1
|
Xiao Y, Xiang W, Gao D, Zheng B, Wang Z, Rong D, Bayram H, Ghiladi RA, Lorimer GH, Xie Z, Wang J. hmuSTUV operon positively regulates the alginate gene cluster to mediate the pathogenicity of Pseudomonas donghuensis HYS. Int J Biol Macromol 2025; 306:141430. [PMID: 40010467 DOI: 10.1016/j.ijbiomac.2025.141430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/27/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
Pseudomonas donghuensis HYS is highly virulent to Caenorhabditis elegans, but with mechanistic details that are not fully understood. The hmuSTUV operon was reported to participate in the synthesis of heme in Pseudomonas. However, the exact role of the hmuSTUV operon in Pseudomonas virulence has not been elucidated. In this study, we report for the first time that the hmuSTUV operon in P. donghuensis HYS causes host virulence, and that hmuS was a key gene for the toxicity of this operon. Furthermore, RNA-seq data showed that hmuS deletion inhibited alginate gene expression, thereby inhibiting biofilm formation. The hmuSTUV operon and alginate gene cluster are conserved in Pseudomonas. By constructing mutant strains carrying GFP, we found that the hmuS deletion reduced colonisation of HYS to the host gut. Moreover, the expression of the alginate gene cluster was controlled by the construction of a L-arabinose-inducible promoter. hmuS positively regulated alginate gene cluster expression, mediating bacterial virulence against C. elegans. In addition, HYS originating from the East Lake of Wuhan City was more pathogenic to zebrafish than any other pathogenic Pseudomonas, through impairment of zebrafish neurodevelopment and locomotor ability, by colonizing to the zebrafish brain. In conclusion, the hmuSTUV operon positively regulated the alg gene cluster, thereby disabling bacterial biofilm formation and colonisation to mediate bacterial pathogenicity to the host. These novel findings revealed the critical interaction between the hmuSTUV operon and the alg gene cluster in the bacterial virulence of Pseudomonas, providing new insights into Pseudomonas pathogenicity.
Collapse
Affiliation(s)
- Yaqian Xiao
- Hubei Key Laboratory of Industry Microbiology, International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China; Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wang Xiang
- Hubei Key Laboratory of Industry Microbiology, International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
| | - Donghao Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Bowen Zheng
- Hubei Key Laboratory of Industry Microbiology, International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
| | - Zhiqian Wang
- Hubei Key Laboratory of Industry Microbiology, International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
| | - Dechang Rong
- Hubei Key Laboratory of Industry Microbiology, International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
| | - Hasan Bayram
- Department of Pulmonary Medicine, School of Medicine, Koc University, Istanbul, Turkey
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - George H Lorimer
- Department of Chemistry, University of Maryland, College Park, MD, USA
| | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China.
| | - Jun Wang
- Hubei Key Laboratory of Industry Microbiology, International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Wang C, Zhao R, Yang W, Jiang W, Tang H, Du S, Chen X. Cell-to-Cell Natural Transformation Mediated Efficient Plasmid Transfer Between Bacillus Species. Int J Mol Sci 2025; 26:621. [PMID: 39859334 PMCID: PMC11765539 DOI: 10.3390/ijms26020621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Horizontal gene transfer (HGT) plays a pivotal role in bacterial evolution, shaping the genetic diversity of bacterial populations. It can occur through mechanisms such as conjugation, transduction, and natural transformation. Bacillus subtilis, a model Gram-positive bacterium, serves not only as a robust system for studying HGT but also as a versatile organism with established industrial applications, such as producing industrial enzymes, antibiotics, and essential metabolites. In this study, we characterize a novel method of plasmid transfer, termed Cell-to-Cell Natural Transformation for Plasmid Transfer (CTCNT-P), which efficiently facilitates plasmid transfer between naturally competent B. subtilis strains. This method involves co-culturing donor and recipient cells under antibiotic stress and achieves significantly higher efficiency compared to traditional methods such as Spizizen medium or electroporation-mediated transformation. Importantly, we demonstrate that CTCNT-P is applicable for plasmid transformation in wild B. subtilis isolates from natural environments and other Bacillus species, including Bacillus amyloliquefaciens, Bacillus licheniformis, and Bacillus thuringiensis. The simplicity and efficiency of CTCNT-P highlight its strong potential for industrial applications, including genetic modification of wild Bacillus strains for synthetic biology and the development of biocontrol agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.W.)
| |
Collapse
|
3
|
Xiao Y, Xiang W, Ma X, Gao D, Bayram H, Lorimer GH, Ghiladi RA, Xie Z, Wang J. HemN2 Regulates the Virulence of Pseudomonas donghuensis HYS through 7-Hydroxytropolone Synthesis and Oxidative Stress. BIOLOGY 2024; 13:373. [PMID: 38927253 PMCID: PMC11200716 DOI: 10.3390/biology13060373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Compared to pathogens Pseudomonas aeruginosa and P. putida, P. donghuensis HYS has stronger virulence towards Caenorhabditis elegans. However, the underlying mechanisms haven't been fully understood. The heme synthesis system is essential for Pseudomonas virulence, and former studies of HemN have focused on the synthesis of heme, while the relationship between HemN and Pseudomonas virulence were barely pursued. In this study, we hypothesized that hemN2 deficiency affected 7-hydroxytropolone (7-HT) biosynthesis and redox levels, thereby reducing bacterial virulence. There are four hemN genes in P. donghuensis HYS, and we reported for the first time that deletion of hemN2 significantly reduced the virulence of HYS towards C. elegans, whereas the reduction in virulence by the other three genes was not significant. Interestingly, hemN2 deletion significantly reduced colonization of P. donghuensis HYS in the gut of C. elegans. Further studies showed that HemN2 was regulated by GacS and participated in the virulence of P. donghuensis HYS towards C. elegans by mediating the synthesis of the virulence factor 7-HT. In addition, HemN2 and GacS regulated the virulence of P. donghuensis HYS by affecting antioxidant capacity and nitrative stress. In short, the findings that HemN2 was regulated by the Gac system and that it was involved in bacterial virulence via regulating 7-HT synthesis and redox levels were reported for the first time. These insights may enlighten further understanding of HemN-based virulence in the genus Pseudomonas.
Collapse
Affiliation(s)
- Yaqian Xiao
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China; (Y.X.); (W.X.); (X.M.)
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan 430068, China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Wang Xiang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China; (Y.X.); (W.X.); (X.M.)
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Xuerui Ma
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China; (Y.X.); (W.X.); (X.M.)
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Donghao Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Hasan Bayram
- Department of Pulmonary Medicine, School of Medicine, Koc University, 34010 Istanbul, Turkey;
| | - George H. Lorimer
- Department of Chemistry, University of Maryland, College Park, MD 20742, USA;
| | - Reza A. Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA;
| | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Jun Wang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China; (Y.X.); (W.X.); (X.M.)
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
4
|
Jafra S, Jabłońska M, Maciąg T, Matuszewska M, Borowicz M, Prusiński M, Żmudzińska W, Thiel M, Czaplewska P, Krzyżanowska DM, Czajkowski R. An iron fist in a velvet glove: The cooperation of a novel pyoverdine from Pseudomonas donghuensis P482 with 7-hydroxytropolone is pivotal for its antibacterial activity. Environ Microbiol 2024; 26:e16559. [PMID: 38151794 DOI: 10.1111/1462-2920.16559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Pseudomonas donghuensis P482 exhibits broad antimicrobial activity against phytopathogens, including the soft rot bacteria of the Dickeya genus. Here, we report that under limited nutrient availability, the antibacterial activity of P. donghuensis P482 against Dickeya solani requires the reciprocal action of two iron scavengers: 7-hydroxytropolone (7-HT) and a newly characterized pyoverdine (PVDP482 ) and is quenched in the iron-augmented environment. Further, we show that the biosynthesis of pyoverdine and 7-HT is metabolically coordinated, and the functional BV82_4709 gene involved in 7-HT synthesis is pivotal for expressing the BV82_3755 gene, essential for pyoverdine biosynthesis and vice versa. The synthesis of both scavengers is under the control of Gac/Rsm, but only PVD is controlled by Fur. The isoelectric focusing profile of the P482 siderophore differs from that of the other Pseudomonas spp. tested. This finding led to the unveiling of the chemical structure of the new pyoverdine PVDP482 . To summarize, the antibacterial activity of P. donghuensis P482 is attributed to 7-HT and PVDP482 varies depending on the nutrient and iron availability, highlighting the importance of these factors in the competition between P482 and D. solani.
Collapse
Affiliation(s)
- Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Magdalena Jabłońska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Tomasz Maciąg
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Marta Matuszewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Marcin Borowicz
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Michał Prusiński
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Wioletta Żmudzińska
- Laboratory of Biopolymers Structure, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Marcel Thiel
- Laboratory of Biopolymers Structure, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Dorota M Krzyżanowska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| |
Collapse
|
5
|
Testerman T, Varga J, Schiffer MM, Donohue H, Vieira Da Silva C, Graf J. Pseudomonas aphyarum sp. nov., Pseudomonas fontis sp. nov., Pseudomonas idahonensis sp. nov. and Pseudomonas rubra sp. nov., isolated from in, and around, a rainbow trout farm. Int J Syst Evol Microbiol 2023; 73. [PMID: 38108817 DOI: 10.1099/ijsem.0.006201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
During a large-scale bacterial culturing effort of biofilms in the vicinity of a rainbow trout aquaculture facility in Idaho, USA, 10 isolates were identified as having pathogen-inhibiting activity and were characterized further. These isolates were shown to be Gram-negative, rod-shaped bacteria belonging to the genus Pseudomonas. Whole-genome comparisons and multi-locus sequence analysis using four housekeeping genes (16S rRNA, gyrA, rpoB and rpoD) showed that these 10 isolates clustered into four distinct species groups. These comparisons also indicated that these isolates were below the established species cutoffs for the genus Pseudomonas. Further phenotypic characterization using API 20NE, API ZYM and Biolog GENIII assays and chemotaxonomic analysis of cellular fatty acids were carried out. Based on the genomic, physiological and chemotaxonomic properties of these isolates, we concluded that these strains composed four novel species of the genus Pseudomonas. The proposed names are as follows: Pseudomonas aphyarum sp. nov. consisting of strains ID233, ID386T and ID387 with ID386T (=DSM 114641T=ATCC TSD-305T) as the type strain; Pseudomonas rubra sp. nov. consisting of strains ID291T, ID609 and ID1025 with ID291T (=DSM 114640T=ATCC TSD-303T) as the type strain; Pseudomonas idahonensis sp. nov. consisting of strains ID357T and ID1048 with ID357T (=DSM 114609T=ATCC TSD-304T) as the type strain; and Pseudomonas fontis sp. nov. consisting of strains ID656T and ID681 with ID656T (=DSM 114610T=ATCC TSD-306T) as the type strain.
Collapse
Affiliation(s)
- Todd Testerman
- University of Connecticut, Department of Molecular and Cell Biology, Storrs, Connecticut, USA
| | - Jackie Varga
- University of Connecticut, Department of Molecular and Cell Biology, Storrs, Connecticut, USA
| | - Molly M Schiffer
- University of Hawaii at Manoa, Pacific Biosciences Research Center, Honolulu, HI, USA
| | - Hailey Donohue
- University of Connecticut, Department of Molecular and Cell Biology, Storrs, Connecticut, USA
| | | | - Joerg Graf
- University of Connecticut, Department of Molecular and Cell Biology, Storrs, Connecticut, USA
- University of Hawaii at Manoa, Pacific Biosciences Research Center, Honolulu, HI, USA
| |
Collapse
|
6
|
Dong X, Wu S, Rao Z, Xiao Y, Long Y, Xie Z. Insight into the High-Efficiency Benzo(a)pyrene Degradation Ability of Pseudomonas benzopyrenica BaP3 and Its Application in the Complete Bioremediation of Benzo(a)pyrene. Int J Mol Sci 2023; 24:15323. [PMID: 37895002 PMCID: PMC10607497 DOI: 10.3390/ijms242015323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common carcinogens. Benzo(a)pyrene is one of the most difficult high-molecular-weight (HMW) PAHs to remove. Biodegradation has become an ideal method to eliminate PAH pollutants from the environment. The existing research is mostly limited to low-molecular-weight PAHs; there is little understanding of HMW PAHs, particularly benzo(a)pyrene. Research into the biodegradation of HMW PAHs contributes to the development of microbial metabolic mechanisms and also provides new systems for environmental treatments. Pseudomonas benzopyrenica BaP3 is a highly efficient benzo(a)pyrene-degrading strain that is isolated from soil samples, but its mechanism of degradation remains unknown. In this study, we aimed to clarify the high degradation efficiency mechanism of BaP3. The genes encoding Rhd1 and Rhd2 in strain BaP3 were characterized, and the results revealed that rhd1 was the critical factor for high degradation efficiency. Molecular docking and enzyme activity determinations confirmed this conclusion. A recombinant strain that could completely mineralize benzo(a)pyrene was also proposed for the first time. We explained the mechanism of the high-efficiency benzo(a)pyrene degradation ability of BaP3 to improve understanding of the degradation mechanism of highly toxic PAHs and to provide new solutions to practical applications via synthetic biology.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; (X.D.); (S.W.); (Z.R.); (Y.X.); (Y.L.)
| |
Collapse
|
7
|
Dong X, Rao Z, Wu S, Peng F, Xie Z, Long Y. Pseudomonas benzopyrenica sp. nov., isolated from soil, exhibiting high-efficiency degradation of benzo(a)pyrene. Int J Syst Evol Microbiol 2023; 73. [PMID: 37725099 DOI: 10.1099/ijsem.0.006034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
A Gram-negative, yellow-pigmented, aerobic and rod-shaped bacterium, designated as strain BaP3T, was isolated from the soil. Strain BaP3T grew at 16-37℃ (optimum, 30 °C) and pH 6.0-8.0 (optimum, pH 7.0). Additionally, strain BaP3T could tolerate NaCl concentrations in the range 0-6 % (optimum, 1%). Moreover, strain BaP3T was motile by flagella. The phylogenetic analysis of 16S rRNA sequences showed that strain BaP3T belonged to the genus Pseudomonas, and the sequence was most closely related to Pseudomonas oryzihabitans CGMCC 1.3392T and Pseudomonas psychrotolerans DSM 15758T, with 99.66 % sequence similarity. Pseudomonas rhizoryzae RY24T was the next closely related species, exhibiting 99.38 % 16S rRNA gene sequence similarity. The DNA-DNA hybridization and average nucleotide identity values between strain BaP3T and its closely related types were below 50 and 92 %, respectively. Both results were below the cut-off for species distinction. The genomic DNA G+C content of strain BaP3T was 65.30 mol%. The predominant quinone in strain BaP3T was identified as ubiquinone Q-9. The major cellular fatty acids were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and C16 : 0. These results indicated that strain BaP3T represents a novel species in the genus Pseudomonas. The type strain is BaP3T (CCTCC AB 2022379T=JCM 35914T), for which the name Pseudomonas benzopyrenica sp. nov. is proposed.
Collapse
Affiliation(s)
- Xingchen Dong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuchang District, Wuhan 430072, Hubei Province, PR China
| | - Zihuan Rao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuchang District, Wuhan 430072, Hubei Province, PR China
| | - Siyi Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuchang District, Wuhan 430072, Hubei Province, PR China
| | - Fang Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuchang District, Wuhan 430072, Hubei Province, PR China
| | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuchang District, Wuhan 430072, Hubei Province, PR China
| | - Yan Long
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuchang District, Wuhan 430072, Hubei Province, PR China
| |
Collapse
|
8
|
Wang P, Xiao Y, Gao D, Long Y, Xie Z. The Gene paaZ of the Phenylacetic Acid (PAA) Catabolic Pathway Branching Point and ech outside the PAA Catabolon Gene Cluster Are Synergistically Involved in the Biosynthesis of the Iron Scavenger 7-Hydroxytropolone in Pseudomonas donghuensis HYS. Int J Mol Sci 2023; 24:12632. [PMID: 37628812 PMCID: PMC10454607 DOI: 10.3390/ijms241612632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The newly discovered iron scavenger 7-hydroxytropolone (7-HT) is secreted by Pseudomonas donghuensis HYS. In addition to possessing an iron-chelating ability, 7-HT has various other biological activities. However, 7-HT's biosynthetic pathway remains unclear. This study was the first to report that the phenylacetic acid (PAA) catabolon genes in cluster 2 are involved in the biosynthesis of 7-HT and that two genes, paaZ (orf13) and ech, are synergistically involved in the biosynthesis of 7-HT in P. donghuensis HYS. Firstly, gene knockout and a sole carbon experiment indicated that the genes orf17-21 (paaEDCBA) and orf26 (paaG) were involved in the biosynthesis of 7-HT and participated in the PAA catabolon pathway in P. donghuensis HYS; these genes were arranged in gene cluster 2 in P. donghuensis HYS. Interestingly, ORF13 was a homologous protein of PaaZ, but orf13 (paaZ) was not essential for the biosynthesis of 7-HT in P. donghuensis HYS. A genome-wide BLASTP search, including gene knockout, complemented assays, and site mutation, showed that the gene ech homologous to the ECH domain of orf13 (paaZ) is essential for the biosynthesis of 7-HT. Three key conserved residues of ech (Asp39, His44, and Gly62) were identified in P. donghuensis HYS. Furthermore, orf13 (paaZ) could not complement the role of ech in the production of 7-HT, and the single carbon experiment indicated that paaZ mainly participates in PAA catabolism. Overall, this study reveals a natural association between PAA catabolon and the biosynthesis of 7-HT in P. donghuensis HYS. These two genes have a synergistic effect and different functions: paaZ is mainly involved in the degradation of PAA, while ech is mainly related to the biosynthesis of 7-HT in P. donghuensis HYS. These findings complement our understanding of the mechanism of the biosynthesis of 7-HT in the genus Pseudomonas.
Collapse
Affiliation(s)
| | | | | | - Yan Long
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; (P.W.); (Y.X.); (D.G.)
| | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; (P.W.); (Y.X.); (D.G.)
| |
Collapse
|
9
|
Krzyżanowska DM, Iwanicki A, Czajkowski R, Jafra S. High-Quality Complete Genome Resource of Tomato Rhizosphere Strain Pseudomonas donghuensis P482, a Representative of a Species with Biocontrol Activity Against Plant Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1450-1454. [PMID: 34428926 DOI: 10.1094/mpmi-06-21-0136-a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Strain P482 was isolated from a tomato rhizosphere and classified as Pseudomonas donghuensis. The P. donghuensis species was first established in 2015 and currently consists of only four strains: P482, HYST, SVBP6, and 22G5. P. donghuensis strains antagonize plant pathogens, including bacteria, fungi, and oomycetes, and, therefore, are of high interest regarding their biological control potential to combat plant diseases. The antimicrobial activity of P. donghuensis P482 is based on the production of iron-scavenging compound 7-hydroxytropolone, antifungal volatile organic compounds, and as-yet-unidentified secondary metabolites. Here, we report a complete genome resource for P. donghuensis strain P482. The genome consists of a single chromosome (5,656,185 bp) with 5,258 open reading frames (5,158 protein-coding genes, 74 transfer RNAs, 22 ribosomal RNAs, 3 noncoding RNAs, and 1 transfer-messenger RNA) and no plasmid. We believe that information on the first high-quality, complete genome of P. donghuensis will provide resources for analyses targeting the biological control potential of this species and understanding the traits essential for plant-microbe interaction.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Dorota M Krzyżanowska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, A. Abrahama 58, 80-307 Gdańsk, Poland
| | - Adam Iwanicki
- Division of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Medical University of Gdańsk, Gdańsk, Dębinki 1, 80-211, Poland
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, A. Abrahama 58, 80-307 Gdańsk, Poland
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, A. Abrahama 58, 80-307 Gdańsk, Poland
| |
Collapse
|
10
|
Xiao Y, Wang P, Zhu X, Xie Z. Pseudomonas donghuensis HYS gtrA/ B/ II Gene Cluster Contributes to Its Pathogenicity toward Caenorhabditis elegans. Int J Mol Sci 2021; 22:ijms221910741. [PMID: 34639082 PMCID: PMC8509367 DOI: 10.3390/ijms221910741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas donghuensis HYS is more virulent than P. aeruginosa toward Caenorhabditis elegans but the mechanism underlying virulence is unclear. This study is the first to report that the specific gene cluster gtrA/B/II in P. donghuensis HYS is involved in the virulence of this strain toward C. elegans, and there are no reports of GtrA, GtrB and GtrII in any Pseudomonas species. The pathogenicity of P. donghuensis HYS was evaluated using C. elegans as a host. Based on the prediction of virulence factors and comparative genomic analysis of P. donghuensis HYS, we identified 42 specific virulence genes in P. donghuensis HYS. Slow-killing assays of these genes showed that the gtrAB mutation had the greatest effect on the virulence of P. donghuensis HYS, and GtrA, GtrB and GtrII all positively affected P. donghuensis HYS virulence. Two critical GtrII residues (Glu47 and Lys480) were identified in P. donghuensis HYS. Transmission electron microscopy (TEM) showed that GtrA, GtrB and GtrII were involved in the glucosylation of lipopolysaccharide (LPS) O-antigen in P. donghuensis HYS. Furthermore, colony-forming unit (CFU) assays showed that GtrA, GtrB and GtrII significantly enhanced P. donghuensis HYS colonization in the gut of C. elegans, and glucosylation of LPS O-antigen and colonization in the host intestine contributed to the pathogenicity of P. donghuensis HYS. In addition, experiments using the worm mutants ZD101, KU4 and KU25 revealed a correlation between P. donghuensis HYS virulence and the TIR-1/SEK-1/PMK-1 pathways of the innate immune p38 MAPK pathway in C. elegans. In conclusion, these results reveal that the specific virulence gene cluster gtrA/B/II contributes to the unique pathogenicity of HYS compared with other pathogenic Pseudomonas, and that this process also involves C. elegans innate immunity. These findings significantly increase the available information about GtrA/GtrB/GtrII-based virulence mechanisms in the genus Pseudomonas.
Collapse
|
11
|
Gutierrez-Albanchez E, García-Villaraco A, Lucas JA, Horche I, Ramos-Solano B, Gutierrez-Mañero FJ. Pseudomonas palmensis sp. nov., a Novel Bacterium Isolated From Nicotiana glauca Microbiome: Draft Genome Analysis and Biological Potential for Agriculture. Front Microbiol 2021; 12:672751. [PMID: 34489881 PMCID: PMC8417607 DOI: 10.3389/fmicb.2021.672751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/20/2021] [Indexed: 11/23/2022] Open
Abstract
A novel Pseudomonas, designated strain BBB001T, an aerobic, rod-shaped bacterium, was isolated from the rhizosphere of Nicotiana glauca in Las Palmas Gran Canaria, Spain. Genomic analysis revealed that it could not be assigned to any known species of Pseudomonas, so the name Pseudomonas palmensis sp. nov. was proposed. A 16S rRNA gene phylogenetic analysis suggested affiliation to the Pseudomonas brassicae group, being P. brassicae MAFF212427 T the closest related type strain. Upon genomic comparisons of both strains, all values were below thresholds established for differentiation: average nucleotide identity (ANI, 88.29%), average amino acid identity (AAI, 84.53%), digital DNA-DNA hybridization (dDDH, 35.4%), and TETRA values (0.98). When comparing complete genomes, a total of 96 genes present exclusively in BBB001T were identified, 80 of which appear associated with specific subsystems. Phenotypic analysis has shown its ability to assimilate glucose, potassium gluconate, capric acid malate, trisodium citrate, and phenylacetic acid; it was oxidase positive. It is able to produce auxins and siderophores in vitro; its metabolic profile based on BIOLOG Eco has shown a high catabolic capacity. The major fatty acids accounting for 81.17% of the total fatty acids were as follows: C16:0 (33.29%), summed feature 3 (22.80%) comprising C16:1 ω7c and C16:1 ω6c, summed feature 8 (13.66%) comprising C18:1 ω7c, and C18:1ω6c and C17:0 cyclo (11.42%). The ability of this strain to improve plant fitness was tested on tomato and olive trees, demonstrating a great potential for agriculture as it is able to trigger herbaceous and woody species. First, it was able to improve iron nutrition and growth on iron-starved tomatoes, demonstrating its nutrient mobilization capacity; this effect is related to its unique genes related to iron metabolism. Second, it increased olive and oil yield up to 30% on intensive olive orchards under water-limiting conditions, demonstrating its capacity to improve adaptation to adverse conditions. Results from genomic analysis together with differences in phenotypic features and chemotaxonomic analysis support the proposal of strain BBB001T (=LMG 31775T = NCTC 14418T) as the type strain of a novel species for which the name P. palmensis sp. nov is proposed.
Collapse
Affiliation(s)
- Enrique Gutierrez-Albanchez
- Biobab R&D S. L., Madrid, Spain
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, Boadilla del Monte, Spain
| | - Ana García-Villaraco
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, Boadilla del Monte, Spain
| | - José A. Lucas
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, Boadilla del Monte, Spain
| | | | - Beatriz Ramos-Solano
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, Boadilla del Monte, Spain
| | - F. J. Gutierrez-Mañero
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, Boadilla del Monte, Spain
| |
Collapse
|
12
|
Mulet M, Duman M, Altun S, Saticioglu IB, Gomila M, Matthijs S, Lalucat J, García-Valdés E. Pseudomonas arcuscaelestis sp. nov., isolated from rainbow trout and water. Int J Syst Evol Microbiol 2021; 71. [PMID: 34242155 DOI: 10.1099/ijsem.0.004860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells of strains P66T, V1 and W15Feb18 are Gram-stain-negative short rods and motile by one polar flagellum. Strain P66T was isolated from rainbow trout (Oncorhynchus mykiss) cultivated at a fish farm in Turkey. Strain V1 was isolated from sand of an intertidal shore on the Galicia coast in Spain and strain W15Feb18 was isolated from water collected at the Woluwe River in Belgium. Based on 16S rRNA sequence similarity values, the strains were grouped under the genus Pseudomonas and the Pseudomonas putida phylogenetic group of species. The DNA G+C content ranged from 58.5 to 58.9 mol%. The strains were characterized phenotypically by the API 20NE and Biolog GEN III tests, and chemotaxonomically by their whole-cell MALDI-TOF MS protein profiles and fatty acid contents. The absence of the hydrolysis of gelatin and the assimilation of arabinose, mannose and mannitol differentiated these strains from the closest species, Pseudomonas alkylphenolica. The major fatty acid components were C16:0 (29.91-31.68 %) and summed feature 3 (36.44-37.55 %). Multilocus sequence analysis with four and 83 housekeeping gene sequences and a core proteome analysis showed that these strains formed a phylogenetic cluster in the P. putida group of species. Genome comparisons by the average nucleotide identity based on blast and the Genome-to-Genome Distance Calculator demonstrated that the three strains belonged to the same genomic species and were distant from any known species, with similarity values lower than the thresholds established for species in the genus Pseudomonas. These data permitted us to conclude that strains P66T, V1 and W15Feb18 belong to a novel species in the genus Pseudomonas, for which the name Pseudomonas arcuscaelestis sp. nov. is proposed. The type strain is P66T (=CECT 30176T=CCUG 74872T). The other strains have been deposited in the CECT with the corresponding collection numbers: V1 (=CECT 30356) and W15Feb18 (=CECT 30355).
Collapse
Affiliation(s)
- Magdalena Mulet
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain
| | - Muhammed Duman
- Department of Aquatic Animal Diseases, Bursa Uludag University, 16059, Bursa, Turkey
| | - Soner Altun
- Department of Aquatic Animal Diseases, Bursa Uludag University, 16059, Bursa, Turkey
| | - Izzet Burcin Saticioglu
- Department of Aquatic Animal Diseases, Faculty of Veterinary Medicine, Erciyes University, 38280, Kayseri, Turkey
| | - Margarita Gomila
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain
| | - Sandra Matthijs
- Institut de recherche LABIRIS, Avenue Emile Gryzon, 1 - 1070 Bruxelles, Belgium
| | - Jorge Lalucat
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain.,Institut Mediterrani d'Estudis Avançats (IMEDEA, CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain
| | - Elena García-Valdés
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain.,Institut Mediterrani d'Estudis Avançats (IMEDEA, CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain
| |
Collapse
|
13
|
Matuszewska M, Maciąg T, Rajewska M, Wierzbicka A, Jafra S. The carbon source-dependent pattern of antimicrobial activity and gene expression in Pseudomonas donghuensis P482. Sci Rep 2021; 11:10994. [PMID: 34040089 PMCID: PMC8154892 DOI: 10.1038/s41598-021-90488-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/12/2021] [Indexed: 02/04/2023] Open
Abstract
Pseudomonas donghuensis P482 is a tomato rhizosphere isolate with the ability to inhibit growth of bacterial and fungal plant pathogens. Herein, we analysed the impact of the carbon source on the antibacterial activity of P482 and expression of the selected genes of three genomic regions in the P482 genome. These regions are involved in the synthesis of pyoverdine, 7-hydroxytropolone (7-HT) and an unknown compound ("cluster 17") and are responsible for the antimicrobial activity of P482. We showed that the P482 mutants, defective in these regions, show variations and contrasting patterns of growth inhibition of the target pathogen under given nutritional conditions (with glucose or glycerol as a carbon source). We also selected and validated the reference genes for gene expression studies in P. donghuensis P482. Amongst ten candidate genes, we found gyrB, rpoD and mrdA the most stably expressed. Using selected reference genes in RT-qPCR, we assessed the expression of the genes of interest under minimal medium conditions with glucose or glycerol as carbon sources. Glycerol was shown to negatively affect the expression of genes necessary for 7-HT synthesis. The significance of this finding in the light of the role of nutrient (carbon) availability in biological plant protection is discussed.
Collapse
Affiliation(s)
- Marta Matuszewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Tomasz Maciąg
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Magdalena Rajewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Aldona Wierzbicka
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland.
| |
Collapse
|
14
|
Pseudomonas donghuensis HYS 7-hydroxytropolone contributes to pathogenicity toward Caenorhabditis elegans and is influenced by pantothenic acid. Biochem Biophys Res Commun 2020; 533:50-56. [PMID: 32921415 DOI: 10.1016/j.bbrc.2020.08.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 12/25/2022]
Abstract
Pseudomonas donghuensis HYS, a bacterial strain identified from Donghu Lake, has tremendous toxicity toward Caenorhabditis elegans and is characterized by high 7-hydroxytropolone siderophore production. Here, the relationship between pathogenic siderophore production and pantothenic acid was evaluated. The pathogenicity of P. donghuensis HYS was illustrated using C. elegans as a host. Based on slow-killing assay findings, a 7-hydroxytropolone deficiency-causing mutation attenuated P. donghuensis HYS pathogenicity, which was restored by the addition of extracted 7-hydroxytropolone. Moreover, data from real-time qPCR analysis and characteristic absorption assays indicated that pantothenic acid deficiency repressed transcriptional levels of orf9, which further reduced 7-hydroxytropolone production. Furthermore, slow-killing assays indicated that panB and pantothenic acid affected the virulence of P. donghuensis. These results indicate that a 7-hydroxytropolone siderophore-producing strain is virulent toward C. elegans. Our findings demonstrate that pantothenic acid is associated with P. donghuensis siderophore production-related pathogenicity.
Collapse
|
15
|
Steiner KK, Parthasarathy A, Wong NH, Cavanaugh NT, Chu J, Hudson AO. Isolation and whole-genome sequencing of Pseudomonas sp. RIT 623, a slow-growing bacterium endowed with antibiotic properties. BMC Res Notes 2020; 13:370. [PMID: 32746897 PMCID: PMC7398229 DOI: 10.1186/s13104-020-05216-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE There is an urgent need for the discovery and/or development of novel antibiotics. We report an exploration of "slow"-growing bacteria, which can be difficult to isolate using rich media as they are usually outcompeted by "fast"-growing bacteria, as potential sources of novel antimicrobials. RESULTS Pseudomonas sp. RIT 623 was isolated using pond water agar from a pond located on the campus of the Rochester Institute of Technology (RIT). The genome was sequenced and analyzed for potential secondary metabolite gene clusters. Bioinformatics analysis revealed 14 putative gene clusters predicted to encode pathways for the anabolism of secondary metabolites. Ethyl acetate extracts from spent growth medium of Pseudomonas sp. RIT 623 were tested against two Gram-negative (E. coli ATCC 25922 and P. aeruginosa ATCC 27853) and two Gram-positive (B. subtilis BGSC 168 and S. aureus ATCC 25923) type strains to assess antibiotic activity. The antibiotic assays demonstrated that extracts of Pseudomonas sp. RIT 623 were able to inhibit the growth of the four strains. The active compound was separated using diethyl ether in a multi-solvent extraction and reverse phase chromatography. The bioactive compound/s were subsequently eluted in two consecutive fractions corresponding to approximately 16-22% acetonitrile, indicative of polar compound/s.
Collapse
Affiliation(s)
- KayLee K. Steiner
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623 USA
| | - Anutthaman Parthasarathy
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623 USA
| | - Narayan H. Wong
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623 USA
| | - Nicole T. Cavanaugh
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623 USA
| | - Jonathan Chu
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623 USA
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623 USA
| |
Collapse
|
16
|
Muzio FM, Agaras BC, Masi M, Tuzi A, Evidente A, Valverde C. 7‐hydroxytropolone is the main metabolite responsible for the fungal antagonism of
Pseudomonas donghuensis
strain SVBP6. Environ Microbiol 2020; 22:2550-2563. [DOI: 10.1111/1462-2920.14925] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Federico M. Muzio
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas—Centro de Bioquímica y Microbiología del Suelo. Departamento de Ciencia y TecnologíaUniversidad Nacional de Quilmes—CONICET, Roque Sáenz Peña 352, Bernal B1876BXD Buenos Aires Argentina
| | - Betina C. Agaras
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas—Centro de Bioquímica y Microbiología del Suelo. Departamento de Ciencia y TecnologíaUniversidad Nacional de Quilmes—CONICET, Roque Sáenz Peña 352, Bernal B1876BXD Buenos Aires Argentina
| | - Marco Masi
- Dipartimento di Scienze Chimiche, Università di Napoli “Federico II”Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Naples Italy
| | - Angela Tuzi
- Dipartimento di Scienze Chimiche, Università di Napoli “Federico II”Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Naples Italy
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli “Federico II”Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Naples Italy
| | - Claudio Valverde
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas—Centro de Bioquímica y Microbiología del Suelo. Departamento de Ciencia y TecnologíaUniversidad Nacional de Quilmes—CONICET, Roque Sáenz Peña 352, Bernal B1876BXD Buenos Aires Argentina
| |
Collapse
|
17
|
Oh WT, Jun JW, Giri SS, Yun S, Kim HJ, Kim SG, Kim SW, Kang JW, Han SJ, Kwon J, Kim JH, Smits THM, Park SC. Pseudomonas tructae sp. nov., novel species isolated from rainbow trout kidney. Int J Syst Evol Microbiol 2019; 69:3851-3856. [PMID: 31483752 DOI: 10.1099/ijsem.0.003696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study describes the biochemical and phylogenetic characteristics of a Gram-negative strain, SNU WT1T, isolated from rainbow trout kidney. The 16S rRNA gene sequencing indicated that strain SNU WT1T was highly similar to Pseudomonas wadenswilerensis CCOS 864T and closely related to other Pseudomonas putida-related strains. Multilocus sequence analysis of concatenated partial gyrB, rpoB and rpoD sequences revealed that strain SNU WT1T was distinct from P. putida-related strains and formed a separate clade. The average nucleotide identity and Genome-to-Genome Distance Calculator values were 90.19 and 41.7 %with its closest relative P. wadenswilerensis CCOS 864T; however, it was phenotypically distinct from CCOS 864T with respect to arginine dihydrolase, glucose fermentation, aesculin hydrolysis and N-acetyl-glucosamine assimilation. The major polar lipid of the strain was phosphatidylethanolamine and the major quinone was Q-9. The genome of strain SNU WT1T had 5 685 196 bp with a G+C content of 61.83 mol%. We describe a novel species of genus Pseudomonas, for which the name Pseudomonastructae has been proposed, with SNU WT1T (=KCTC 72265=JCM 33436) as the type strain.
Collapse
Affiliation(s)
- Woo Taek Oh
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Woo Jun
- Department of Aquaculture, Korea National College of Agriculture and Fisheries, Jeonju 54874, Republic of Korea
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Saekil Yun
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyoun Joong Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Guen Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Wha Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Woo Kang
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Se Jin Han
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jun Kwon
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Hyung Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Theo H M Smits
- Department of Life Sciences and Facility Management, Zürich University of Applied Sciences ZHAW, CH-8820 Wädenswil, Switzerland
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
18
|
Keshavarz-Tohid V, Vacheron J, Dubost A, Prigent-Combaret C, Taheri P, Tarighi S, Taghavi SM, Moënne-Loccoz Y, Muller D. Genomic, phylogenetic and catabolic re-assessment of the Pseudomonas putida clade supports the delineation of Pseudomonas alloputida sp. nov., Pseudomonas inefficax sp. nov., Pseudomonas persica sp. nov., and Pseudomonas shirazica sp. nov. Syst Appl Microbiol 2019; 42:468-480. [DOI: 10.1016/j.syapm.2019.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/15/2019] [Accepted: 04/21/2019] [Indexed: 12/21/2022]
|
19
|
Xie G, Zeng M, You J, Xie Z. Pseudomonas donghuensis HYS virulence towards Caenorhabditis elegans is regulated by the Cbr/Crc system. Sci Rep 2019; 9:8772. [PMID: 31217473 PMCID: PMC6584532 DOI: 10.1038/s41598-019-45145-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 06/03/2019] [Indexed: 12/29/2022] Open
Abstract
Pseudomonas donghuensis HYS is the type strain of a recently identified species, P. donghuensis, which has pathogenic potential with an unclear virulence mechanism. In this study, we used Caenorhabditis elegans as a host to explore the virulence mechanism of P. donghuensis HYS. Based on a correlation between P. donghuensis HYS virulence and its repellence property, we identified 68 potential virulence-related genes, among them the Cbr/Crc system, which regulates the virulence of prokaryotic microorganisms. Slow-killing assays indicated that cbrA, cbrB, or specific sRNA-encoding genes all affected P. donghuensis virulence positively, whereas crc affected it negatively. Transcriptome analyses demonstrated that the Cbr/Crc system played an important role in the pathogenesis of P. donghuensis. In addition, experiments using the worm mutant KU25 pmk-1(km25) showed a correlation between P. donghuensis HYS virulence and the PMK-1/p38 MAPK pathway in C. elegans. In conclusion, our data show that Crc plays a novel role in the Cbr/Crc system, and the P. donghuensis virulence phenotype therefore differs from that of P. aeruginosa. This process also involves C. elegans innate immunity. These findings significantly increase the available information about Cbr/Crc-based virulence mechanisms in the genus Pseudomonas.
Collapse
Affiliation(s)
- Guanfang Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, P.R. China
| | - Man Zeng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, P.R. China
| | - Jia You
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, P.R. China
| | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, P.R. China.
| |
Collapse
|
20
|
Xiang W, Chen S, Tian D, Huang C, Gao T. Pseudomonas hutmensis sp. nov., a New Fluorescent Member of Pseudomonas putida Group. Curr Microbiol 2019; 76:872-878. [DOI: 10.1007/s00284-019-01701-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/03/2019] [Indexed: 02/08/2023]
|
21
|
High-Quality Draft Genome Sequence of Pseudomonas wadenswilerensis CCOS 864 T. Microbiol Resour Announc 2018; 7:MRA01059-18. [PMID: 30533735 PMCID: PMC6256571 DOI: 10.1128/mra.01059-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/01/2018] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas wadenswilerensis CCOS 864T was isolated in 2014 from forest soil. The organism belongs taxonomically to the Pseudomonas putida group, members of which have been well studied for their potential in biotechnological applications. We present here the draft genome sequence of P. wadenswilerensis CCOS 864T.
Collapse
|
22
|
Bio-emulsifying and biodegradation activities of syringafactin producing Pseudomonas spp. strains isolated from oil contaminated soils. Biodegradation 2018; 30:259-272. [DOI: 10.1007/s10532-018-9861-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 10/17/2018] [Indexed: 12/11/2022]
|
23
|
A Complex Mechanism Involving LysR and TetR/AcrR That Regulates Iron Scavenger Biosynthesis in Pseudomonas donghuensis HYS. J Bacteriol 2018; 200:JB.00087-18. [PMID: 29686142 DOI: 10.1128/jb.00087-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/18/2018] [Indexed: 11/20/2022] Open
Abstract
7-Hydroxytropolone (7-HT) is a symmetrical seven-membered heteroatomic ring with a carboxyl group and two hydroxyl groups and was recently reported to be an iron scavenger of Pseudomonas donghuensis HYS. Cluster 1 includes 12 genes related to the synthesis of 7-HT; among these genes, those for two regulators, Orf1 and Orf12, were predicted to regulate 7-HT biosynthesis and to be LysR-type transcriptional regulators (LTTRs) and TetR/AcrR family transcriptional regulators, respectively. Data from real-time quantitative PCR and β-galactosidase and classical siderophore assays indicated that the transcription levels of orf1 and orf12, as well as those of crucial genes orf6 to orf9, were repressed under high-iron conditions. The deletion of orf1 and orf12 led to an absence of 7-HT and a decrease in orf6-orf9 expression. Orf1 and Orf12 were essential for the production of 7-HT through orf6-orf9 These two regulators are regulated by the Gac/Rsm system; Orf1 facilitates the expression of Orf12, and Orf12 concomitantly stimulates the expression of orf6-orf9 to synthesize 7-HT. The overexpression of Orf12 decreased 7-HT yields, possibly through decreased orf6-orf9 expression. This work thus outlines a complex mechanism regulating the biosynthesis of the iron scavenger 7-HT in P. donghuensis HYS. The synergy between Orf1 and Orf12 ensures that 7-HT acts as an iron chelator despite being toxic to bacteria and provides new ideas for the novel regulation of dual-functional secondary metabolism and research on 7-HT and its derivates in other bacteria.IMPORTANCE A complex regulation mechanism including two regulators, LysR and TetR/AcrR, in the biosynthesis of the novel iron scavenger 7-hydroxytropolone (7-HT) was verified in Pseudomonas donghuensis HYS. The coaction of LysR Orf1 and TetR/AcrR Orf12 may balance the toxicity and iron chelation of 7-HT in P. donghuensis HYS to overcome iron deficiency, as well as improve the bacterial competitiveness under iron-scarce conditions because of the toxicity of 7-HT toward other bacteria, making the accurate regulation of 7-HT biosynthesis indispensable. This regulation mechanism may be ubiquitous in the Pseudomonas putida group but may better explain the group's strong adaptability.
Collapse
|
24
|
Agaras BC, Iriarte A, Valverde CF. Genomic insights into the broad antifungal activity, plant-probiotic properties, and their regulation, in Pseudomonas donghuensis strain SVBP6. PLoS One 2018. [PMID: 29538430 PMCID: PMC5851621 DOI: 10.1371/journal.pone.0194088] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Plant-growth promotion has been linked to the Pseudomonas genus since the beginning of this research field. In this work, we mined the genome of an Argentinean isolate of the recently described species P. donghuensis. Strain SVBP6, isolated from bulk soil of an agricultural plot, showed a broad antifungal activity and several other plant-probiotic activities. As this species has been recently described, and it seems like some plant-growth promoting (PGP) traits do not belong to the classical pseudomonads toolbox, we decide to explore the SVBP6 genome via an bioinformatic approach. Genome inspection confirmed our previous in vitro results about genes involved in several probiotic activities. Other genetic traits possibly involved in survival of SVBP6 in highly competitive environments, such as rhizospheres, were found. Tn5 mutagenesis revealed that the antifungal activity against the soil pathogen Macrophomina phaseolina was dependent on a functional gacS gene, from the regulatory cascade Gac-Rsm, but it was not due to volatile compounds. Altogether, our genomic analyses and in vitro tests allowed the phylogenetic assignment and provided the first insights into probiotic properties of the first P. donghuensis isolate from the Americas.
Collapse
Affiliation(s)
- Betina Cecilia Agaras
- Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Claudio Fabián Valverde
- Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
25
|
The current status on the taxonomy of Pseudomonas revisited: An update. INFECTION GENETICS AND EVOLUTION 2017; 57:106-116. [PMID: 29104095 DOI: 10.1016/j.meegid.2017.10.026] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
Abstract
The genus Pseudomonas described in 1894 is one of the most diverse and ubiquitous bacterial genera which encompass species isolated worldwide. In the last years more than 70 new species have been described, which were isolated from different environments, including soil, water, sediments, air, animals, plants, fungi, algae, compost, human and animal related sources. Some of these species have been isolated in extreme environments, such as Antarctica or Atacama desert, and from contaminated water or soil. Also, some species recently described are plant or animal pathogens. In this review, we revised the current status of the taxonomy of genus Pseudomonas and the methodologies currently used for the description of novel species which includes, in addition to the classic ones, new methodologies such as MALDI-TOF MS, MLSA and genome analyses. The novel Pseudomonas species described in the last years are listed, together with the available genome sequences of the type strains of Pseudomonas species present in different databases.
Collapse
|
26
|
Pseudomonas wadenswilerensis sp. nov. and Pseudomonas reidholzensis sp. nov., two novel species within the Pseudomonas putida group isolated from forest soil. Int J Syst Evol Microbiol 2017; 67:2853-2861. [DOI: 10.1099/ijsem.0.002035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
27
|
Ossowicki A, Jafra S, Garbeva P. The antimicrobial volatile power of the rhizospheric isolate Pseudomonas donghuensis P482. PLoS One 2017; 12:e0174362. [PMID: 28358818 PMCID: PMC5373542 DOI: 10.1371/journal.pone.0174362] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/07/2017] [Indexed: 11/19/2022] Open
Abstract
Soil and rhizosphere bacteria produce an array of secondary metabolites including a wide range of volatile organic compounds (VOCs). These compounds play an important role in the long-distance interactions and communication between (micro)organisms. Furthermore, bacterial VOCs are involved in plant pathogens inhibition and induction of soil fungistasis and suppressivenes. In the present study, we analysed the volatile blend emitted by the rhizospheric isolate Pseudomonas donghuensis P482 and evaluated the volatile effect on the plant pathogenic fungi and bacteria as well as one oomycete. Moreover, we investigated the role of the GacS/GacA system on VOCs production in P. donghuensis P482. The results obtained demonstrated that VOCs emitted by P. donghuensis P482 have strong antifungal and antioomycete, but not antibacterial activity. The production of certain volatiles such as dimethyl sulfide, S-methyl thioacetate, methyl thiocyanate, dimethyl trisulfide, 1-undecan and HCN is depended on the GacS/GacA two-component regulatory system. Apparently, these compounds play an important role in the pathogens suppression as the gacA mutant entirely lost the ability to inhibit via volatiles the growth of tested plant pathogens.
Collapse
Affiliation(s)
- Adam Ossowicki
- Laboratory of Biological Plant Protection, Department of Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Sylwia Jafra
- Laboratory of Biological Plant Protection, Department of Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
- * E-mail: (PG); (SJ)
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- * E-mail: (PG); (SJ)
| |
Collapse
|
28
|
Jiang Z, Chen M, Yu X, Xie Z. 7-Hydroxytropolone produced and utilized as an iron-scavenger by Pseudomonas donghuensis. Biometals 2016; 29:817-26. [PMID: 27542164 DOI: 10.1007/s10534-016-9954-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/21/2016] [Indexed: 11/29/2022]
Abstract
Pseudomonas donghuensis can excrete large quantities of iron chelating substances in iron-restricted environments. At least two kinds of iron-chelator can be found in the culture supernatant: fluorescent siderophores pyoverdins, and an ethyl acetate-extractable non-fluorescent substance. The non-fluorescent substance was the dominant contributor to the iron chelating activity of the culture supernatant of P. donghuensis. Electron ionization mass spectrometry, NMR spectroscopy, and IR spectroscopy identified the non-fluorescent iron-chelator as 7-hydroxytropolone. The stoichiometry of 7-hydroxytropolone ferric complex was determined to be 2:1 by the continuous variation method. The production of 7-hydroxytropolone was repressible by iron in the medium. Moreover, the inhibited growth of doubly siderophore-deficient strain of P. donghuensis under iron-limiting conditions could be partly restored by 7-hydroxytropolone. Thus, 7-hydroxytropolone was considered to play a previously undiscovered role as an iron-scavenger for P. donghuensis.
Collapse
Affiliation(s)
- Zhen Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), State Key Laboratory of Virology, Wuhan University, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, 430072, Wuhan, People's Republic of China
| | - Min Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), State Key Laboratory of Virology, Wuhan University, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, 430072, Wuhan, People's Republic of China
| | - Xinyan Yu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), State Key Laboratory of Virology, Wuhan University, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, 430072, Wuhan, People's Republic of China
| | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), State Key Laboratory of Virology, Wuhan University, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, 430072, Wuhan, People's Republic of China.
| |
Collapse
|
29
|
Krzyżanowska DM, Ossowicki A, Rajewska M, Maciąg T, Jabłońska M, Obuchowski M, Heeb S, Jafra S. When Genome-Based Approach Meets the "Old but Good": Revealing Genes Involved in the Antibacterial Activity of Pseudomonas sp. P482 against Soft Rot Pathogens. Front Microbiol 2016; 7:782. [PMID: 27303376 PMCID: PMC4880745 DOI: 10.3389/fmicb.2016.00782] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/09/2016] [Indexed: 11/13/2022] Open
Abstract
Dickeya solani and Pectobacterium carotovorum subsp. brasiliense are recently established species of bacterial plant pathogens causing black leg and soft rot of many vegetables and ornamental plants. Pseudomonas sp. strain P482 inhibits the growth of these pathogens, a desired trait considering the limited measures to combat these diseases. In this study, we determined the genetic background of the antibacterial activity of P482, and established the phylogenetic position of this strain. Pseudomonas sp. P482 was classified as Pseudomonas donghuensis. Genome mining revealed that the P482 genome does not contain genes determining the synthesis of known antimicrobials. However, the ClusterFinder algorithm, designed to detect atypical or novel classes of secondary metabolite gene clusters, predicted 18 such clusters in the genome. Screening of a Tn5 mutant library yielded an antimicrobial negative transposon mutant. The transposon insertion was located in a gene encoding an HpcH/HpaI aldolase/citrate lyase family protein. This gene is located in a hypothetical cluster predicted by the ClusterFinder, together with the downstream homologs of four nfs genes, that confer production of a non-fluorescent siderophore by P. donghuensis HYST. Site-directed inactivation of the HpcH/HpaI aldolase gene, the adjacent short chain dehydrogenase gene, as well as a homolog of an essential nfs cluster gene, all abolished the antimicrobial activity of the P482, suggesting their involvement in a common biosynthesis pathway. However, none of the mutants showed a decreased siderophore yield, neither was the antimicrobial activity of the wild type P482 compromised by high iron bioavailability. A genomic region comprising the nfs cluster and three upstream genes is involved in the antibacterial activity of P. donghuensis P482 against D. solani and P. carotovorum subsp. brasiliense. The genes studied are unique to the two known P. donghuensis strains. This study illustrates that mining of microbial genomes is a powerful approach for predictingthe presence of novel secondary-metabolite encoding genes especially when coupled with transposon mutagenesis.
Collapse
Affiliation(s)
- Dorota M Krzyżanowska
- Laboratory of Biological Plant Protection, Department of Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Adam Ossowicki
- Laboratory of Biological Plant Protection, Department of Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Magdalena Rajewska
- Laboratory of Biological Plant Protection, Department of Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Tomasz Maciąg
- Laboratory of Biological Plant Protection, Department of Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Magdalena Jabłońska
- Laboratory of Biological Plant Protection, Department of Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Michał Obuchowski
- Laboratory of Molecular Bacteriology, Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Medical University of Gdansk Gdansk, Poland
| | - Stephan Heeb
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham Nottingham, UK
| | - Sylwia Jafra
- Laboratory of Biological Plant Protection, Department of Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| |
Collapse
|
30
|
Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2015. [DOI: 10.1099/ijs.0.000317] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this announcement is to effect the valid publication of the following effectively published new names and new combinations under the procedure described in the Bacteriological Code (1990 Revision). Authors and other individuals wishing to have new names and/or combinations included in future lists should send three copies of the pertinent reprint or photocopies thereof, or an electronic copy of the published paper to the IJSEM Editorial Office for confirmation that all of the other requirements for valid publication have been met. It is also a requirement of IJSEM and the ICSP that authors of new species, new subspecies and new combinations provide evidence that types are deposited in two recognized culture collections in two different countries. It should be noted that the date of valid publication of these new names and combinations is the date of publication of this list, not the date of the original publication of the names and combinations. The authors of the new names and combinations are as given below. Inclusion of a name on these lists validates the publication of the name and thereby makes it available in the nomenclature of prokaryotes. The inclusion of a name on this list is not to be construed as taxonomic acceptance of the taxon to which the name is applied. Indeed, some of these names may, in time, be shown to be synonyms, or the organisms may be transferred to another genus, thus necessitating the creation of a new combination.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, Givat Ram, 91904 Jerusalem, Israel
| | - George M. Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|