1
|
Yang Z, Helmann T, Baudin M, Schreiber KJ, Bao Z, Stodghill P, Deutschbauer A, Lewis JD, Swingle B. Genome-wide identification of novel flagellar motility genes in Pseudomonas syringae pv. tomato DC3000. Front Microbiol 2025; 16:1535114. [PMID: 39935648 PMCID: PMC11813219 DOI: 10.3389/fmicb.2025.1535114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) is a plant pathogenic bacterium that possesses complicated motility regulation pathways including a typical chemotaxis system. A significant portion of our understanding about the genes functioning in Pst DC3000 motility is based on comparison to other bacteria. This leaves uncertainty about whether gene functions are conserved, especially since specific regulatory modules can have opposite functions in sets of Pseudomonas. In this study, we used a competitive selection to enrich for mutants with altered swimming motility and used random barcode transposon-site sequencing (RB-TnSeq) to identify genes with significant roles in swimming motility. Besides many of the known or predicted chemotaxis and motility genes, our method identified PSPTO_0406 (dipA), PSPTO_1042 (chrR) and PSPTO_4229 (hypothetical protein) as novel motility regulators. PSPTO_0406 is a homolog of dipA, a known cyclic di-GMP degrading enzyme in P. aeruginosa. PSPTO_1042 is part of an extracytoplasmic sensing system that controls gene expression in response to reactive oxygen species, suggesting that PSPTO_1042 may function as part of a mechanism that enables Pst DC3000 to alter motility when encountering oxidative stressors. PSPTO_4229 encodes a protein containing an HD-related output domain (HDOD), but with no previously identified functions. We found that deletion and overexpression of PSPTO_4229 both reduce swimming motility, suggesting that its function is sensitive to expression level. We used the overexpression phenotype to screen for nonsense and missense mutants of PSPTO_4229 that no longer reduce swimming motility and found a pair of conserved arginine residues that are necessary for motility suppression. Together these results provide a global perspective on regulatory and structural genes controlling flagellar motility in Pst DC3000.
Collapse
Affiliation(s)
- Zichu Yang
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Tyler Helmann
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, United States Department of Agriculture-Agricultural Research Service, Ithaca, NY, United States
| | - Maël Baudin
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service, Berkeley, CA, United States
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université Angers, Angers, France
| | - Karl J. Schreiber
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service, Berkeley, CA, United States
| | - Zhongmeng Bao
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, United States Department of Agriculture-Agricultural Research Service, Ithaca, NY, United States
| | - Paul Stodghill
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, United States Department of Agriculture-Agricultural Research Service, Ithaca, NY, United States
| | - Adam Deutschbauer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jennifer D. Lewis
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service, Berkeley, CA, United States
| | - Bryan Swingle
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, United States Department of Agriculture-Agricultural Research Service, Ithaca, NY, United States
| |
Collapse
|
2
|
Borlee GI, Mangalea MR, Martin KH, Plumley BA, Golon SJ, Borlee BR. Disruption of c-di-GMP Signaling Networks Unlocks Cryptic Expression of Secondary Metabolites during Biofilm Growth in Burkholderia pseudomallei. Appl Environ Microbiol 2022; 88:e0243121. [PMID: 35357191 PMCID: PMC9040570 DOI: 10.1128/aem.02431-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/04/2022] [Indexed: 11/20/2022] Open
Abstract
The regulation and production of secondary metabolites during biofilm growth of Burkholderia spp. is not well understood. To learn more about the crucial role and regulatory control of cryptic molecules produced during biofilm growth, we disrupted c-di-GMP signaling in Burkholderia pseudomallei, a soilborne bacterial saprophyte and the etiologic agent of melioidosis. Our approach to these studies combined transcriptional profiling with genetic deletions that targeted key c-di-GMP regulatory components to characterize responses to changes in temperature. Mutational analyses and conditional expression studies of c-di-GMP genes demonstrates their contribution to phenotypes such as biofilm formation, colony morphology, motility, and expression of secondary metabolite biosynthesis when grown as a biofilm at different temperatures. RNA-seq analysis was performed at various temperatures in a ΔII2523 mutant background that is responsive to temperature alterations resulting in hypobiofilm- and hyperbiofilm-forming phenotypes. Differential regulation of genes was observed for polysaccharide biosynthesis, secretion systems, and nonribosomal peptide and polyketide synthase (NRPS/PKS) clusters in response to temperature changes. Deletion mutations of biosynthetic gene clusters (BGCs) 2, 11, 14 (syrbactin), and 15 (malleipeptin) in parental and ΔII2523 backgrounds also reveal the contribution of these BGCs to biofilm formation and colony morphology in addition to inhibition of Bacillus subtilis and Rhizoctonia solani. Our findings suggest that II2523 impacts the regulation of genes that contribute to biofilm formation and competition. Characterization of cryptic BGCs under different environmental conditions will allow for a better understanding of the role of secondary metabolites in the context of biofilm formation and microbe-microbe interactions. IMPORTANCE Burkholderia pseudomallei is a saprophytic bacterium residing in the environment that switches to a pathogenic lifestyle during infection of a wide range of hosts. The environmental cues that serve as the stimulus to trigger this change are largely unknown. However, it is well established that the cellular level of c-di-GMP, a secondary signal messenger, controls the switch from growth as planktonic cells to growth as a biofilm. Disrupting the signaling mediated by c-di-GMP allows for a better understanding of the regulation and the contribution of the surface associated and secreted molecules that contribute to the various lifestyles of this organism. The genome of B. pseudomallei also encodes cryptic biosynthetic gene clusters predicted to encode small molecules that potentially contribute to growth as a biofilm, adaptation, and interactions with other organisms. A better understanding of the regulation of these molecules is crucial to understanding how this versatile pathogen alters its lifestyle.
Collapse
Affiliation(s)
- Grace I. Borlee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Mihnea R. Mangalea
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Kevin H. Martin
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Brooke A. Plumley
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Samuel J. Golon
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Bradley R. Borlee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
3
|
Sequence conservation, domain architectures, and phylogenetic distribution of the HD-GYP type c-di-GMP phosphodiesterases. J Bacteriol 2021; 204:e0056121. [PMID: 34928179 DOI: 10.1128/jb.00561-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The HD-GYP domain, named after two of its conserved sequence motifs, was first described in 1999 as a specialized version of the widespread HD phosphohydrolase domain that had additional highly conserved amino acid residues. Domain associations of HD-GYP indicated its involvement in bacterial signal transduction and distribution patterns of this domain suggested that it could serve as a hydrolase of the bacterial second messenger c-di-GMP, in addition to or instead of the EAL domain. Subsequent studies confirmed the ability of various HD-GYP domains to hydrolyze c-di-GMP to linear pGpG and/or GMP. Certain HD-GYP-containing proteins hydrolyze another second messenger, cGAMP, and some HD-GYP domains participate in regulatory protein-protein interactions. The recently solved structures of HD-GYP domains from four distinct organisms clarified the mechanisms of c-di-GMP binding and metal-assisted hydrolysis. However, the HD-GYP domain is poorly represented in public domain databases, which causes certain confusion about its phylogenetic distribution, functions, and domain architectures. Here, we present a refined sequence model for the HD-GYP domain and describe the roles of its most conserved residues in metal and/or substrate binding. We also calculate the numbers of HD-GYPs encoded in various genomes and list the most common domain combinations involving HD-GYP, such as the RpfG (REC-HD-GYP), Bd1817 (DUF3391- HD-GYP), and PmGH (GAF-HD-GYP) protein families. We also provide the descriptions of six HD-GYP-associated domains, including four novel integral membrane sensor domains. This work is expected to stimulate studies of diverse HD-GYP-containing proteins, their N-terminal sensor domains and the signals to which they respond. IMPORTANCE The HD-GYP domain forms class II of c-di-GMP phosphodiesterases that control the cellular levels of the universal bacterial second messenger c-di-GMP and therefore affect flagellar and/or twitching motility, cell development, biofilm formation, and, often, virulence. Despite more than 20 years of research, HD-GYP domains are insufficiently characterized; they are often confused with 'classical' HD domains that are involved in various housekeeping activities and may participate in signaling, hydrolyzing (p)ppGpp and c-di-AMP. This work provides an updated description of the HD-GYP domain, including its sequence conservation, phylogenetic distribution, domain architectures, and the most widespread HD-GYP-containing protein families. This work shows that HD-GYP domains are widespread in many environmental bacteria and are predominant c-di-GMP hydrolases in many lineages, including clostridia and deltaproteobacteria.
Collapse
|
4
|
Muriel C, Blanco-Romero E, Trampari E, Arrebola E, Durán D, Redondo-Nieto M, Malone JG, Martín M, Rivilla R. The diguanylate cyclase AdrA regulates flagellar biosynthesis in Pseudomonas fluorescens F113 through SadB. Sci Rep 2019; 9:8096. [PMID: 31147571 PMCID: PMC6543031 DOI: 10.1038/s41598-019-44554-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/14/2019] [Indexed: 11/23/2022] Open
Abstract
Flagellum mediated motility is an essential trait for rhizosphere colonization by pseudomonads. Flagella synthesis is a complex and energetically expensive process that is tightly regulated. In Pseudomonas fluorescens, the regulatory cascade starts with the master regulatory protein FleQ that is in turn regulated by environmental signals through the Gac/Rsm and SadB pathways, which converge in the sigma factor AlgU. AlgU is required for the expression of amrZ, encoding a FleQ repressor. AmrZ itself has been shown to modulate c-di-GMP levels through the control of many genes encoding enzymes implicated in c-di-GMP turnover. This cyclic nucleotide regulates flagellar function and besides, the master regulator of the flagellar synthesis signaling pathway, FleQ, has been shown to bind c-di-GMP. Here we show that AdrA, a diguanylate cyclase regulated by AmrZ participates in this signaling pathway. Epistasis analysis has shown that AdrA acts upstream of SadB, linking SadB with environmental signaling. We also show that SadB binds c-di-GMP with higher affinity than FleQ and propose that c-di-GMP produced by AdrA modulates flagella synthesis through SadB.
Collapse
Affiliation(s)
- Candela Muriel
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Esther Blanco-Romero
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Eleftheria Trampari
- Department of Molecular Microbiology, John Innes Centre. Colney Lane, Norwich, UK.,Quadram Institute, Norwich, UK
| | - Eva Arrebola
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain.,Department of Microbiology, University of Málaga, Málaga, Spain
| | - David Durán
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Miguel Redondo-Nieto
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Jacob G Malone
- Department of Molecular Microbiology, John Innes Centre. Colney Lane, Norwich, UK
| | - Marta Martín
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Rafael Rivilla
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|