1
|
Muema EK, van Lill M, Venter SN, Chan WY, Claassens R, Steenkamp ET. Mesorhizobium salmacidum sp. nov. and Mesorhizobium argentiipisi sp. nov. are symbionts of the dry-land forage legumes Lessertia diffusa and Calobota sericea. Antonie Van Leeuwenhoek 2025; 118:54. [PMID: 39934476 PMCID: PMC11814006 DOI: 10.1007/s10482-025-02063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
Legumes Lessertia diffusa and Calobota sericea, indigenous to South Africa, are commonly used as fodder crops with potential for sustainable livestock pasture production. Rhizobia were isolated from their root nodules grown in their respective soils from the Succulent Karoo biome (SKB) in South Africa, identified and characterized using a polyphasic approach. Sequence analysis of the 16S rRNA gene confirmed all isolates as Mesorhizobium members, which were categorized into two distinct lineages using five housekeeping protein-coding genes. Lineage I included 14 strains from both legumes, while Lineage II comprised a single isolate from C. sericea. Differences in phenotypic traits were observed between the lineages and corroborated by average nucleotide identity analyses. While all strains nodulated their original hosts, strains from C. sericea failed to effectively nodulate L. diffusa and vice versa. Phylogenetic analyses of nitrogen fixation (nifH) and nodulation (nodA, nodC) loci grouped all strains in a single clade, suggesting that unique symbiotic loci determine nodulation of these legumes. We designated Lineage I and II as Mesorhizobium salmacidum sp. nov. (Ld1326Ts; GCA_037179605.1Ts) and Mesorhizobium argentiipisi sp. nov. (Cs1330R2N1Ts; GCA_037179585.1Ts), using genome sequences as nomenclatural types according to the Nomenclatural Code for Prokaryotes using Sequence Data, thus avoiding complications with South Africa's biodiversity regulations. Identifying effective microsymbionts of L. diffusa and C. sericea is essential for conservation of Succulent Karoo Biome, where indigenous invasive species like Vachellia karroo and non-native Australian acacia species are present. Furthermore, targeted management practices using effective symbionts of the studied legumes can sustain the biome's socio-economic contribution through fodder provision.
Collapse
Affiliation(s)
- Esther K Muema
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa.
- Department of Soil Science, Faculty of AgriSciences, Stellenbosch University, Matieland, South Africa.
| | - Melandré van Lill
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Wai Yin Chan
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Ricu Claassens
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
2
|
van Lill M, Venter SN, Muema EK, Palmer M, Chan WY, Beukes CW, Steenkamp ET. SeqCode facilitates naming of South African rhizobia left in limbo. Syst Appl Microbiol 2024; 47:126504. [PMID: 38593622 DOI: 10.1016/j.syapm.2024.126504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
South Africa is well-known for the diversity of its legumes and their nitrogen-fixing bacterial symbionts. However, in contrast to their plant partners, remarkably few of these microbes (collectively referred to as rhizobia) from South Africa have been characterised and formally described. This is because the rules of the International Code of Nomenclature of Prokaryotes (ICNP) are at odds with South Africa's National Environmental Management: Biodiversity Act and its associated regulations. The ICNP requires that a culture of the proposed type strain for a novel bacterial species be deposited in two international culture collections and be made available upon request without restrictions, which is not possible under South Africa's current national regulations. Here, we describe seven new Mesorhizobium species obtained from root nodules of Vachellia karroo, an iconic tree legume distributed across various biomes in southern Africa. For this purpose, 18 rhizobial isolates were delineated into putative species using genealogical concordance, after which their plausibility was explored with phenotypic characters and average genome relatedness. For naming these new species, we employed the rules of the recently published Code of Nomenclature of Prokaryotes described from Sequence Data (SeqCode), which utilizes genome sequences as nomenclatural types. The work presented in this study thus provides an illustrative example of how the SeqCode allows for a standardised approach for naming cultivated organisms for which the deposition of a type strain in international culture collections is currently problematic.
Collapse
Affiliation(s)
- Melandré van Lill
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Esther K Muema
- Department of Soil Science, Faculty of AgriSciences, Stellenbosch University, South Africa
| | - Marike Palmer
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Wai Y Chan
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | | | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
3
|
Claassens R, Venter SN, Beukes CW, Stępkowski T, Chan WY, Steenkamp ET. Bradyrhizobium xenonodulans sp. nov. isolated from nodules of Australian Acacia species invasive to South Africa. Syst Appl Microbiol 2023; 46:126452. [PMID: 37634485 DOI: 10.1016/j.syapm.2023.126452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023]
Abstract
A genealogical concordance approach was used to delineate strains isolated from Acacia dealbata and Acacia mearnsii root nodules in South Africa. These isolates form part of Bradyrhizobium based on 16S rRNA sequence similarity. Phylogenetic analysis of six housekeeping genes (atpD, dnaK, glnII, gyrB, recA and rpoB) confirmed that these isolates represent a novel species, while pairwise average nucleotide identity (ANIb) calculations with the closest type strains (B. cosmicum 58S1T, B. betae PL7HG1T, B. ganzhouense CCBAU 51670 T, B. cytisi CTAW11T and B. rifense CTAW71T) resulted in values well below 95-96%. We further performed phenotypic tests which revealed that there are high levels of intraspecies variation, while an additional analysis of the nodA and nifD loci indicated that the symbiotic loci of the strains are closely related to those of Bradyrhizobium isolates with an Australian origin. Strain 14ABT (=LMG 31415 T = SARCC-753 T) is designated as the type strain of the novel species for which we propose the name Bradyrhizobium xenonodulans sp. nov.
Collapse
Affiliation(s)
- Ricu Claassens
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, Gauteng, South Africa
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, Gauteng, South Africa
| | | | - Tomasz Stępkowski
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Poland
| | - Wai Y Chan
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, Gauteng, South Africa; Right to Care, Centurion, Gauteng, South Africa
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, Gauteng, South Africa.
| |
Collapse
|
4
|
Mavima L, Beukes CW, Palmer M, De Meyer SE, James EK, Maluk M, Muasya MA, Avontuur JR, Yin Chan W, Venter SN, Steenkamp ET. Delineation of Paraburkholderia tuberum sensu stricto and description of Paraburkholderia podalyriae sp. nov. nodulating the South African legume Podalyria calyptrata. Syst Appl Microbiol 2022; 45:126316. [DOI: 10.1016/j.syapm.2022.126316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/14/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|
5
|
Avontuur JR, Palmer M, Beukes CW, Chan WY, Tasiya T, van Zyl E, Coetzee MPA, Stepkowski T, Venter SN, Steenkamp ET. Bradyrhizobium altum sp. nov., Bradyrhizobium oropedii sp. nov. and Bradyrhizobium acaciae sp. nov. from South Africa show locally restricted and pantropical nodA phylogeographic patterns. Mol Phylogenet Evol 2021; 167:107338. [PMID: 34757168 DOI: 10.1016/j.ympev.2021.107338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/22/2021] [Accepted: 10/27/2021] [Indexed: 10/20/2022]
Abstract
Africa is known for its rich legume diversity with a significant number of endemic species originating in South Africa. Many of these legumes associate with rhizobial symbionts of the genus Bradyrhizobium, of which most represent new species. Yet, none of the Bradyrhizobium species from South Africa have been described. In this study, phylogenetic analysis of 16S rRNA gene sequences of fourteen strains isolated in southern Africa from root nodules of diverse legumes (i.e., from the tribes Crotalarieae, Acacieae, Genisteae, Phaseoleae and Cassieae) revealed that they belong to the Bradyrhizobium elkanii supergroup. The taxonomic position and possible novelty of these strains were further interrogated using genealogical concordance of five housekeeping genes (atpD, dnaK, glnII, gyrB and rpoB). These phylogenies consistently recovered four monophyletic groups and one singleton within Bradyrhizobium. Of these groups, two were conspecific with Bradyrhizobium brasilense UFLA 03-321T and Bradyrhizobium ivorense CI-1BT, while the remaining three represented novel taxa. Their existence was further supported with genome data, as well as metabolic and physiological traits. Analysis of nodA gene sequences further showed that the evolution of these bacteria likely involved adapting to local legume hosts and environmental conditions through the acquisition, via horizontal gene transfer, of optimal symbiotic loci. We accordingly propose the following names Bradyrhizobium acaciae sp. nov. 10BBT (SARCC 730T = LMG 31409T), Bradyrhizobium oropedii sp. nov. Pear76T (SARCC 731T = LMG 31408T), and Bradyrhizobium altum sp. nov. Pear77T (SARCC 754T = LMG 31407T) to accommodate three novel species, all of which are symbionts of legumes in South Africa.
Collapse
Affiliation(s)
- Juanita R Avontuur
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Marike Palmer
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States
| | - Chrizelle W Beukes
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Wai Y Chan
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa; National Institute for Communicable Disease, National Health Laboratory Service, Johannesburg, South Africa
| | - Taponeswa Tasiya
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Elritha van Zyl
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Martin P A Coetzee
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Tomasz Stepkowski
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Poland
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
6
|
Mavima L, Beukes CW, Palmer M, De Meyer SE, James EK, Maluk M, Gross E, Dos Reis Junior FB, Avontuur JR, Chan WY, Venter SN, Steenkamp ET. Paraburkholderia youngii sp. nov. and 'Paraburkholderia atlantica' - Brazilian and Mexican Mimosa-associated rhizobia that were previously known as Paraburkholderia tuberum sv. mimosae. Syst Appl Microbiol 2020; 44:126152. [PMID: 33276286 DOI: 10.1016/j.syapm.2020.126152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
Previous studies have recognized South and Central/Latin American mimosoid legumes in the genera Mimosa, Piptadenia and Calliandra as hosts for various nodulating Paraburkholderia species. Several of these species have been validly named in the last two decades, e.g., P. nodosa, P. phymatum, P. diazotrophica, P. piptadeniae, P. ribeironis, P. sabiae and P. mimosarum. There are still, however, a number of diverse Paraburkholderia strains associated with these legumes that have an unclear taxonomic status. In this study, we focus on 30 of these strains which originate from the root nodules of Brazilian and Mexican Mimosa species. They were initially identified as P. tuberum and subsequently placed into a symbiovar (sv. mimosae) based on their host preferences. A polyphasic approach for the delineation of these strains was used, consisting of genealogical concordance analysis (using atpD, gyrB, acnA, pab and 16S rRNA gene sequences), together with comparisons of Average Nucleotide Identity (ANI), DNA G+C content ratios and phenotypic characteristics with those of the type strains of validly named Paraburkholderia species. Accordingly, these 30 strains were delineated into two distinct groups, of which one is conspecific with 'P. atlantica' CNPSo 3155T and the other new to Science. We propose the name Paraburkholderia youngii sp. nov. with type strain JPY169T (= LMG 31411T; SARCC751T) for this novel species.
Collapse
Affiliation(s)
- Lazarus Mavima
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Chrizelle W Beukes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Marike Palmer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa; School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States of America
| | - Sofie E De Meyer
- MALDIID Pty Ltd, Murdoch, Western Australia, Australia; Laboratory of Microbiology, Department Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Marta Maluk
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Eduardo Gross
- Universidade Estadual de Santa Cruz, km 16 Rodovia Ilhéus - Itabuna, CEP 45662-900 Ilhéus, BA, Brazil
| | | | - Juanita R Avontuur
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Wai Y Chan
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa; Biotechnology Platform, Agricultural Research Council Onderstepoort Veterinary Institute (ARC-OVI), Onderstepoort, South Africa
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
7
|
DeSalle R, Riley M. Should Networks Supplant Tree Building? Microorganisms 2020; 8:E1179. [PMID: 32756444 PMCID: PMC7466111 DOI: 10.3390/microorganisms8081179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022] Open
Abstract
Recent studies suggested that network methods should supplant tree building as the basis of genealogical analysis. This proposition is based upon two arguments. First is the observation that bacterial and archaeal lineages experience processes oppositional to bifurcation and hence the representation of the evolutionary process in a tree like structure is illogical. Second is the argument tree building approaches are circular-you ask for a tree and you get one, which pins a verificationist label on tree building that, if correct, should be the end of phylogenetic analysis as we currently know it. In this review, we examine these questions and suggest that rumors of the death of the bacterial tree of life are exaggerated at best.
Collapse
Affiliation(s)
- Rob DeSalle
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA;
| | - Margaret Riley
- Department of Biology, University of Massachusetts Amherst, 116 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
8
|
Comparative Genomic Analysis Provides Insights into the Phylogeny, Resistome, Virulome, and Host Adaptation in the Genus Ewingella. Pathogens 2020; 9:pathogens9050330. [PMID: 32354059 PMCID: PMC7281767 DOI: 10.3390/pathogens9050330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
Ewingella americana is a cosmopolitan bacterial pathogen that has been isolated from many hosts. Here, we sequenced a high-quality genome of E. americana B6-1 isolated from Flammulina filiformis, an important cultivated mushroom, performed a comparative genomic analysis with four other E. americana strains from various origins, and tested the susceptibility of B6-1 to antibiotics. The genome size, predicted genes, and GC (guanine-cytosine) content of B6-1 was 4.67 Mb, 4301, and 53.80%, respectively. The origin of the strains did not significantly affect the phylogeny, but mobile genetic elements shaped the evolution of the genus Ewingella. The strains encoded a set of common genes for type secretion, virulence effectors, CAZymes, and toxins required for pathogenicity in all hosts. They also had antibiotic resistance, pigments to suppress or evade host defense responses, as well as genes for adaptation to different environmental conditions, including temperature, oxidation, and nutrients. These findings provide a better understanding of the virulence, antibiotic resistance, and host adaptation strategies of Ewingella, and they also contribute to the development of effective control strategies.
Collapse
|
9
|
Palmer M, Steenkamp ET, Blom J, Hedlund BP, Venter SN. All ANIs are not created equal: implications for prokaryotic species boundaries and integration of ANIs into polyphasic taxonomy. Int J Syst Evol Microbiol 2020; 70:2937-2948. [PMID: 32242793 DOI: 10.1099/ijsem.0.004124] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In prokaryotic taxonomy, a set of criteria is commonly used to delineate species. These criteria are generally based on cohesion at the phylogenetic, phenotypic and genomic levels. One such criterion shown to have promise in the genomic era is average nucleotide identity (ANI), which provides an average measure of similarity across homologous regions shared by a pair of genomes. However, despite the popularity and relative ease of using this metric, ANI has undergone numerous refinements, with variations in genome fragmentation, homologue detection parameters and search algorithms. To test the robustness of a 95-96 % species cut-off range across all the commonly used ANI approaches, seven different methods were used to calculate ANI values for intra- and interspecies datasets representing three classes in the Proteobacteria. As a reference point, these methods were all compared to the widely used blast-based ANI (i.e. ANIb as implemented in JSpecies), and regression analyses were performed to investigate the correlation of these methods to ANIb with more than 130000 individual data points. From these analyses, it was clear that ANI methods did not provide consistent results regarding the conspecificity of isolates. Most of the methods investigated did not correlate perfectly with ANIb, particularly between 90 and 100% identity, which includes the proposed species boundary. There was also a difference in the correlation of methods for the different taxon sets. Our study thus suggests that the specific approach employed needs to be considered when ANI is used to delineate prokaryotic species. We furthermore suggest that one would first need to determine an appropriate cut-off value for a specific taxon set, based on the intraspecific diversity of that group, before conclusions on conspecificity of isolates can be made, and that the resulting species hypotheses be confirmed with analyses based on evolutionary history as part of the polyphasic approach to taxonomy.
Collapse
Affiliation(s)
- Marike Palmer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Brian P Hedlund
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
10
|
Paraburkholderia atlantica sp. nov. and Paraburkholderia franconis sp. nov., two new nitrogen-fixing nodulating species isolated from Atlantic forest soils in Brazil. Arch Microbiol 2020; 202:1369-1380. [PMID: 32166359 DOI: 10.1007/s00203-020-01843-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/26/2022]
Abstract
A polyphasic study was conducted with 11 strains trapped by Mimosa pudica and Phaseolus vulgaris grown in soils of the Brazilian Atlantic Forest. In the phylogenetic analysis of the 16S rRNA gene, one clade of strains (Psp1) showed higher similarity with Paraburkholderia piptadeniae STM7183T (99.6%), whereas the second (Psp6) was closely related to Paraburkholderia tuberum STM678T (99%). An MLSA (multilocus sequence analysis) with four (recA, gyrB, trpB and gltB) housekeeping genes placed both Psp1 and Psp6 strains in new clades, and BOX-PCR profiles indicated high intraspecific genetic diversity within each clade. Values of digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) of the whole genome sequences were of 56.9 and 94.4% between the Psp1 strain CNPSo 3157T and P. piptadeniae; and of 49.7% and 92.7% between the Psp6 strain CNPSo 3155T and P. tuberum, below the threshold for species delimitation. In the nodC analysis, Psp1 strains clustered together with P. piptadeniae, while Psp6 did not group with any symbiotic Paraburkholderia. Other phenotypic, genotypic and symbiotic properties were evaluated. The polyphasic analysis supports that the strains represent two novel species, for which the names Paraburkholderia franconis sp. nov. with type strain CNPSo 3157T (= ABIP 241, = LMG 31644) and Paraburkholderia atlantica sp. nov. with type strain CNPSo 3155T (= ABIP 236, = LMG 31643) are proposed.
Collapse
|
11
|
Paraburkholderia strydomiana sp. nov. and Paraburkholderia steynii sp. nov.: rhizobial symbionts of the fynbos legume Hypocalyptus sophoroides. Antonie van Leeuwenhoek 2019; 112:1369-1385. [DOI: 10.1007/s10482-019-01269-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/22/2019] [Indexed: 02/07/2023]
|
12
|
Palmer M, Venter SN, Coetzee MP, Steenkamp ET. Prokaryotic species are sui generis evolutionary units. Syst Appl Microbiol 2019; 42:145-158. [DOI: 10.1016/j.syapm.2018.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/25/2022]
|
13
|
Wright ES, Baum DA. Exclusivity offers a sound yet practical species criterion for bacteria despite abundant gene flow. BMC Genomics 2018; 19:724. [PMID: 30285620 PMCID: PMC6171291 DOI: 10.1186/s12864-018-5099-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/21/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The question of whether bacterial species objectively exist has long divided microbiologists. A major source of contention stems from the fact that bacteria regularly engage in horizontal gene transfer (HGT), making it difficult to ascertain relatedness and draw boundaries between taxa. A natural way to define taxa is based on exclusivity of relatedness, which applies when members of a taxon are more closely related to each other than they are to any outsider. It is largely unknown whether exclusive bacterial taxa exist when averaging over the genome or are rare due to rampant hybridization. RESULTS Here, we analyze a collection of 701 genomes representing a wide variety of environmental isolates from the family Streptomycetaceae, whose members are competent at HGT. We find that the presence/absence of auxiliary genes in the pan-genome displays a hierarchical (tree-like) structure that correlates significantly with the genealogy of the core-genome. Moreover, we identified the existence of many exclusive taxa, although individual genes often contradict these taxa. These conclusions were supported by repeating the analysis on 1,586 genomes belonging to the genus Bacillus. However, despite confirming the existence of exclusive groups (taxa), we were unable to identify an objective threshold at which to assign the rank of species. CONCLUSIONS The existence of bacterial taxa is justified by considering average relatedness across the entire genome, as captured by exclusivity, but is rejected if one requires unanimous agreement of all parts of the genome. We propose using exclusivity to delimit taxa and conventional genome similarity thresholds to assign bacterial taxa to the species rank. This approach recognizes species that are phylogenetically meaningful, while also establishing some degree of comparability across species-ranked taxa in different bacterial clades.
Collapse
Affiliation(s)
- Erik S Wright
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, USA.
- Pittsburgh Center for Evolutionary Biology and Medicine, Pittsburgh, USA.
| | - David A Baum
- Department of Botany, University of Wisconsin-Madison, Madison, USA
| |
Collapse
|