tubes. Appl Environ Microbiol 2021; 87:e0136721. [PMID: 34586913 DOI: 10.1128/aem.01367-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autotrophic bacteria utilizing Fe(II) as their energy and electron sources for growth affect multiple biogeochemical cycles. Some chemoheterotrophic bacteria have also been considered to exhibit an Fe(II) oxidation phenotype. For example, several Marinobacter strains have been reported to oxidize Fe(II) based on formation of oxidized iron bands in semi-solid gradient tubes that produce opposing concentration gradients of Fe(II) and oxygen. While gradient tubes are a simple and visually compelling method to test for Fe(II) oxidation, this method alone cannot confirm if, and to what extent, Fe(II) oxidation is linked to metabolism in chemoheterotrophic bacteria. Here we probe the possibility of protein-mediated and metabolic by-product-mediated Fe(II) oxidation in Marinobacter subterrani JG233, a chemoheterotroph previously proposed to oxidize Fe(II). Results from conditional and mutant studies, along with measurements of Fe(II) oxidation rates, suggest M. subterrani is unlikely to facilitate Fe(II) oxidation under microaerobic conditions. We conclude that the Fe(II) oxidation phenotype observed in gradient tubes inoculated with M. subterrani JG233 is a result of oligo-heterotrophic activity, shifting the location where oxygen dependent chemical Fe(II) oxidation occurs, rather than a biologically mediated process. IMPORTANCE Gradient tubes are the most commonly used method to isolate and identify neutrophilic Fe(II)-oxidizing bacteria. The formation of oxidized iron bands in gradient tubes provides a compelling assay to ascribe the ability to oxidize Fe(II) to autotrophic bacteria whose growth is dependent on Fe(II) oxidation. However, the physiological significance of Fe(II) oxidation in chemoheterotrophic bacteria is less well understood. Our work suggests that oligo-heterotrophic activity of certain bacteria may create a false-positive phenotype in gradient tubes by altering the location of the abiotic, oxygen-mediated oxidized iron band. Based on the results and analysis presented here, we caution against utilizing gradient tubes as the sole evidence for the capability of a strain to oxidize Fe(II) and that additional experiments are necessary to ascribe this phenotype to new isolates.
Collapse
|
5
|
Loss of Motility as a Non-Lethal Mechanism for Intercolony Inhibition ("Sibling Rivalry") in Marinobacter. Microorganisms 2021; 9:microorganisms9010103. [PMID: 33466273 PMCID: PMC7824750 DOI: 10.3390/microorganisms9010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
Bacteria from the genus Marinobacter are ubiquitous throughout the worlds' oceans as "opportunitrophs" capable of surviving a wide range of conditions, including colonization of surfaces of marine snow and algae. To prevent too many bacteria from occupying this ecological niche simultaneously, some sort of population dependent control must be operative. Here, we show that while Marinobacter do not produce or utilize an acylhomoserine lactone (AHL)-based quorum sensing system, "sibling" colonies of many species of Marinobacter exhibit a form of non-lethal chemical communication that prevents colonies from overrunning each other's niche space. Evidence suggests that this inhibition is the result of a loss in motility for cells at the colony interfaces. Although not the signal itself, we have identified a protein, glycerophosphoryl diester phosphodiesterase, that is enriched in the inhibition zone between the spreading colonies that may be part of the overall response.
Collapse
|
6
|
Li G, Wang S, Gai Y, Liu X, Lai Q, Shao Z. Marinobacter changyiensis, sp. nov., isolated from offshore sediment. Int J Syst Evol Microbiol 2020; 70:3004-3011. [PMID: 32320379 DOI: 10.1099/ijsem.0.004118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An aerobic, Gram-stain-negative bacterium, designated CLL7-20T, was isolated from a marine sediment sample from offshore of Changyi, Shandong Province, China. Cells of strain CLL7-20T were rod-shaped, motile with one or more polar flagella, and grew optimally at pH 7.0, at 28 °C and with 3 % (w/v) NaCl. The principal fatty acids of strain CLL7-20T were C16 : 0 and summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c). The main polar lipids of strain CLL7-20T were phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG) and an unidentified aminolipid (AL). Strain CLL7-20T contained Q-9 as the major respiratory quinone. The G+C content of its genomic DNA was 56.2 mol%. Phylogenetically, strain CLL7-20T branched within the genus Marinobacter, with M. daqiaonensis YCSA40T being its closest phylogenetic relative (96.7 % 16S rRNA gene sequence similarity), followed by M. sediminum R65T (96.6 %). Average nucleotide identity and in silico DNA-DNA hybridization values between strain CLL7-20T and the closest related reference strains were 73.2% and 19.8 %, respectively. On the basis of its phenotypic, phylogenetic and chemotaxonomic characteristics, we suggest that strain CLL7-20T (=MCCC 1A14855T=KCTC 72664T) is the type strain of a novel species in the genus Marinobacter, for which the name Marinobacter changyiensis sp. nov. is proposed. Based on the genomic analysis, siderophore genes were found from strain CLL7-20T, which indicate its potential as a promising alternative to chemical fertilizers in iron-limitated environments such as saline soils.
Collapse
Affiliation(s)
- Guangyu Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, PR China
| | - Shanshan Wang
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, PR China
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Yingbao Gai
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, PR China
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Xiupian Liu
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, PR China
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Qiliang Lai
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, PR China
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, PR China
| |
Collapse
|
7
|
Amplicon and shotgun metagenomic sequencing indicates that microbial ecosystems present in cheese brines reflect environmental inoculation during the cheese production process. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Evans MV, Panescu J, Hanson AJ, Welch SA, Sheets JM, Nastasi N, Daly RA, Cole DR, Darrah TH, Wilkins MJ, Wrighton KC, Mouser PJ. Members of Marinobacter and Arcobacter Influence System Biogeochemistry During Early Production of Hydraulically Fractured Natural Gas Wells in the Appalachian Basin. Front Microbiol 2018; 9:2646. [PMID: 30498478 PMCID: PMC6249378 DOI: 10.3389/fmicb.2018.02646] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/17/2018] [Indexed: 11/17/2022] Open
Abstract
Hydraulic fracturing is the prevailing method for enhancing recovery of hydrocarbon resources from unconventional shale formations, yet little is understood regarding the microbial impact on biogeochemical cycling in natural-gas wells. Although the metabolisms of certain fermentative bacteria and methanogenic archaea that dominate in later produced fluids have been well studied, few details have been reported on microorganisms prevelant during the early flowback period, when oxygen and other surface-derived oxyanions and nutrients become depleted. Here, we report the isolation, genomic and phenotypic characterization of Marinobacter and Arcobacter bacterial species from natural-gas wells in the Utica-Point Pleasant and Marcellus Formations coupled to supporting geochemical and metagenomic analyses of produced fluid samples. These unconventional hydrocarbon system-derived Marinobacter sp. are capable of utilizing a diversity of organic carbon sources including aliphatic and aromatic hydrocarbons, amino acids, and carboxylic acids. Marinobacter and Arcobacter can metabolize organic nitrogen sources and have the capacity for denitrification and dissimilatory nitrate reduction to ammonia (DNRA) respectively; with DNRA and ammonification processes partially explaining high concentrations of ammonia measured in produced fluids. Arcobacter is capable of chemosynthetic sulfur oxidation, which could fuel metabolic processes for other heterotrophic, fermentative, or sulfate-reducing community members. Our analysis revealed mechanisms for growth of these taxa across a broad range of salinities (up to 15% salt), which explains their enrichment during early natural-gas production. These results demonstrate the prevalence of Marinobacter and Arcobacter during a key maturation phase of hydraulically fractured natural-gas wells, and highlight the significant role these genera play in biogeochemical cycling for this economically important energy system.
Collapse
Affiliation(s)
- Morgan V Evans
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, United States
| | - Jenny Panescu
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, United States
| | - Andrea J Hanson
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, United States
| | - Susan A Welch
- School of Earth Sciences, The Ohio State University, Columbus, OH, United States
| | - Julia M Sheets
- School of Earth Sciences, The Ohio State University, Columbus, OH, United States
| | - Nicholas Nastasi
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, United States
| | - Rebecca A Daly
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - David R Cole
- School of Earth Sciences, The Ohio State University, Columbus, OH, United States
| | - Thomas H Darrah
- School of Earth Sciences, The Ohio State University, Columbus, OH, United States
| | - Michael J Wilkins
- School of Earth Sciences, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Kelly C Wrighton
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Paula J Mouser
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, United States.,Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
9
|
Liu Q, Xamxidin M, Sun C, Cheng H, Meng FX, Wu YH, Wang CS, Xu XW. Marinobacter fuscus sp. nov., a marine bacterium of Gammaproteobacteria isolated from surface seawater. Int J Syst Evol Microbiol 2018; 68:3156-3162. [DOI: 10.1099/ijsem.0.002956] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Qian Liu
- 1Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
| | - Maripat Xamxidin
- 1Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
| | - Cong Sun
- 1Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
- 2College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Hong Cheng
- 1Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
| | - Fan-Xu Meng
- 1Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
| | - Yue-Hong Wu
- 1Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
| | - Chun-Sheng Wang
- 1Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
| | - Xue-Wei Xu
- 1Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
| |
Collapse
|
10
|
Draft Genome Sequences of Marinobacter Strains Recovered from Utica Shale-Produced Fluids. GENOME ANNOUNCEMENTS 2018; 6:6/14/e00155-18. [PMID: 29622606 PMCID: PMC5887025 DOI: 10.1128/genomea.00155-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genomes of three Marinobacter strains, isolated from saline fluids produced from a Utica-Point Pleasant shale well, have been sequenced. These genomes provide novel information on the degradation of petroleum distillates and virulence mechanisms under microaerophilic conditions in fractured shale.
Collapse
|
11
|
León MJ, Sánchez-Porro C, Ventosa A. Marinobacter aquaticus sp. nov., a moderately halophilic bacterium from a solar saltern. Int J Syst Evol Microbiol 2017; 67:2622-2627. [DOI: 10.1099/ijsem.0.001984] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- María José León
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
12
|
Wan X, Hou S, Burns SL, Saito JA, Donachie SP. Draft Genome Sequence of a Novel Marinobacter sp. Strain from Honolulu Harbor, Hawai'i. GENOME ANNOUNCEMENTS 2016; 4:e01354-16. [PMID: 27932650 PMCID: PMC5146442 DOI: 10.1128/genomea.01354-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 10/14/2016] [Indexed: 02/05/2023]
Abstract
Marinobacter sp. strain X15-166BT was cultivated from sediment in Honolulu Harbor, Hawai'i. The X15-166BT draft genome of 3,490,661 bp encodes 3,115 protein-coding open reading frames. We anticipate that the genome will provide insights into the strain's lifestyle and the evolution of Marinobacter.
Collapse
Affiliation(s)
- Xuehua Wan
- Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Shaobin Hou
- Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Siobhan L Burns
- Department of Microbiology, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Jennifer A Saito
- Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Stuart P Donachie
- Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
- Department of Microbiology, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| |
Collapse
|
13
|
Jiang Y, Wei L, Zhang H, Yang K, Wang H. Removal performance and microbial communities in a sequencing batch reactor treating hypersaline phenol-laden wastewater. BIORESOURCE TECHNOLOGY 2016; 218:146-152. [PMID: 27359064 DOI: 10.1016/j.biortech.2016.06.055] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/12/2016] [Accepted: 06/15/2016] [Indexed: 06/06/2023]
Abstract
Hypersaline phenol-rich wastewater is hard to be treated by traditional biological systems. In this work, a sequencing batch reactor was used to remove phenol from hypersaline wastewater. The removal performance was evaluated in response to the variations of operating parameters and the microbial diversity was investigated by 454 pyrosequencing. The results showed that the bioreactor had high removal efficiency of phenol and was able to keep stable with the increase of initial phenol concentration. DO, pH, and salinity also affected the phenol removal rate. The most abundant bacterial group was phylum Proteobacteria in the two working conditions, and class Gammaproteobacteria as well as Alphaproteobacteria was predominant subgroup. The abundance of bacterial clusters was notably different along with the variation of operation conditions, resulting in changes of phenol degradation rates. The high removal efficiency of phenol suggested that the reactor might be promising in treating phenol-laden industrial wastewater in high-salt condition.
Collapse
Affiliation(s)
- Yu Jiang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Li Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huining Zhang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China; School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730000, China
| | - Kai Yang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
14
|
Complete genome of Marinobacter psychrophilus strain 20041(T) isolated from sea-ice of the Canadian Basin. Mar Genomics 2016; 28:1-3. [PMID: 26908308 DOI: 10.1016/j.margen.2016.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 11/21/2022]
Abstract
Marinobacter psychrophilus strain 20041(T) was isolated from sea-ice of the Canadian Basin. Here we report the complete sequence of the 3.9-Mb genome of this strain. The complete genome sequence will facilitate the study of the physiology and evolution of Marinobacter species.
Collapse
|
15
|
Aguirre-Garrido JF, Ramírez-Saad HC, Toro N, Martínez-Abarca F. Bacterial Diversity in the Soda Saline Crater Lake from Isabel Island, Mexico. MICROBIAL ECOLOGY 2016; 71:68-77. [PMID: 26391805 DOI: 10.1007/s00248-015-0676-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 09/09/2015] [Indexed: 06/05/2023]
Abstract
Isabel Lake is a moderate saline soda crater lake located in Isabel Island in the eastern tropical Pacific coast of Mexico. Lake is mainly formed by rainfall and is strongly affected by evaporation and high input of nutrients derived from excretions of a large bird community inhabiting the island. So far, only the island macrobiota has been studied. The knowledge of the prokaryotic biota inhabiting the upper layers of this meromictic lake can give clues for the maintenance of this ecosystem. We assessed the diversity and composition of prokaryotic community in sediments and water of the lake by DGGE profiling, 16S rRNA gene amplicon pyrosequencing, and cultivation techniques. The bacterial community is largely dominated by halophilic and halotolerant microorganisms. Alpha diversity estimations reveal higher value in sediments than in water (P > 0.005). The lake water is dominated by γ-Proteobacteria belonging to four main families where Halomonadaceae presents the highest abundance. Aerobic, phototrophic, and halotolerant prokaryotes such as Cyanobacteria GPIIa, Halomonas, Alcanivorax, Idiomarina, and Cyclobacterium genera are commonly found. However, in sediment samples, Formosa, Muricauda, and Salegentibacter genera corresponding to Flavobacteriaceae family accounted for 15-20 % of the diversity. Heterotrophs like those involved in sulfur cycle, Desulfotignum, Desulfuromonas, Desulfofustis, and Desulfopila, appear to play an important role in sediments. Finally, a collection of aerobic halophilic bacterial isolates was created from these samples; members of the genus Halomonas were predominantly isolated from lake water. This study contributes to state the bacterial diversity present in this particular soda saline crater lake.
Collapse
Affiliation(s)
- José Félix Aguirre-Garrido
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, 18008, Granada, Spain
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calz. del Hueso 1110, CP 14310, DF México, Mexico
| | - Hugo César Ramírez-Saad
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calz. del Hueso 1110, CP 14310, DF México, Mexico
| | - Nicolás Toro
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, 18008, Granada, Spain
| | - Francisco Martínez-Abarca
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, 18008, Granada, Spain.
| |
Collapse
|
16
|
Vaidya B, Kumar R, Korpole S, Tanuku NRS, Pinnaka AK. Marinobacter nitratireducens sp. nov., a halophilic and lipolytic bacterium isolated from coastal surface sea water. Int J Syst Evol Microbiol 2015; 65:2056-2063. [DOI: 10.1099/ijs.0.000218] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-negative, rod-shaped, motile bacterium, designated strain AK21T, was isolated from coastal surface sea water at Visakhapatnam, India. The strain was positive for oxidase, catalase, lipase, l-proline arylamidase and tyrosine arylamidase activities. The predominant fatty acids were C12:0, C12:0 3-OH, C16:0, C16:1ω9c, C18:1ω9c and summed feature 3 (C16:1ω7c and/or iso-C15:0 2-OH). The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, one unidentified aminophospholipid, two unidentified phospholipids and one unidentified lipid. Q-10 was the predominant respiratory quinone. The DNA G+C content of the strain was 54.6 mol%. 16S rRNA gene sequence analysis indicated that strain AK21T was a member of the genus Marinobacter and was closely related to Marinobacter xestospongiae, with pairwise sequence similarity of 97.2 % to the type strain, with similarity to other members of the genus of 94.0–96.8 %. The mean DNA–DNA relatedness of strain AK21T with M. xestospongiae JCM 17469T was 34.5 %, and relatedness with Marinobacter mobilis JCM 15154T was 40.5 %. Phylogenetic analysis showed that strain AK21T clustered with the type strains of M. xestospongiae and M. mobilis at distances of 2.9 and 2.8 % (97.1 and 97.2 % similarity), respectively. Based on the phenotypic characteristics and on phylogenetic inference, it appears that strain AK21T represents a novel species of the genus Marinobacter, for which the name Marinobacter nitratireducens sp. nov. is proposed. The type strain of Marinobacter nitratireducens is AK21T ( = MTCC 11704T = JCM 18428T).
Collapse
Affiliation(s)
- Bhumika Vaidya
- MTCC – Microbial Type Culture Collection & Gene Bank, CSIR – Institute of Microbial Technology, Chandigarh – 160036, India
| | - Ravinder Kumar
- MTCC – Microbial Type Culture Collection & Gene Bank, CSIR – Institute of Microbial Technology, Chandigarh – 160036, India
| | - Suresh Korpole
- MTCC – Microbial Type Culture Collection & Gene Bank, CSIR – Institute of Microbial Technology, Chandigarh – 160036, India
| | - Naga Radha Srinivas Tanuku
- CSIR – National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam – 530017, India
| | - Anil Kumar Pinnaka
- MTCC – Microbial Type Culture Collection & Gene Bank, CSIR – Institute of Microbial Technology, Chandigarh – 160036, India
| |
Collapse
|
17
|
Zhong ZP, Liu Y, Liu HC, Wang F, Zhou YG, Liu ZP. Marinobacter halophilus sp. nov., a halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 2015; 65:2838-2845. [PMID: 25985830 DOI: 10.1099/ijs.0.000338] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-staining-negative bacterium, strain XCD-X12(T), was isolated from Xiaochaidan Lake, a salt lake (salinity 9.9%, w/w) in Qaidam basin, Qinghai Province, China. Its taxonomic position was determined by using a polyphasic approach. Cells of strain XCD-X12(T) were non-spore-forming rods, 0.4-0.7 μm wide, 2.1-3.2 μm long and motile with a single polar flagellum. Strain XCD-X12(T) was strictly aerobic and catalase- and oxidase-positive. Growth was observed in the presence of 0-20.0% (w/v) NaCl (optimum, 4.0-8.0%), at 4-35 °C (optimum, 30 °C) and at pH 6.5-10.5 (optimum, pH 8.5). It contained Q-9 as the predominant respiratory quinone. The major fatty acids (>10.0%) were C16 : 0, C16 : 1ω9c and C18 : 1ω9c. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, two unknown phospholipids and an uncharacterized aminophospholipid. The DNA G+C content was 55.6 mol% (Tm). Phylogenetic trees based on 16S rRNA gene sequences showed that strain XCD-X12(T) was associated with the genus Marinobacter, and showed the highest 16S rRNA gene sequence similarity to Marinobacter hydrocarbonoclasticus ATCC 49840(T) (97.4%), M. vinifirmus FB1(T) (96.8%), M. excellens KMM 3809(T) (96.8%) and M. antarcticus ZS2-30(T) (96.7%). DNA-DNA relatedness of strain XCD-X12(T) to M. hydrocarbonoclasticus CGMCC 1.7683(T) was 34 ± 5%. Based on these data, it is concluded that strain XCD-X12(T) represents a novel species of the genus Marinobacter, for which the name Marinobacter halophilus sp. nov. is proposed. The type strain is XCD-X12(T) ( = CGMCC 1.12481(T)= JCM 30472(T)).
Collapse
Affiliation(s)
- Zhi-Ping Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ying Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Hong-Can Liu
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Fang Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100089, PR China
| | - Yu-Guang Zhou
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zhi-Pei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
18
|
Extracellular Proteases from Halophilic and Haloalkaliphilic Bacteria: Occurrence and Biochemical Properties. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2015. [DOI: 10.1007/978-3-319-14595-2_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2013. [DOI: 10.1099/ijs.0.056101-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this announcement is to effect the valid publication of the following effectively published new names and new combinations under the procedure described in the Bacteriological Code (1990 Revision). Authors and other individuals wishing to have new names and/or combinations included in future lists should send three copies of the pertinent reprint or photocopies thereof, or an electronic copy of the published paper to the IJSEM Editorial Office for confirmation that all of the other requirements for valid publication have been met. It is also a requirement of IJSEM and the ICSP that authors of new species, new subspecies and new combinations provide evidence that types are deposited in two recognized culture collections in two different countries. It should be noted that the date of valid publication of these new names and combinations is the date of publication of this list, not the date of the original publication of the names and combinations. The authors of the new names and combinations are as given below. Inclusion of a name on these lists validates the publication of the name and thereby makes it available in the nomenclature of prokaryotes. The inclusion of a name on this list is not to be construed as taxonomic acceptance of the taxon to which the name is applied. Indeed, some of these names may, in time, be shown to be synonyms, or the organisms may be transferred to another genus, thus necessitating the creation of a new combination.
Collapse
Affiliation(s)
- Aharon Oren
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - George M. Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|