1
|
Huang X, Niu P, Gao Y, Rong W, Luo C, Zhang X, Jiang P, Wang M, Chu G. Effects of Water and Nitrogen on Growth, Rhizosphere Environment, and Microbial Community of Sophora alopecuroides: Their Interrelationship. PLANTS (BASEL, SWITZERLAND) 2024; 13:1970. [PMID: 39065497 PMCID: PMC11281131 DOI: 10.3390/plants13141970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
The effective management of water and nitrogen is crucial in the artificial cultivation of medicinal plants. Sophora alopecuroides, a perennial herbaceous plant in the Fabaceae family, is extensively used in medicine, with alkaloids as its primary bioactive constituents. Nevertheless, there remains a significant knowledge gap regarding how rhizospheric microbial communities respond to varying water and nitrogen conditions and their intricate relationships with soil environments and the growth of S. alopecuroides. In this study, two-year-old S. alopecuroides were used in a two-factor, three-level water-nitrogen interaction experiment. The irrigation levels included W1 (30-35% of maximum water holding capacity), W2 (50-55%), and W3 (70-75%), while nitrogen levels comprised N1 (32 mg/kg), N2 (64 mg/kg), and N3 (128 mg/kg). The study assessed plant growth indicators, total alkaloid content, and rhizospheric soil physicochemical parameters of S. alopecuroides. High-throughput sequencing (16S rRNA and ITS) was employed to analyze variations in rhizospheric microbial community composition and structure. The results showed that Proteobacteria and Ascomycota are the predominant bacterial and fungal phyla in the rhizosphere microbial community of S. alopecuroides. The highest biomass and alkaloid accumulation of S. alopecuroides were observed under the N1W3 treatment (50% nitrogen application and 70-75% of maximum water holding capacity). Specifically, six bacterial genus-level biomarkers (TRA3_20, MND1, env_OPS_17, SBR1031, Haliangium, S0134_terrestrial_group) and six fungal genus-level biomarkers (Pseudeurotium, Rhizophagus, Patinella, Pseudeurotium, Patinella, Rhizophagus) were identified under the N1W3 treatment condition. In the partial least squares path modeling (PLS-PM), water and nitrogen treatments demonstrated markedly positive direct effects on soil physicochemical parameters (p < 0.01), while showing significant negative direct impacts on alkaloid accumulation and plant growth indicators (p < 0.05). Soil physicochemical parameters, in turn, significantly negatively affected the rhizosphere fungal community (p < 0.05). Additionally, the rhizosphere fungal community exhibited highly significant negative direct effects on both the plant growth indicators and total alkaloid content of S. alopecuroides (p < 0.01). This study provides new insights into the interactions among rhizosphere soil environment, rhizosphere microbiota, plant growth, and alkaloid accumulation under water and nitrogen regulation, offering a scientific basis for the water and nitrogen management in the cultivation of S. alopecuroides.
Collapse
Affiliation(s)
- Xiang Huang
- Agricultural College, Shihezi University, Shihezi 832003, China; (X.H.); (P.N.); (W.R.); (C.L.); (P.J.)
| | - Panxin Niu
- Agricultural College, Shihezi University, Shihezi 832003, China; (X.H.); (P.N.); (W.R.); (C.L.); (P.J.)
| | - Yude Gao
- Practice Forest Farm, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Wenwen Rong
- Agricultural College, Shihezi University, Shihezi 832003, China; (X.H.); (P.N.); (W.R.); (C.L.); (P.J.)
| | - Cunkai Luo
- Agricultural College, Shihezi University, Shihezi 832003, China; (X.H.); (P.N.); (W.R.); (C.L.); (P.J.)
| | - Xingxin Zhang
- College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Ping Jiang
- Agricultural College, Shihezi University, Shihezi 832003, China; (X.H.); (P.N.); (W.R.); (C.L.); (P.J.)
| | - Mei Wang
- Agricultural College, Shihezi University, Shihezi 832003, China; (X.H.); (P.N.); (W.R.); (C.L.); (P.J.)
| | - Guangming Chu
- Agricultural College, Shihezi University, Shihezi 832003, China; (X.H.); (P.N.); (W.R.); (C.L.); (P.J.)
| |
Collapse
|
2
|
Li XY, Fang XM, Jia HT, Bai JL, Su J, Zhang YQ, Yu LY. Noviherbaspirillum album sp. nov., an airborne bacteria isolated from an urban area of Beijing, China. Int J Syst Evol Microbiol 2024; 74. [PMID: 38995188 DOI: 10.1099/ijsem.0.006450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
A Gram-negative, ellipsoidal to short-rod-shaped, motile bacterium was isolated from Beijing's urban air. The isolate exhibited the closest kinship with Noviherbaspirillum aerium 122213-3T, exhibiting 98.4 % 16S rRNA gene sequence similarity. Phylogenetic analyses based on 16S rRNA gene sequences and genomes showed that it clustered closely with N. aerium 122213-3T, thus forming a distinct phylogenetic lineage within the genus Noviherbaspirillum. The average nucleotide identity and digital DNA-DNA hybridization values between strain I16B-00201T and N. aerium 122213-3T were 84.6 and 29.4 %, respectively. The respiratory ubiquinone was ubiquinone 8. The major fatty acids (>10 %) were summed feature 3 (C16:1ω6c/C16:1ω7c, 43.3 %), summed feature 8 (C18:1ω7c/C18:1ω6c, 15.9 %) and C12:0 (11.0 %). The polyamine profile showed putrescine as the predominant compound. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, unknown lipids and unknown phosphatidylaminolipids. The phenotypic, phylogenetic and chemotaxonomic results consistently supported that strain I16B-00201T represented a novel species of the genus Noviherbaspirillum, for which the name Noviherbaspirillum album sp. nov. is proposed, with I16B-00201T (=CPCC 100848T=KCTC 52095T) designated as the type strain. Its DNA G+C content is 59.4 mol%. Pan-genome analysis indicated that some Noviherbaspirillum species possess diverse nitrogen and aromatic compound metabolism pathways, suggesting their potential value in pollutant treatment.
Collapse
Affiliation(s)
- Xia-Yun Li
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, PR China
| | - Xiao-Mei Fang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, PR China
| | - Hui-Ting Jia
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, PR China
| | - Jing-Lin Bai
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, PR China
| | - Jing Su
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, PR China
| | - Yu-Qin Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, PR China
| | - Li-Yan Yu
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
- Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, PR China
| |
Collapse
|
3
|
Khan IU, Saqib M, Amin A, Hussain F, Li L, Liu YH, Fang BZ, Ahmed I, Li WJ. Noviherbaspirillum aridicola sp. nov., isolated from an arid soil in Pakistan. Int J Syst Evol Microbiol 2022; 72. [PMID: 35138240 DOI: 10.1099/ijsem.0.005232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Strain NCCP-691T was isolated from a soil sample collected from an arid soil in Karak, Khyber Pakhtunkhwa, Pakistan. Phenotypically, the cells were Gram-stain-negative, aerobic and motile rods. The organism was able to grow between 20-40 °C (optimum at 30-37 °C), at pH 5.5-8.0 (optimum at pH 7.0-7.2) and tolerated 0-1.5% NaCl (w/v) (optimum at 0-0.5). Based on 16S rRNA gene sequences, strain NCCP-691T formed a distinct phylogenetic clade with Noviherbaspirillum arenae, N. agri, N. denitrificans and N. autotrophicum (having sequence similarities of 99.0; 98.1; 98.0 and 97.7% respectively). Phylogenetic analyses based on the whole genome sequences confirmed that strain NCCP-691T should be affiliated to the genus Noviherbaspirillum. The average nucleotide identity values compared to other species of Noviherbaspirillum were below 95-96 % and digital DNA-DNA hybridization values were less than 70 %. Chemotaxonomic analyses showed that the strain had ubiquinone-8, as the only respiratory quinine. The major cellular fatty acids were summed feature 3 (C16 : 1 ω 7 c/C16 : 1 ω 6 c, 35.9 %), summed feature 8 (C18 : 1 ω 7 c/C18 : 1 ω 6 c, 26.9 %) and C16 : 0 (22.9 %) and the polar lipid profile was composed of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine. The genomic DNA G+C content was 65.5 mol% (from draft genome). Genome analyses showed that strain NCCP-691T had terpene and arylpolyene biosynthetic genes clusters and genes related to resistance against heavy metals. Based on phylogenetic analyses, phenotypic features and genomic comparison, it is proposed that strain NCCP-691T is a novel species of the genus Noviherbaspirillum and the name Noviherbaspirillum aridicola sp. nov. is proposed. Type strain is NCCP-691T (=KCTC 52721T=CGMCC 1.13600T).
Collapse
Affiliation(s)
- Inam Ullah Khan
- Institute of Microbiology, Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa 29050, Pakistan
| | - Muhammad Saqib
- Department of Zoology, Government Post Graduate College No.1,, Khyber Pakhtunkhwa 28100, Pakistan
| | - Arshia Amin
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad 44000, Pakistan
| | - Firasat Hussain
- Department of Microbiology, Faculty of Veterinary Science, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Iftikhar Ahmed
- National Microbial Culture Collection of Pakistan, Bio-resources Conservation Institute, National Agricultural Research Centre, Islamabad 45500, Pakistan
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| |
Collapse
|
4
|
Chaudhary DK, Dahal RH, Hong Y. Noviherbaspirillum pedocola sp. nov., isolated from oil-contaminated experimental soil. Arch Microbiol 2021; 203:3071-3076. [PMID: 33787987 DOI: 10.1007/s00203-021-02295-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022]
Abstract
An orange-coloured, rod-shaped, and aerobic bacterial strain DKR-6 T was isolated from oil-contaminated experimental soil. The strain was Gram-stain-negative, catalase and oxidase positive, and grew at temperature 10-42 °C, at pH 5.5-9.5, and at 0-3.0% (w/v) NaCl concentration. The phylogenetic analysis and 16S rRNA gene sequence analysis suggested that the strain DKR-6 T was affiliated to the genus Noviherbaspirillum, with the closest species being Noviherbaspirillum massiliense JC206T (96.3% sequence similarity). The chemotaxonomic profiles revealed the presence of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and phosphatidylcholine as the principal polar lipids; C16:0, C17:0 cyclo, summed feature 3 (C16:1ω7c and/or C16: 1ω6c), and summed feature 8 (C18:1ω7c/or C18:1ω6c) as the main fatty acids; and Q-8 as a sole ubiquinone. The DNA G + C content was 61.6%. The polyphasic taxonomic features illustrated in this study clearly implied that strain DKR-6 T represents a novel species in the genus Noviherbaspirillum, for which the name Noviherbaspirillum pedocola sp. nov. is proposed with the type strain DKR-6 T (= KACC 22074 T = NBRC 114727 T).
Collapse
Affiliation(s)
- Dhiraj Kumar Chaudhary
- Department of Environmental Engineering, College of Science and Technology, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, Republic of Korea
| | - Ram Hari Dahal
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Yongseok Hong
- Department of Environmental Engineering, College of Science and Technology, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, Republic of Korea.
| |
Collapse
|
5
|
Xue H, Piao CG, Lin YH, Bian DR, Li Y. Noviherbaspirillum aerium sp. nov., isolated from air. Int J Syst Evol Microbiol 2020; 70:6390-6395. [PMID: 33164727 DOI: 10.1099/ijsem.0.004537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, strictly aerobic, non-spore-forming, rod-shaped, motile with polar flagella and pale-orange bacterium, designated strain 122213-3T, was isolated from air, collected at the foot of the Xiangshan Mountain, located in Beijing, PR China. Optimal growth occurred at 28 °C, at pH 7 and in the presence of 0-1 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that 122213-3T clustered with species of the genus Noviherbaspirillum and formed a distinct sublineage, showing highest similarities to Noviherbaspirillum malthae CC-AFH3T (96.88 %), Noviherbaspirillum massiliense JC206T (95.78 %) and Noviherbaspirillum aurantiacum SUEMI08T (95.78 %). The predominant cellular fatty acids were summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c), summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and C16 : 0. The predominant quinone was ubiquinone 8 (Q-8). The polar lipids comprised phosphatidylethanolamine, phosphatidylglycerol, unidentified phospholipid and two unidentified polar lipids. The polyamine pattern showed the presence of putrescine as the major polyamine, with minor amounts of 2-hydroxyputrescine. The DNA G+C content was 60.1 mol%. The phylogenetic analysis and physiological and biochemical data showed that strain 122213-3T should be classified as representing a novel species in the genus Noviherbaspirillum, for which the name Noviherbaspirillum aerium sp. nov. is proposed. The type strain of N. aerium is 122213-3T (=CFCC 14286T=LMG 30131T).
Collapse
Affiliation(s)
- Han Xue
- Key Laboratory of State Forestry and Grassland Administration on Forest Protection, Research Institute of Forest Ecology Environment and Protection, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Chun-Gen Piao
- Key Laboratory of State Forestry and Grassland Administration on Forest Protection, Research Institute of Forest Ecology Environment and Protection, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Ying-Hua Lin
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Dan-Ran Bian
- Key Laboratory of State Forestry and Grassland Administration on Forest Protection, Research Institute of Forest Ecology Environment and Protection, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Yong Li
- Key Laboratory of State Forestry and Grassland Administration on Forest Protection, Research Institute of Forest Ecology Environment and Protection, Chinese Academy of Forestry, Beijing 100091, PR China
| |
Collapse
|
6
|
Park Y, Maeng S, Lee SE, Han JH, Lee YK, Oh J, Jigden B, Kang JH, Kim MK. Noviherbaspirillum galbum sp. nov., a bacterium isolated from soil. Arch Microbiol 2020; 203:823-828. [PMID: 33063170 DOI: 10.1007/s00203-020-02076-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
A Gram-stain-negative, aerobic, non-motile and yellow-colored bacterium, strain 17J57-3 T, was isolated from soil collected in Pyeongchang city, Korea. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain 17J57-3 T formed a distinct lineage within the family Oxalobacteraceae (order Burkholderiales, class Betaproteobacteria). Strain 17J57-3 T was the most closely related to Noviherbaspirillum humi U15T (96.4% 16S rRNA gene sequence similarity) and Noviherbaspirillum massiliense JC206T (96.2%). The draft genome size of strain 17J57-3 T was 6,117,206 bp. Optimal growth occurred at 30 °C, pH 7.0 without NaCl. The predominant cellular fatty acids were summed feature 3 (C16:1 ω6c/C16:1 ω7c) and C16:0. The major respiratory quinone was Q-8. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Biochemical, chemotaxonomic and phylogenetic analyses indicated that strain 17J57-3 T represents a novel bacterial species within the genus Noviherbaspirillum, for which the name Noviherbaspirillum galbum is proposed. The type strain of Noviherbaspirillum galbum is 17J57-3 T (= KCTC 62213 T = NBRC 114384 T).
Collapse
Affiliation(s)
- Yuna Park
- Department of Bio and Environmental Technology, College of Natural Science, Seoul Women's University, Seoul, 01797, Republic of Korea
| | - Soohyun Maeng
- Department of Bio and Environmental Technology, College of Natural Science, Seoul Women's University, Seoul, 01797, Republic of Korea
| | - Sang Eun Lee
- Department of Bio and Environmental Technology, College of Natural Science, Seoul Women's University, Seoul, 01797, Republic of Korea
| | - Joo Hyun Han
- Department of Bio and Environmental Technology, College of Natural Science, Seoul Women's University, Seoul, 01797, Republic of Korea
| | - Young Koung Lee
- Plasma Technology Research Center, National Fusion Research Institute, Gunsan-Si, Jeollabuk-Do, 54004, Republic of Korea
| | - Jaesung Oh
- Plasma Technology Research Center, National Fusion Research Institute, Gunsan-Si, Jeollabuk-Do, 54004, Republic of Korea
| | - Baigalmaa Jigden
- Department of Mongolian Medicine Study, International School of Mongolian Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Ju Hyeon Kang
- Department of Bio and Environmental Technology, College of Natural Science, Seoul Women's University, Seoul, 01797, Republic of Korea
| | - Myung Kyum Kim
- Department of Bio and Environmental Technology, College of Natural Science, Seoul Women's University, Seoul, 01797, Republic of Korea.
| |
Collapse
|
7
|
Felföldi T, Fikó RD, Mentes A, Kovács E, Máthé I, Schumann P, Tóth E. Quisquiliibacterium transsilvanicum gen. nov., sp. nov., a novel betaproteobacterium isolated from a waste-treating bioreactor. Int J Syst Evol Microbiol 2017; 67:4742-4746. [PMID: 28950929 DOI: 10.1099/ijsem.0.002368] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A new betaproteobacterium, CGI-09T, was isolated from an activated sludge bioreactor which treated landfill leachate. Based on 16S rRNA gene sequence analysis, the new strain shared the highest pairwise similarity values with members of the order Burkholderiales: Derxia gummosa IAM 13946T (family Alcaligenaceae), 93.7 % and Lautropia mirabilis DSM 11362T (family Burkholderiaceae), 93.6 %. Cells of strain CGI-09T were rod-shaped and non-motile. The new strain was oxidase and catalase positive and capable of reducing nitrate to nitrite. The predominant fatty acids were C16 : 1 ω7c, C16 : 0, cycloC17 : 0 and C18 : 1 ω7c, the major respiratory quinone was Q-8, and the detected polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and an unknown phospholipid. The G+C content of the genomic DNA of strain CGI-09T was 70.2 mol%. The new bacterium can be distinguished from the members of genera Derxia and Lautropia based on its non-motile cells, arginine dihydrolase activity, its high cyclo C17 : 0 fatty acid content and the lack of hydroxy fatty acids. On the basis of the phenotypic, chemotaxonomic and molecular data, strain CGI-09T is considered to represent a new genus and species within the family Burkholderiaceae, for which the name Quisquiliibacterium transsilvanicum gen. nov., sp. nov. is proposed. The type strain is CGI-09T (=DSM 29781T=JCM 31785T).
Collapse
Affiliation(s)
- Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117 Budapest, Hungary.,Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, 530104 Miercurea Ciuc, Romania
| | - Róbert Dezső Fikó
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, 530104 Miercurea Ciuc, Romania
| | - Anikó Mentes
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117 Budapest, Hungary
| | - Erika Kovács
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, 530104 Miercurea Ciuc, Romania
| | - István Máthé
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, 530104 Miercurea Ciuc, Romania
| | - Peter Schumann
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Erika Tóth
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117 Budapest, Hungary
| |
Collapse
|
8
|
Ishii S, Ashida N, Ohno H, Segawa T, Yabe S, Otsuka S, Yokota A, Senoo K. Noviherbaspirillum denitrificans sp. nov., a denitrifying bacterium isolated from rice paddy soil and Noviherbaspirillum autotrophicum sp. nov., a denitrifying, facultatively autotrophic bacterium isolated from rice paddy soil and proposal to reclassify Herbaspirillum massiliense as Noviherbaspirillum massiliense comb. nov. Int J Syst Evol Microbiol 2017. [DOI: 10.1099/ijsem.0.001875] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Satoshi Ishii
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
- Division of Environmental Engineering, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Soil, Water and Climate, BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Naoaki Ashida
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroki Ohno
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Takahiro Segawa
- Present address: Center for Life Science Research, University of Yamanashi, Yamanashi, Japan
- Transdisciplinary Research Integration Center, Tokyo, Japan
- National Institute of Polar Research, Tokyo, Japan
| | - Shuhei Yabe
- Division of Bioscience and Biotechnology for Future Bioindustries, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Japan
| | - Shigeto Otsuka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Akira Yokota
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, Indonesia
- Institute for Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
- Division of Bioscience and Biotechnology for Future Bioindustries, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Japan
| | - Keishi Senoo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2017; 67:529-531. [DOI: 10.1099/ijsem.0.001845] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 91904 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|