1
|
Romanenko MN, Shikov AE, Savina IA, Shmatov FM, Nizhnikov AA, Antonets KS. Genomic Insights into the Bactericidal and Fungicidal Potential of Bacillus mycoides b12.3 Isolated in the Soil of Olkhon Island in Lake Baikal, Russia. Microorganisms 2024; 12:2450. [PMID: 39770653 PMCID: PMC11676374 DOI: 10.3390/microorganisms12122450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
The dispersal of plant pathogens is a threat to the global economy and food industry which necessitates the need to discover efficient biocontrol agents such as bacteria, fungi, etc., inhibiting them. Here, we describe the Bacillus mycoides strain b12.3 isolated from the soil of Olkhon Island in Lake Baikal, Russia. By applying the co-cultivation technique, we found that the strain inhibits the growth of plant pathogens, such as the bacteria Xanthomonas campestris, Clavibacter michiganensis, and Pectobacterium atrospecticum, as well as the fungus Alternaria solani. To elucidate the genomic fundament explaining these activities, we leveraged next-generation whole-genome sequencing and obtained a high-quality assembly based on short reads. The isolate bore seven known BGCs (biosynthetic gene clusters), including those responsible for producing bacillibactin, fengycin, and petrobactin. Moreover, the genome contained insecticidal genes encoding for App4Aa1, Tpp78Ba1, and Spp1Aa1 toxins, thus implicating possible pesticidal potential. We compared the genome with the 50 closest assemblies and found that b12.3 is enriched with BGCs. The genomic analysis also revealed that genomic architecture corresponds to the experimentally observed activity spectrum implying that the combination of produced secondary metabolites delineates the range of inhibited phytopathogens Therefore, this study deepens our knowledge of the biology and ecology of B. mycoides residing in the Lake Baikal region.
Collapse
Affiliation(s)
- Maria N. Romanenko
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton E. Shikov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Iuliia A. Savina
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
| | - Fedor M. Shmatov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
| | - Anton A. Nizhnikov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
2
|
Liu Q, Tao J, Kan L, Zhang Y, Zhang S. Diversity, antibacterial and phytotoxic activities of actinomycetes associated with Periplaneta fuliginosa. PeerJ 2024; 12:e18575. [PMID: 39611011 PMCID: PMC11604042 DOI: 10.7717/peerj.18575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
Background Insect-associated actinomycetes represent a potentially rich source for discovering bioactive metabolites. However, the diversity, antibacterial and phytotoxic activities of symbiotic actinomycetes associated with Periplaneta fuliginosa have not yet been conducted. Results A total of 86 strains of actinomycetes were isolated from the cornicles and intestines of both nymphs and adults of P. fuliginosa. Diversity analysis revealed that the isolated strains were preliminarily identified as 17 species from two genera, and the dominant genus was Streptomyces. A total of 36 crude extracts (60%) obtained from the supernatant of the 60 fermented strains exhibited a potent antibacterial activity against at least one tested pathogenic bacterium. Among these active strains, 27 crude extracts (75%) exhibited phytotoxic activity against the radicle of Echinochloa crusgalli. Furthermore, seven known compounds, including methoxynicotine (1), (3Z,6Z)-3-(4-methoxybenzylidene)-6-(2-methylpropyl) piperazine-2,5-dione (2), XR334 (3), 1-hydroxy-4-methoxy-2-naphthoic acid (4), nocapyrone A (5), β-daucosterol (6), and β-sitosterol (7) were isolated from an active rare actinomycete Nocardiopsis sp. ZLC-87 which was isolated from the gut of adult P. fuliginosa. Among them, compound 4 exhibited moderate antibacterial activity against Micrococcus tetragenus, Staphylococcus aureus, Escherichia coli, and Pseudomonas syringae pv. actinidiae with the zone of inhibition (ZOI) of 14.5, 12.0, 12.5, and 13.0 mm at a concentration of 30 μg/disc, respectively, which was weaker than those of gentamicin sulfate (ZOI of 29.5, 19.0, 18.5, and 24.5 mm). In addition, the compound 4 had potent phytotoxic activity against the radicle of E. crusgalli and Abutilon theophrasti with the inhibition rate of 65.25% and 92.68% at the concentration of 100 μg/mL. Conclusion Based on these findings, this study showed that P. fuliginosa-associated actinomycetes held promise for the development of new antibiotic and herbicide resources.
Collapse
Affiliation(s)
- Qihua Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Jian Tao
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Longhui Kan
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yinglao Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Shuxiang Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
3
|
Telnova TY, Morgunova MM, Shashkina SS, Vlasova AA, Dmitrieva ME, Shelkovnikova VN, Malygina EV, Imidoeva NA, Belyshenko AY, Konovalov AS, Misharina EA, Axenov-Gribanov DV. Detection of Pharmaceutical Contamination in Amphipods of Lake Baikal by the HPLC-MS Method. Antibiotics (Basel) 2024; 13:738. [PMID: 39200038 PMCID: PMC11350909 DOI: 10.3390/antibiotics13080738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Pollution by active ingredients is one of the most significant and widespread forms of pollution on Earth. Medicines can have a negative impact on ecosystems, and contamination can have unpredictable consequences. An urgent and unexplored task is to study the Lake Baikal ecosystem and its organisms for the presence of trace concentrations of active pharmaceutical ingredients. Our study aimed to conduct a qualitative analysis of active pharmaceutical ingredients, and quantitative analysis of ibuprofen in endemic amphipods of Lake Baikal, using methods of high-performance liquid chromatography and mass spectrometry (HPLC-MS). Acetylsalicylic acid (aspirin), ibuprofen, acetaminophen, azithromycin, dimetridazole, metronidazole, amikacin, spiramycin, and some tetracycline antibiotics were detected in the studied littoral amphipods. We also detected different annual loads of active pharmaceutical ingredients on amphipods. Using the multiple reaction monitoring (MRM) mode mentioned in GOST International Technical Standards, we detected molecules, fragmented as amikacin, chlortetracycline, doxycycline, oxytetracycline, dimetridazole, metronidazole and spiramycin. Thus, we first revealed that invertebrates of Lake Baikal can uptake pharmaceutical contaminants in the environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Denis V. Axenov-Gribanov
- Research Department, Biological and Soil Faculty, Irkutsk State University, Irkutsk 664003, Russia; (T.Y.T.); (M.M.M.); (S.S.S.); (A.A.V.); (M.E.D.); (V.N.S.); (E.V.M.); (N.A.I.); (A.Y.B.); (A.S.K.); (E.A.M.)
| |
Collapse
|
4
|
Olano C, Rodríguez M. Actinomycetes Associated with Arthropods as a Source of New Bioactive Compounds. Curr Issues Mol Biol 2024; 46:3822-3838. [PMID: 38785506 PMCID: PMC11119530 DOI: 10.3390/cimb46050238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Antimicrobial resistance is one of the main global threats to human health in the 21st century due to the rapid appearance of bacterial resistance and the lack of novel bioactive compounds. Natural products, especially from Actinomycetes, remain the best source to refill the drug industry pipeline. Different strategies have been pursued to increase the chances of discovering new molecules, such as studying underexplored environments like arthropod symbionts, which represent a relevant reservoir for active metabolites. This review summarizes recent research on the identification of bioactive molecules produced by Actinomycetes associated with arthropods' microbiome. The metabolites have been categorized based on their structural properties and host, highlighting that multidisciplinary approaches will be the key to fully understanding this complex relationship.
Collapse
Affiliation(s)
- Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Miriam Rodríguez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
5
|
Riahi HS, Heidarieh P, Fatahi-Bafghi M. Genus Pseudonocardia: What we know about its biological properties, abilities and current application in biotechnology. J Appl Microbiol 2021; 132:890-906. [PMID: 34469043 DOI: 10.1111/jam.15271] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 07/08/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
The genus Pseudonocardia belongs to a group of Actinomycetes, and is a member of the family Pseudonocardiacea. The members of this genus are aerobic, Gram-positive, non-motile bacteria that are commonly found in soil, plant and environment. Although this genus has a low clinical significance; however, it has an important role in biotechnology due to the production of secondary metabolites, some of which have anti-bacterial, anti-fungal and anti-tumour effects. The use of phenotypic tests, such as gelatinase activity, starch hydrolysis, catalase and oxidase tests, as well as molecular methods, such as polymerase chain reaction, are necessary for Pseudonocardia identification at the genus and species levels.
Collapse
Affiliation(s)
- Hanieh Sadat Riahi
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Parvin Heidarieh
- Department of Bacteriology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Fatahi-Bafghi
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
6
|
Antimicrobial activity of Actinobacteria isolated from dry land soil in Yazd, Iran. Mol Biol Rep 2021; 48:1717-1723. [PMID: 33599952 DOI: 10.1007/s11033-021-06218-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
Abstract
Historically, many important secondary metabolites including antibiotics used in clinic are purified from the cultural broths of Actinobacteria, which were inhabited in soil. Yazd is located in the center of Iran, the south of the Dasht-e Kavir and the west of the Dasht-e Lut; accordingly it has a hot, dry climate with long summers. In the present study, 18 strains of Actinobacteria isolated from 60 soil samples from Yazd-Iran. Pure isolates were screened for antibacterial activity against the ATCC strains by using two methods: single line streak method and spot inoculation method. ATCC strains include four antibiotic resistant ATCC strains (Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae and, Acinetobacter baumannii) and three antibiotic sensitive strains (Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli) and, Bacillus subtilis. Seven isolates exhibited antimicrobial activity against the ATCC strains (38.8%). Identification of type I and type II polyketide synthases (pksI, pksII) and nonribosomal peptide synthetase (NRPS) genes were done for these 7 isolates and all of 7 strains, possessed at least one of these genes. The results of this study confirm that soil Actinobacteria bear a great ability to produce antibacterial compounds against resistant and sensitive test organisms.
Collapse
|
7
|
Jose PA, Maharshi A, Jha B. Actinobacteria in natural products research: Progress and prospects. Microbiol Res 2021; 246:126708. [PMID: 33529791 DOI: 10.1016/j.micres.2021.126708] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 12/15/2022]
Abstract
Actinobacteria are well-recognised biosynthetic factories that produce an extensive spectrum of secondary metabolites. Recent genomic insights seem to impact the exploitation of these metabolically versatile bacteria in several aspects. Notably, from the isolation of novel taxa to the discovery of new compounds, different approaches evolve at a steady pace. Here, we systematically discuss the enduring importance of Actinobacteria in the field of drug discovery, the current focus of isolation efforts targeting bioactive Actinobacteria from diverse sources, recent discoveries of novel compounds with different bioactivities, and the relative employment of different strategies in the search for novel compounds. Ultimately, we highlight notable progress that will have profound impacts on future quests for secondary metabolites of Actinobacteria.
Collapse
Affiliation(s)
- Polpass Arul Jose
- Marine Biotechnology and Ecology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India.
| | - Anjisha Maharshi
- Marine Biotechnology and Ecology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India
| | - Bhavanath Jha
- Marine Biotechnology and Ecology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India; Academy of Scientific and Innovative Research (AcSIR), CSIR, India.
| |
Collapse
|
8
|
Pessotti RDC, Hansen BL, Reaso JN, Ceja-Navarro JA, El-Hifnawi L, Brodie EL, Traxler MF. Multiple lineages of Streptomyces produce antimicrobials within passalid beetle galleries across eastern North America. eLife 2021; 10:65091. [PMID: 33942718 PMCID: PMC8096431 DOI: 10.7554/elife.65091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Some insects form symbioses in which actinomycetes provide defense against pathogens by making antimicrobials. The range of chemical strategies employed across these associations, and how these strategies relate to insect lifestyle, remains underexplored. We assessed subsocial passalid beetles of the species Odontotaenius disjunctus, and their frass (fecal material), which is an important food resource within their galleries, as a model insect/actinomycete system. Through chemical and phylogenetic analyses, we found that O. disjunctus frass collected across eastern North America harbored multiple lineages of Streptomyces and diverse antimicrobials. Metabolites detected in frass displayed synergistic and antagonistic inhibition of a fungal entomopathogen, Metarhizium anisopliae, and multiple streptomycete isolates inhibited this pathogen when co-cultivated directly in frass. These findings support a model in which the lifestyle of O. disjunctus accommodates multiple Streptomyces lineages in their frass, resulting in a rich repertoire of antimicrobials that likely insulates their galleries against pathogenic invasion.
Collapse
Affiliation(s)
- Rita de Cassia Pessotti
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| | - Bridget L Hansen
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| | - Jewel N Reaso
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| | - Javier A Ceja-Navarro
- Bioengineering and Biomedical Sciences Department, Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States,Institute for Biodiversity Science and Sustainability, California Academy of SciencesBerkeleyUnited States
| | - Laila El-Hifnawi
- Department of Molecular and Cellular Biology, University of California, BerkeleyBerkeleyUnited States
| | - Eoin L Brodie
- Ecology Department, Earth and Environmental Sciences, Lawrence Berkeley National LaboratoryBerkeleyUnited States,Department of Environmental Science, Policy and Management, University of California, BerkeleyBerkeleyUnited States
| | - Matthew F Traxler
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
9
|
Axenov-Gribanov DV, Kostka DV, Vasilieva UА, Shatilina ZM, Krasnova ME, Pereliaeva EV, Zolotovskaya ED, Morgunova MM, Rusanovskaya OO, Timofeyev MA. Cultivable Actinobacteria First Found in Baikal Endemic Algae Is a New Source of Natural Products with Antibiotic Activity. Int J Microbiol 2020; 2020:5359816. [PMID: 32802070 PMCID: PMC7403937 DOI: 10.1155/2020/5359816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023] Open
Abstract
Inadequate use of antibiotics has led to spread of microorganisms resistant to effective antimicrobial compounds for humans and animals. This study was aimed to isolate cultivable strains of actinobacteria associated with Baikal endemic alga Draparnaldioides baicalensis and estimate their antibiotic properties. During this study, we isolated both widespread and dominant strains related to the genus Streptomyces and representatives of the genera Saccharopolyspora, Nonomuraea, Rhodococcus, and Micromonospora. For the first time, actinobacteria belonging to the genera Nonomuraea and Saccharopolyspora were isolated from Baikal ecosystem. Also, it was the first time when actinobacteria of the genus Nonomuraea were isolated from freshwater algae. Some rare strains demonstrated activity inhibiting growth of bacteria and yeasts. Also, it has been shown that the strains associated with Baikal alga D. baicalensis are active against both Gram-positive and Gram-negative bacteria. According to this study and previously published materials, diversity of cultivable actinobacteria and rare strains isolated from D. baicalensis is comparable to that of cultivable actinobacteria previously isolated from plant sources of Lake Baikal. Also, it exceeds the cultivable actinobacteria diversity previously described for macroinvertebrates, water, or sediments of Lake Baikal. The large number of rare and active strains associated with the endemic alga D. baicalensis could be the promising sources for biopharmaceutical and biotechnological developments and discovery of new natural compounds.
Collapse
Affiliation(s)
| | - Daria V. Kostka
- Irkutsk State University, Karl Marx St. 1, 664003 Irkutsk, Russia
- Irkutsk Regional Clinical Advisory and Diagnostic Center, Baykalskaya Str., 109 Irkutsk, Russia
| | - Ulyana А. Vasilieva
- Irkutsk State University, Karl Marx St. 1, 664003 Irkutsk, Russia
- Siberian Institute of Plant Physiology and Biochemistry, 132 Lermontov Str., 664033 Irkutsk, Russia
| | | | | | | | | | | | | | - Maxim A. Timofeyev
- Irkutsk State University, Karl Marx St. 1, 664003 Irkutsk, Russia
- Baikal Research Centre, Lenin Str. 21, 664003 Irkutsk, Russia
| |
Collapse
|
10
|
Rodríguez Estévez M, Myronovskyi M, Rosenkränzer B, Paululat T, Petzke L, Ristau J, Luzhetskyy A. Novel Fredericamycin Variant Overproduced by a Streptomycin-resistant Streptomyces albus subsp. chlorinus Strain. Mar Drugs 2020; 18:E284. [PMID: 32481766 PMCID: PMC7345809 DOI: 10.3390/md18060284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 11/16/2022] Open
Abstract
Streptomycetes are an important source of natural products potentially applicable in the pharmaceutical industry. Many of these drugs are secondary metabolites whose biosynthetic genes are very often poorly expressed under laboratory cultivation conditions. In many cases, antibiotic-resistant mutants exhibit increased production of natural drugs, which facilitates the identification and isolation of new substances. In this study, we report the induction of a type II polyketide synthase gene cluster in the marine strain Streptomyces albus subsp. chlorinus through the selection of streptomycin-resistant mutants, resulting in overproduction of the novel compound fredericamycin C2 (1). Fredericamycin C2 (1) is structurally related to the potent antitumor drug lead fredericamycin A.
Collapse
Affiliation(s)
- Marta Rodríguez Estévez
- Pharmazeutische Biotechnologie, Universität des Saarlandes, 66123 Saarbrücken, Germany; (M.R.E.); (M.M.); (B.R.)
| | - Maksym Myronovskyi
- Pharmazeutische Biotechnologie, Universität des Saarlandes, 66123 Saarbrücken, Germany; (M.R.E.); (M.M.); (B.R.)
| | - Birgit Rosenkränzer
- Pharmazeutische Biotechnologie, Universität des Saarlandes, 66123 Saarbrücken, Germany; (M.R.E.); (M.M.); (B.R.)
| | - Thomas Paululat
- Organische Chemie II, Universität Siegen, 57068 Siegen, Germany;
| | - Lutz Petzke
- BASF SE, 67056 Ludwigshafen, Germany; (L.P.); (J.R.)
| | | | - Andriy Luzhetskyy
- Pharmazeutische Biotechnologie, Universität des Saarlandes, 66123 Saarbrücken, Germany; (M.R.E.); (M.M.); (B.R.)
- Helmholtz-Institut für Pharmazeutische Forschung Saarland, 66123 Saarbrücken, Germany
| |
Collapse
|
11
|
Rodríguez Estévez M, Gummerlich N, Myronovskyi M, Zapp J, Luzhetskyy A. Benzanthric Acid, a Novel Metabolite From Streptomyces albus Del14 Expressing the Nybomycin Gene Cluster. Front Chem 2020; 7:896. [PMID: 31998688 PMCID: PMC6965495 DOI: 10.3389/fchem.2019.00896] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/12/2019] [Indexed: 11/17/2022] Open
Abstract
Streptomycetes constitute a diverse bacterial group able to produce a wide variety of secondary metabolites with potential applications in the pharmacy industry. However, the genes responsible for the biosynthesis of these compounds are very frequently inactive or expressed at very low levels under standard laboratory cultivation conditions. Therefore, the activation or upregulation of secondary metabolite biosynthesis genes is a crucial step for the discovery of new bioactive natural products. We have recently reported the discovery of the biosynthetic genes for the antibiotic nybomycin (nyb genes) in Streptomyces albus subsp. chlorinus. The nyb genes were expressed in the heterologous host Streptomyces albus Del14, which produces not only nybomycin, but also a novel compound. In this study, we describe the isolation, purification, and structure elucidation of the new substance named benzanthric acid.
Collapse
Affiliation(s)
| | - Nils Gummerlich
- Pharmaceutical Biotechnology, University of Saarland, Saarbrücken, Germany
| | - Maksym Myronovskyi
- Pharmaceutical Biotechnology, University of Saarland, Saarbrücken, Germany
| | - Josef Zapp
- Department of Pharmacy, Institute of Pharmaceutical Biology, University of Saarland, Saarbrücken, Germany
| | - Andriy Luzhetskyy
- Pharmaceutical Biotechnology, University of Saarland, Saarbrücken, Germany.,Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| |
Collapse
|
12
|
Rodríguez Estévez M, Myronovskyi M, Gummerlich N, Nadmid S, Luzhetskyy A. Heterologous Expression of the Nybomycin Gene Cluster from the Marine Strain Streptomyces albus subsp. chlorinus NRRL B-24108. Mar Drugs 2018; 16:md16110435. [PMID: 30400361 PMCID: PMC6265801 DOI: 10.3390/md16110435] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/26/2018] [Accepted: 10/31/2018] [Indexed: 11/16/2022] Open
Abstract
Streptomycetes represent an important reservoir of active secondary metabolites with potential applications in the pharmaceutical industry. The gene clusters responsible for their production are often cryptic under laboratory growth conditions. Characterization of these clusters is therefore essential for the discovery of new microbial pharmaceutical drugs. Here, we report the identification of the previously uncharacterized nybomycin gene cluster from the marine actinomycete Streptomyces albus subsp. chlorinus through its heterologous expression. Nybomycin has previously been reported to act against quinolone-resistant Staphylococcus aureus strains harboring a mutated gyrA gene but not against those with intact gyrA. The nybomycin-resistant mutants generated from quinolone-resistant mutants have been reported to be caused by a back-mutation in the gyrA gene that restores susceptibility to quinolones. On the basis of gene function assignment from bioinformatics analysis, we suggest a model for nybomycin biosynthesis.
Collapse
Affiliation(s)
| | - Maksym Myronovskyi
- Pharmazeutische Biotechnologie, Universität des Saarlandes, 66123 Saarbrücken, Germany.
| | - Nils Gummerlich
- Pharmazeutische Biotechnologie, Universität des Saarlandes, 66123 Saarbrücken, Germany.
| | - Suvd Nadmid
- Pharmazeutische Biotechnologie, Universität des Saarlandes, 66123 Saarbrücken, Germany.
| | - Andriy Luzhetskyy
- Pharmazeutische Biotechnologie, Universität des Saarlandes, 66123 Saarbrücken, Germany.
- Helmholtz-Institut für Pharmazeutische Forschung Saarland, 66123 Saarbrücken, Germany.
| |
Collapse
|