1
|
Li XX, Tan S, Cheng M, Hu Y, Ma X, Hou J, Cui HL. Halospeciosus flavus gen. nov., sp. nov. and Haladaptatus caseinilyticus sp. nov., halophilic archaea isolated from saline soil of an inland solar saltern and offshore sediment. Int J Syst Evol Microbiol 2024; 74. [PMID: 38194256 DOI: 10.1099/ijsem.0.006220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Two novel halophilic archaeal strains (XZGYJ-43T and ZJ1T) were isolated from Mangkang ancient solar saltern (Tibet, PR China) and Zhujiang river inlet (Guangdong, PR China), respectively. The comparison of the 16S rRNA gene sequences revealed that strain XZGYJ-43T is related to the current species of the family Halobacteriaceae (89.2-91.7% similarity) and strain ZJ1T showed 94.7-98.3% similarity to the current species of the genus Haladaptatus. Phylogenetic analyses based on 16S rRNA genes, rpoB' genes and genomes indicated that strain XZGYJ-43T is separate from the related genera, Halocalculus, Salarchaeum and Halarchaeum of the family Halobacteriaceae, and strain ZJ1T tightly clusters with the current species of the genus Haladaptatus. The average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity values between strain XZGYJ-43T and the current species of the family Halobacteriaceae were 71-75, 20-25 and 59-68 %, and these values between strain ZJ1T and the current species of the genus Haladaptatus were 77-81, 27-32 and 76-82 %, respectively, clearly below the thresholds for prokaryotic species demarcation. These two strains could be distinguished from their relatives according to differential phenotypic characteristics. The major polar lipids of strain XZGYJ-43T were phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me), mannosyl glucosyl diether (DGD-1; DGD-PA) and sulphated mannosyl glucosyl diether (S-DGD-1; S-DGD-PA), and those of strain ZJ1T were PA, PG, PGP-Me, DGD-PA, S-DGD-1 (S-DGD-PA) and sulphated galactosyl mannosyl glucosyl diether. Based on phenotypic, phylogenetic and genomic data, strain XZGYJ-43T (=CGMCC 1.13890T=JCM 33735T) represents a novel species of a new genus within the family Halobacteriaceae, and strain ZJ1T (=CGMCC 1.18785T=JCM 34917T) represents a novel species of the genus Haladaptatus, for which the names Halospeciosus flavus gen. nov., sp. nov. and Haladaptatus caseinilyticus sp. nov. are proposed, respectively.
Collapse
Affiliation(s)
- Xin-Xin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shun Tan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mu Cheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yao Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xue Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
2
|
Liu YH, Mohamad OAA, Gao L, Xie YG, Abdugheni R, Huang Y, Li L, Fang BZ, Li WJ. Sediment prokaryotic microbial community and potential biogeochemical cycle from saline lakes shaped by habitat. Microbiol Res 2023; 270:127342. [PMID: 36848700 DOI: 10.1016/j.micres.2023.127342] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
The microbial diversity and ecological function in different saline lakes was reduced or disappeared as the influence of climate change and human activities even before they were known. However, reports about prokaryotic microbial of saline lakes from Xinjiang are very limited especially in large-scale investigations. In this study, a total of 6 saline lakes represented three different habitats, including hypersaline lake (HSL), arid saline lake (ASL), and light saltwater lake (LSL) were involved. The distribution pattern and potential functions of prokaryotes were investigated by using the cultivation-independent method of amplicon sequencing. The results showed that Proteobacteria was the predominant community and was widely distributed in all kinds of saline lakes, Desulfobacterota was the representative community in hypersaline lakes, Firmicutes and Acidobacteriota were mainly distributed in arid saline lake samples, and Chloroflexi was more abundant in light saltwater lakes. Specifically, the archaeal community was mainly distributed in the HSL and ASL samples, whereas it was very rare in the LSL lakes. The functional group showed that fermentation was the main metabolic process of microbes in all saline lakes and covered 8 phyla, including Actinobacteriota, Bacteroidota, Desulfobacterota, Firmicutes, Halanaerobiaeota, Proteobacteria, Spirochaetota, and Verrucomicrobiota. Among the 15 functional phyla, Proteobacteria was a distinctly important community in saline lakes, as it exhibited wide functions in the biogeochemical cycle. According to the correlation of environmental factors, SO42-, Na+, CO32-, and TN were significantly affected in the microbial community from saline lakes in this study. Overall, our study provided more detailed information about microbial community composition and distribution from three different habitats of saline lakes, especially the potential functions of carbon, nitrogen, and sulfur cycles, which provided new insight for understanding the complex microbiota adapt to the extreme environment and new perspectives on evaluating microbial contributions to degraded saline lakes under environmental change.
Collapse
Affiliation(s)
- Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830000 Urumqi, PR China
| | - Osama Abdalla Abdelshafy Mohamad
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China; Department of Environmental Protection, Faculty of Environmental Agricultural Sciences, Arish University, Al-Arish 45511, Egypt
| | - Lei Gao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Yuan-Guo Xie
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, PR China
| | - Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Yin Huang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China.
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China; State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
3
|
Xin YJ, Bao CX, Tan S, Hou J, Cui HL. Haladaptatus halobius sp. nov. and Haladaptatus salinisoli sp. nov., two extremely halophilic archaea isolated from Gobi saline soil. Int J Syst Evol Microbiol 2022; 72. [PMID: 36256551 DOI: 10.1099/ijsem.0.005543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Two extremely halophilic archaeal strains, PSR5T and PSR8T, were isolated from a saline soil sample collected from the Tarim Basin, Xinjiang, PR China. Both strains had two copies of the 16S rRNA genes rrn1 and rrn2, showing 2.6 and 3.9% divergence, respectively. The rrn1 gene of PSR5T showed 98.4 and 95.3% similarity to the rrn1 and rrn2 genes of strain PSR8T; the rrn2 gene of PSR5T displayed 97.4 and 96.7% similarity to those of strain PSR8T, respectively. Phylogenetic analyses based on the 16S rRNA and rpoB' genes revealed that strains PSR5T and PSR8T formed a single cluster, and then tightly clustered with the current four Haladaptatus species (93.5-97.1% similarities for the 16S rRNA gene and 89.3-90.9% similarities for the rpoB' gene, respectively). Several phenotypic characteristics differentiate strains PSR5T and PSR8T from current Haladaptatus members. The polar lipids of the two strains are phosphatidic acid, phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester phosphatidylglycerol sulphate and three glycolipids. One of the glycolipids is sulphated mannosyl glucosyl diether, and the remaining two glycolipids are unidentified. The average nucleotide identity, in silico DNA-DNA hybridization, amino acid identity and percentage of conserved proteins values between the two strains were 88.5, 39.1, 89.3 and 72.8 %, respectively, much lower than the threshold values proposed as a species boundary. These values among the two strains and Haladaptatus members were 77.9-79.2, 22.0-23.5, 75.1-78.2 and 56.8-69.9 %, respectively, much lower than the recommended threshold values for species delimitation. These results suggested that strains PSR5T and PSR8T represent two novel species of Haladaptatus. Based on phenotypic, chemotaxonomic, genomic and phylogenetic properties, strains PSR5T (=CGMCC 1.16851T=JCM 34141T) and PSR8T (=CGMCC 1.17025T=JCM 34142T) represent two novel species of the genus Haladaptatus, for which the names Haladaptatus halobius sp. nov. and Haladaptatus salinisoli sp. nov. are proposed.
Collapse
Affiliation(s)
- Yu-Jie Xin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Chen-Xi Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shun Tan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
4
|
Liu BB, Govindan R, Muthuchamy M, Cheng S, Li X, Ye L, Wang LY, Guo SX, Li WJ, Alharbi NS, M Khaled J, Kadaikunnan S. Halophilic archaea and their extracellular polymeric compounds in the treatment of high salt wastewater containing phenol. CHEMOSPHERE 2022; 294:133732. [PMID: 35101434 DOI: 10.1016/j.chemosphere.2022.133732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Phenol is one of the major organic pollutants in high salt industrial wastewaters. The biological treatment of such waste using microorganisms is considered to be a cost-effective and eco-friendly method. However, in this process, salt tolerance of microorganisms is one of the main limiting factors. Halophilic microorganisms, especially halophilic archaea are thought to be appropriate for such treatment. To develop a novel effective biological method for high salt phenol wastewater treatment, the influence of phenol in high salt phenol wastewater on halophilic archaea and their extracellular polymeric substances (EPS) should be investigated. In the present study, using phenol enrichment method, 75 halophilic archaeal strains were isolated from Wuyongbulake salt lake sediment sample. The majority of the identified strains were phenol-tolerant. Six strains with high phenol tolerance were chosen, and the phenol scavenging effect was observed in the microbial suspension, supernatant, and EPS. It was noticed that the phenol degradation rate of suspensions of both strains 869-1, and 121-1 in salt water exhibited the highest rates of 83.7%, while the supernatant of strain 869-1 reached the highest rate of 78.2%. When combined with the comprehensive analysis of the artificial wastewater simulation experiment, it was discovered that in the artificial wastewater containing phenol, the phenol degradation rate of suspension of strain A387 exhibited the highest rates of 55.74% both, and supernatant of strain 630-3 reached the highest rate of 62.3%. The EPS produced by strains A00135, 558-1, 869-1, 121-1 and A387 removed 100% phenol within 96 h, and the phenol removal efficiency of EPS produced by 869-1 reached 56.1% under an artificial wastewater simulation experiment with high salt (15%NaCl) condition. The present study suggests that halophilic archaea and their EPS play an important role in phenol degradation. This approach could be potentially used for industrial high-salt wastewater treatment.
Collapse
Affiliation(s)
- Bing-Bing Liu
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, PR China
| | - Rajivgandhi Govindan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Maruthupandy Muthuchamy
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-Dearo 550 Beon-Gil, Saha-Gu Busan, 49315, South Korea
| | - Shuang Cheng
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, PR China
| | - Xuebin Li
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, PR China
| | - Lijing Ye
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, PR China
| | - Lai-You Wang
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, PR China
| | - Shu-Xian Guo
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, PR China.
| | - Wen-Jun Li
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, PR China; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China.
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jamal M Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
5
|
Liu BB, Salam N, Narsing Rao MP, Cheng S, Xie YG, Wang LY, Zhang YR, Yu XY, Guo SX, Li WJ. Haloterrigena gelatinilytica sp. nov., a new extremely halophilic archaeon isolated from salt-lake. Arch Microbiol 2022; 204:176. [PMID: 35166931 DOI: 10.1007/s00203-022-02783-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/01/2022]
Abstract
Two extremely halophilic strains, designated SYSU A558-1T and SYSU A121-1, were isolated from a saline sediment sample collected from Aiding salt-lake, China. Cells of strains SYSU A558-1T and SYSU A121-1 were Gram-stain-negative, coccoid, and non-motile. The strains were aerobic and grew at NaCl concentration of 10-30% (optimum, 20-22%), at 20-55 °C (optimum, 37-42 °C) and at pH 6.5-8.5 (optimum, 7.0-8.0). Cells lysed in distilled water. The polar lipids were phosphatidyl choline, phosphatidylglycerol phosphate methyl ester, disulfated diglycosyl diether-1 and unidentified glycolipid. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the two strains SYSU A558-1T and SYSU A121-1 were closely related to the membranes of the genus Haloterrigena. Phylogenetic and phylogenomic trees of strains SYSU A558-1T and SYSU A121-1 demonstrated a robust clade with Haloterrigena turkmenica, Haloterrigena salifodinae and Haloterrigena salina. The genomic DNA G + C content of strains SYSU A558-1T and SYSU A121-1 were 65.8 and 65.0%, respectively. Phenotypic, phylogenetic, chemotaxonomic and genome analysis suggested that the two strains SYSU A558-1T and SYSU A121-1 represent a novel species of the genus Haloterrigena, for which the name Haloterrigena gelatinilytica sp. nov. is proposed. The type strain is SYSU A558-1T (= KCTC 4259T = CGMCC 1.15953T).
Collapse
Affiliation(s)
- Bing-Bing Liu
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, People's Republic of China
| | - Nimaichand Salam
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Manik Prabhu Narsing Rao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shuang Cheng
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, People's Republic of China
| | - Yuan-Guo Xie
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Lai-You Wang
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, People's Republic of China
| | - Yuan-Ru Zhang
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, People's Republic of China
| | - Xin-Yuan Yu
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, People's Republic of China
| | - Shu-Xian Guo
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, People's Republic of China.
| | - Wen-Jun Li
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, People's Republic of China. .,State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China. .,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, People's Republic of China.
| |
Collapse
|
6
|
Halegenticoccus tardaugens sp. nov., an extremely halophilic archaeon isolated from a saline soil. Extremophiles 2021; 25:483-492. [PMID: 34533626 DOI: 10.1007/s00792-021-01243-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Two extremely halophilic archaea, isolates SYSU A00711T and SYSU A00630, were isolated from a sediment soil sample collected from the Aiding lake, China. Cells of these isolates were cocci, non-motile and stained Gram-negative. They grew optimally at 37 °C, with 20-22% NaCl (w/v) and at pH 7.5-8.0. Cells lysed in distilled water. Major polar lipids were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, mannosyl glucosyl diether, sulfated mannosyl glucosyl diether, and two unidentified glycolipids. Pairwise sequence comparison revealed that isolates SYSU A00711T and SYSU A00630 were closely related to Halegenticoccus soli SYSU A9-0T (94.1 and 94.0% 16S rRNA gene sequence similarities; 94.0 and 94.2% rpoB' gene similarities, respectively). The overall genomic relatedness indices values between the two isolates and Halegenticocus soli SYSU A9-0 T were: AAI, both 79.6%; ANI, 84.6 and 84.5%; dDDH, 32.5 and 26.3%, respectively. Phylogenetic trees based on the 16S rRNA gene, rpoB' gene, and genome sequences demonstrated a robust clade of these two isolates with Halegenticoccus soli SYSU A9-0T. The DNA G + C contents of these two isolates are both 64.7% (genome method). Based on the differences in phenotypic, chemotaxonomic, and phylogenetic properties, isolates SYSU A00711T and SYSU A00630 are characterized to represent a novel species in the genus Halegenticoccus, for which the name Halegenticoccus tardaugens sp. nov. is proposed. The type strain of the species Halegenticoccus tardaugens is SYSU A00711T (= KCTC 4245T = CGMCC 1.15768T).
Collapse
|
7
|
Salam N, Xian WD, Asem MD, Xiao M, Li WJ. From ecophysiology to cultivation methodology: filling the knowledge gap between uncultured and cultured microbes. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:132-147. [PMID: 37073336 PMCID: PMC10077289 DOI: 10.1007/s42995-020-00064-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/22/2020] [Indexed: 05/03/2023]
Abstract
Earth is dominated by a myriad of microbial communities, but the majority fails to grow under in situ laboratory conditions. The basic cause of unculturability is that bacteria dominantly occur as biofilms in natural environments. Earlier improvements in the culture techniques are mostly done by optimizing media components. However, with technological advancement particularly in the field of genome sequencing and cell imagining techniques, new tools have become available to understand the ecophysiology of microbial communities. Hence, it becomes easier to mimic environmental conditions in the culture plate. Other methods include co-culturing, emendation of growth factors, and cultivation after physical cell sorting. Most recently, techniques have been proposed for bacterial cultivation by employing genomic data to understand either microbial interactions (network-directed targeted bacterial isolation) or ecosystem engineering (reverse genomics). Hopefully, these techniques may be applied to almost all environmental samples, and help fill the gaps between the cultured and uncultured microbial communities.
Collapse
Affiliation(s)
- Nimaichand Salam
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Science and School of Ecology, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Wen-Dong Xian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Science and School of Ecology, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Mipeshwaree Devi Asem
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Science and School of Ecology, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Min Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Science and School of Ecology, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Science and School of Ecology, Sun Yat-Sen University, Guangzhou, 510275 China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
| |
Collapse
|
8
|
Liu BB, Narsing Rao MP, Yin XQ, Li X, Salam N, Zhang Y, Alkhalifah DHM, Hozzein WN, Li WJ. Description of Halegenticoccus soli gen. nov., sp. nov., a halophilic archaeon isolated from a soil sample of Ebi lake. Extremophiles 2019; 23:521-528. [PMID: 31147835 DOI: 10.1007/s00792-019-01104-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
Two extreme halophilic archaeal strains, SYSUA9-0T and SYSUA9-1, were isolated from Ebi lake of Xinjiang, China. The colonies were Gram-negative, coccoid, and non-motile. Strains were aerobic and grew at 25-50 °C (optimum at 37 °C), in the presence of 10-35% (w/v) NaCl (optimum at 20-22%), and pH 6.0-8.0 (optimum at 7.0). The 16S rRNA gene sequence result revealed that the two strains were closely related to Haloprofundus marisrubri SB9T (92.7% similarity). The DNA-DNA hybridization value (97% ± 1%) suggested that SYSUA9-0T and SYSUA9-1 were similar; however, their sequence similarities with other archaeal members suggested that they were novel candidates. The genomic G + C content of SYSUA9-0T was 66.9%. The average nucleotide identity value between SYSU A9-0T and Haloprofundus marisrubri SB9T was 69.1%, which was far below the cutoff value (95-96%) proposed to define the species boundary. The polar lipids were phosphatidylglycerol (PG), phosphatidylglycerolphosphate methylester (PGP-Me), sulfated mannosyl glucosyl diether, mannosyl glucosyldiether, and four unidentified glycolipids. Phenotypic, chemotaxonomic and comparative genome analysis suggested that SYSU A9-0T and SYSU A9-1 represent a novel species of a new genus within the family Haloferacaceae, for which the name Halegenticoccus soli gen. nov., sp. nov., is proposed. The type strain is SYAUA9-0T (= KCTC4241T = CGMCC 1.15765T).
Collapse
Affiliation(s)
- Bing-Bing Liu
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, People's Republic of China
| | - Manik Prabhu Narsing Rao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xiao-Qing Yin
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xin Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Nimaichand Salam
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yao Zhang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Dalal Hussien M Alkhalifah
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11564, Kingdom of Saudi Arabia
| | - Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia.,Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China. .,Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürűmqi, 830011, China.
| |
Collapse
|
9
|
Amoozegar MA, Siroosi M, Atashgahi S, Smidt H, Ventosa A. Systematics of haloarchaea and biotechnological potential of their hydrolytic enzymes. MICROBIOLOGY-SGM 2017; 163:623-645. [PMID: 28548036 DOI: 10.1099/mic.0.000463] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Halophilic archaea, also referred to as haloarchaea, dominate hypersaline environments. To survive under such extreme conditions, haloarchaea and their enzymes have evolved to function optimally in environments with high salt concentrations and, sometimes, with extreme pH and temperatures. These features make haloarchaea attractive sources of a wide variety of biotechnological products, such as hydrolytic enzymes, with numerous potential applications in biotechnology. The unique trait of haloarchaeal enzymes, haloenzymes, to sustain activity under hypersaline conditions has extended the range of already-available biocatalysts and industrial processes in which high salt concentrations inhibit the activity of regular enzymes. In addition to their halostable properties, haloenzymes can also withstand other conditions such as extreme pH and temperature. In spite of these benefits, the industrial potential of these natural catalysts remains largely unexplored, with only a few characterized extracellular hydrolases. Because of the applied impact of haloarchaea and their specific ability to live in the presence of high salt concentrations, studies on their systematics have intensified in recent years, identifying many new genera and species. This review summarizes the current status of the haloarchaeal genera and species, and discusses the properties of haloenzymes and their potential industrial applications.
Collapse
Affiliation(s)
- Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Siroosi
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
10
|
Yuan PP, Ye WT, Pan JX, Han D, Zhang WJ, Cui HL. Halorussus amylolyticus sp. nov., isolated from an inland salt lake. Int J Syst Evol Microbiol 2015; 65:3734-3738. [PMID: 26228463 DOI: 10.1099/ijsem.0.000487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A halophilic archaeal strain, YC93T, was isolated from Yuncheng salt lake in Shanxi Province, China. Cells were pleomorphic rods, stained Gram-negative and formed light-red-pigmented colonies on agar plates. Strain YC93T was able to grow at 25–50 °C (optimum 37 °C), with 1.4–4.8 M NaCl (optimum 2.0 M), with 0–1.0 M MgCl2 (optimum 0.05 M) and at pH 6.0–9.5 (optimum pH 7.0). Cells lysed in distilled water and the minimal NaCl concentration to prevent cell lysis was 8 % (w/v). 16S rRNA gene sequence analysis revealed that strain YC93T had two dissimilar 16S rRNA genes both of which were phylogenetically related to those of the two recognized members of the genus Halorussus (93.0–95.3 % similarity). The rpoB′ gene of strain YC93T was phylogenetically related to the corresponding gene of Halorussus rarus TBN4T (91.3 % similarity) and Halorussus ruber YC25T (90.5 %). The major polar lipids were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and five glycolipids chromatographically identical to those of Halorussus rarus CGMCC 1.10122T. The DNA G+C content of strain YC93T was 64.6 mol%. The phenotypic, chemotaxonomic and phylogenetic properties suggested that strain YC93T represents a novel species of the genus Halorussus, for which the name Halorussus amylolyticus sp. nov. is proposed. The type strain is YC93T ( = CGMCC 1.12126T = JCM 18367T).
Collapse
Affiliation(s)
- Pan-Pan Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wei-Tao Ye
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jia-Xiang Pan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Dong Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wen-Jiao Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
11
|
Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2015. [DOI: 10.1099/ijs.0.000073] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|