1
|
Canellas ALB, Laport MS. Marine Pseudomonas: diving into the waves of blue biotechnology. Lett Appl Microbiol 2024; 77:ovae099. [PMID: 39439202 DOI: 10.1093/lambio/ovae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/25/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
From marine to terrestrial environments, Pseudomonas spp. exhibit a remarkable ability not only to adapt but also thrive even amidst adverse conditions. This fact turns Pseudomonas spp. into one of the most prominent candidates for novel biotechnological solutions. Even though terrestrial isolates have been extensively studied, there is still an almost untapped source to be explored in marine Pseudomonas. Harnessing such strains offers an opportunity to discover novel bioactive compounds that could address current global challenges in healthcare and sustainable development. Therefore, this minireview aimed to provide an overview of the main recent discoveries regarding antimicrobials, antifouling, enzymes, pigments, and bioremediation strategies derived from marine isolates of Pseudomonas spp. Future research perspectives will also be discussed to foster forthcoming endeavors to explore the marine counterparts of such a prolific bacterial genus.
Collapse
Affiliation(s)
- Anna Luiza Bauer Canellas
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-902, Rio de Janeiro, Brazil
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-902, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Nunes SDO, Oliveira BFR, Giambiagi-deMarval M, Laport MS. Antimicrobial and antibiofilm activities of marine sponge-associated bacteria against multidrug-resistant Staphylococcus spp. isolated from canine skin. Microb Pathog 2020; 152:104612. [PMID: 33212197 DOI: 10.1016/j.micpath.2020.104612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 11/26/2022]
Abstract
Dogs play important roles in our society, thus the concern for their health becomes imperative. Staphylococcus spp. are commensal bacterium frequently isolated from canine skin and recognized as zoonotic agents. These bacteria have been becoming increasingly resistant to antimicrobials used to treat infections and to produce biofilm, which further increases their virulence capability and resistance. In this context, sponges-associated bacteria are known as prolific sources of substances with antimicrobial activities, representing a potential to integrate the arsenal of drugs for clinical use. In this study, 121 strains of Staphylococcus isolated from healthy or infected dogs were characterized according to their resistance to antimicrobials, as well as to their biofilm production ability. From the total of strains, 82 were resistant to at least one antimicrobial and 40 were multidrug-resistant (MDR). Furthermore, 117 out of 121 were capable to produce biofilm, and within those 36 were classified as strong biofilm producers. A set of fifteen bacterial strains previously isolated from marine sponges were also evaluated for antimicrobial and antibiofilm activities. Among the marine bacteria with antimicrobial activity, eight inhibited the growth of more than 50% of the MDR Staphylococcus. In addition, the cell-free supernatant obtained from five sponge-associated bacteria cultures was able to disaggregate more than 50% of the mature biofilm staphylococcal cells. The organic extracts (256 μg/mL) from two potential strains, Pseudomonas fluorescens H40 and H41, dissociated the biofilm of a strain classified as MDR and strong biofilm producer in 88.5% and 91.3%, respectively. These marine Pseudomonas strains also exhibited a strong activity of antimicrobial and antibiofilm substances. The results suggest that the sponge-associated bacteria analyzed could be potential sources of antimicrobial and antibiofilm substances against MDR and biofilm producers Staphylococcus isolated from canine skin.
Collapse
Affiliation(s)
- Suzanne de Oliveira Nunes
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-902, Rio de Janeiro, Brazil.
| | - Bruno Francesco Rodrigues Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-902, Rio de Janeiro, Brazil.
| | - Marcia Giambiagi-deMarval
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-902, Rio de Janeiro, Brazil.
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-902, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Skariyachan S, Challapilli SB, Packirisamy S, Sridhar VS, Kumargowda ST. Monitoring and assessment of the therapeutic impact of metabolites extracted from sponge-associated bacteria screened from Gulf of Mannar, southeast coast of India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:241. [PMID: 32189082 DOI: 10.1007/s10661-020-8201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
The present study aimed to assess and monitor the therapeutic potential of antimicrobial metabolites from marine sponge-associated bacteria collected from the southeast coast of India against multidrug-resistant clinical bacterial isolates. Five sponge samples were collected and the metabolite-producing bacteria were screened from the Gulf of Mannar, India, and their antibacterial potential was studied against drug-resistant clinical bacterial isolates obtained from the hospitals. The two metabolite-producing bacteria (IS1 and IS2) were characterized by standard microbiology protocols and 16S rRNA sequencing. The antibacterial metabolites were characterized by liquid chromatography mass spectrometry (LCMS) analysis. The study suggested that marine sponges such as Spheciospongia spp., Haliclona spp., Mycale spp., Tedania spp., and SS-01 were associated with 30 ± 2, 26 ± 2, 23 ± 3, 21 ± 2, and 20 ± 2% of antibacterial metabolite-producing bacteria, respectively. The LCMS analysis of metabolites extracted from IS1 (4,6-dimethyl-2-pyrimidinamine; 4,5-dimethyl-2-propylsilyl-1H-imidazole) and IS2 (caproyl amide, 2-imidazoline) associated with Spheciospongia spp. exhibited significant antibacterial properties against drug-resistant bacteria. IS1 showed antimicrobial potential against the clinical isolates of Proteus spp., and IS2 showed antibacterial potential against isolates of both Proteus mirabilis and Salmonella typhi. IS1 and IS2 were identified by 16S rRNA sequencing and designated as Klebsiella spp. DSCE-bt01 and Pseudomonas spp. DSCE-bt02, respectively. The current study concluded that the assessment and monitoring of novel isolates from sponge-associated bacteria from marine coastal areas probably offer latest breakthrough in curtailing the global antimicrobial resistance and the study of such ecosystems adds value addition to the searching of novel bioactive compounds from terrestrial ecosystems.
Collapse
Affiliation(s)
- Sinosh Skariyachan
- Department of Microbiology, St. Pius X College, Rajapuram, Kasaragod, Kerala, India.
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, Karnataka, 560 078, India.
| | | | - Swathi Packirisamy
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, Karnataka, 560 078, India
| | - Vaishnavi Sneha Sridhar
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, Karnataka, 560 078, India
| | | |
Collapse
|
4
|
Rajasabapathy R, Ghadi SC, Manikandan B, Mohandass C, Surendran A, Dastager SG, Meena RM, James RA. Antimicrobial profiling of coral reef and sponge associated bacteria from southeast coast of India. Microb Pathog 2020; 141:103972. [PMID: 31923557 DOI: 10.1016/j.micpath.2020.103972] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 12/20/2022]
Abstract
Culturable bacteria associated with marine sponges and coral mucus (collected from Gulf of Mannar and Palk Bay) were screened for their prospective antimicrobial compounds against 9 bacterial pathogens (Bacillus megaterium, B. cereus, Salmonella typhimurium, Staphylococcus aureus, Proteus vulgaris, Klebsillla pneumoniae, Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii) and a fungal pathogen (Candida albicans). Of the 263 bacterial isolates obtained during this study, 52 isolates displayed antimicrobial activity against one or more pathogens. 16S rRNA gene sequencing revealed that these 52 strains affiliated to 14 genera from three phyla Proteobacteria, Firmicutes and Actinobacteria. Sponge associated bacterial strains F-04, I-23, I-33 and G-03 inhibited the growth of all the bacterial pathogens tested in this study and significantly the former 2 strains inhibited the growth of fungal pathogen also. Majority of the potential strains (88.4% out of 52 strains) inhibited the growth of Bacillus cereus. Interestingly, an actinomycete strain F-04 (isolated from sponge Orina sagittaria) inhibited the growth of methicillin resistant Staphylococcus aureus. In total, 10 volatile organic compounds were determined from the ethyl acetate and hexane extract of the strain F-04 using GC-MS. Overall, marine bacteria isolated during this study demonstrate the potential for the development of broad spectrum antibiotics.
Collapse
Affiliation(s)
- Raju Rajasabapathy
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamilnadu, India; Department of Biotechnology, Goa University, Taleigao Plateau, 403 206, Goa, India.
| | - Sanjeev C Ghadi
- Department of Biotechnology, Goa University, Taleigao Plateau, 403 206, Goa, India
| | - Balakrishnan Manikandan
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, Goa, India
| | - Chellandi Mohandass
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, Goa, India; CSIR-National Institute of Oceanography, Regional Centre, Lokhandwala Road, Four Bungalows, Andheri (West), Mumbai, 400 053, India
| | - Akhila Surendran
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, Goa, India; Department of Marine Microbiology, Kerala University of Fisheries and Ocean Studies, Kerala, 682506, India
| | - Syed G Dastager
- NCIM Resource Center, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Ram M Meena
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, Goa, India
| | - Rathinam Arthur James
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamilnadu, India.
| |
Collapse
|
5
|
Indraningrat AAG, Smidt H, Sipkema D. Bioprospecting Sponge-Associated Microbes for Antimicrobial Compounds. Mar Drugs 2016; 14:E87. [PMID: 27144573 PMCID: PMC4882561 DOI: 10.3390/md14050087] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/15/2016] [Accepted: 04/26/2016] [Indexed: 12/17/2022] Open
Abstract
Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. This review for the first time provides a comprehensive overview of antimicrobial compounds that are known to be produced by sponge-associated microbes. We discuss the current state-of-the-art by grouping the bioactive compounds produced by sponge-associated microorganisms in four categories: antiviral, antibacterial, antifungal and antiprotozoal compounds. Based on in vitro activity tests, identified targets of potent antimicrobial substances derived from sponge-associated microbes include: human immunodeficiency virus 1 (HIV-1) (2-undecyl-4-quinolone, sorbicillactone A and chartarutine B); influenza A (H1N1) virus (truncateol M); nosocomial Gram positive bacteria (thiopeptide YM-266183, YM-266184, mayamycin and kocurin); Escherichia coli (sydonic acid), Chlamydia trachomatis (naphthacene glycoside SF2446A2); Plasmodium spp. (manzamine A and quinolone 1); Leishmania donovani (manzamine A and valinomycin); Trypanosoma brucei (valinomycin and staurosporine); Candida albicans and dermatophytic fungi (saadamycin, 5,7-dimethoxy-4-p-methoxylphenylcoumarin and YM-202204). Thirty-five bacterial and 12 fungal genera associated with sponges that produce antimicrobials were identified, with Streptomyces, Pseudovibrio, Bacillus, Aspergillus and Penicillium as the prominent producers of antimicrobial compounds. Furthemore culture-independent approaches to more comprehensively exploit the genetic richness of antimicrobial compound-producing pathways from sponge-associated bacteria are addressed.
Collapse
Affiliation(s)
- Anak Agung Gede Indraningrat
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen 6703 HB, The Netherlands.
- Department of Biology, Faculty of Mathematics and Science Education, Institut Keguruan dan Ilmu Pendidikan Persatuan Guru Republik Indonesia (IKIP PGRI) Bali, Jl. Seroja Tonja, Denpasar 80238, Indonesia.
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen 6703 HB, The Netherlands.
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen 6703 HB, The Netherlands.
| |
Collapse
|