1
|
Jiang Y, Zheng C, Yu T, Li J, Ai J, Li M, Liu X, Deng Z. Rhodococcus yananensis sp. nov., a novel denitrification actinobacterium isolated from microbial fermentation bed material from a pig farm. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An opaque, pink-coloured, gram-positive, aerobic bacteria (designated as FBM22-1T), was isolated from microbial fermentation bed material from a pig farm in northwestern China. Optimal growth occurred at 30–37 °C, pH 7.0 and with 0.5 % NaCl (w/v). The strain had nitrification and denitrification functions. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the novel isolate belonged to the genus
Rhodococcus
. Strain FBM22-1T was closely related to
Rhodococcus zopfii
NBRC 100606T and
Rhodococcus rhodochrous
NBRC 16069T, with 16S rRNA gene sequence similarities of 97.9 and 97.7 %, respectively. The predominant menaquinone in strain FBM22-1T was MK-8(H2). The cellular fatty acids consisted primarily of C16 : 1ω7c and/or C16 : 1 ω6c, C16 : 0 and 10-methyl C18 : 0. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and glycolipid. The G+C content of strain FBM22-1T was 68.64 mol%. Based on the phenotypic, phylogenetic and chemotaxonomic characterization results, in combination with low values of digital DNA–DNA hybridization between strain FBM22-1T and its closest neighbours, FBM22-1T represents a novel species of the genus
Rhodococcus
, for which the name Rhodococcus yananensis sp. nov. is proposed; the type strain is FBM22-1T (=KCTC 49502T=CCTCC AB2020275T).
Collapse
Affiliation(s)
- Yingying Jiang
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan’an University, Yan’an 716000, PR China
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, Yan'an University, Yan’an 716000, PR China
- College of Life Sciences, Yan’an University, Yan’an 716000, PR China
| | - Chaochao Zheng
- College of Life Sciences, Yan’an University, Yan’an 716000, PR China
| | - Tianfei Yu
- College of Life Sciences, Yan’an University, Yan’an 716000, PR China
| | - Jing Li
- College of Life Sciences, Yan’an University, Yan’an 716000, PR China
| | - Jiamin Ai
- College of Life Sciences, Yan’an University, Yan’an 716000, PR China
| | - Maiping Li
- Animal Husbandry and Veterinary Service Center, Yan’an 716000, PR China
| | - Xiaodong Liu
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan’an University, Yan’an 716000, PR China
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, Yan'an University, Yan’an 716000, PR China
- College of Life Sciences, Yan’an University, Yan’an 716000, PR China
| | - Zhenshan Deng
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan’an University, Yan’an 716000, PR China
- College of Life Sciences, Yan’an University, Yan’an 716000, PR China
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, Yan'an University, Yan’an 716000, PR China
| |
Collapse
|
2
|
Mezzasoma A, Coleine C, Sannino C, Selbmann L. Endolithic Bacterial Diversity in Lichen-Dominated Communities Is Shaped by Sun Exposure in McMurdo Dry Valleys, Antarctica. MICROBIAL ECOLOGY 2022; 83:328-339. [PMID: 34081148 PMCID: PMC8891110 DOI: 10.1007/s00248-021-01769-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
The diversity and composition of endolithic bacterial diversity of several locations in McMurdo Dry Valleys (Continental Antarctica) were explored using amplicon sequencing, targeting the V3 and V4 of the 16S region. Despite the increasing interest in edaphic factors that drive bacterial community composition in Antarctic rocky communities, few researchers focused attention on the direct effects of sun exposure on bacterial diversity; we herein reported significant differences in the northern and southern communities. The analysis of β-diversity showed significant differences among sampled localities. For instance, the most abundant genera found in the north-exposed rocks were Rhodococcus and Blastococcus in Knobhead Mt.; Ktedonobacter and Cyanobacteria Family I Group I in Finger Mt.; Rhodococcus and Endobacter in University Valley; and Segetibacter and Tetrasphaera in Siegfried Peak samples. In south-exposed rocks, instead, the most abundant genera were Escherichia/Shigella and Streptococcus in Knobhead Mt.; Ktedonobacter and Rhodococcus in Finger Mt.; Ktedonobacter and Roseomonas in University Valley; and Blastocatella, Cyanobacteria Family I Group I and Segetibacter in Siegfried Peak. Significant biomarkers, detected by the Linear discriminant analysis Effect Size, were also found among north- and south-exposed communities. Besides, the large number of positive significant co-occurrences may suggest a crucial role of positive associations over competitions under the harsher conditions where these rock-inhabiting microorganisms spread. Although the effect of geographic distances in these extreme environments play a significant role in shaping biodiversity, the study of an edaphic factor, such as solar exposure, adds an important contribution to the mosaic of microbial biodiversity of Antarctic bacterial cryptoendolithic communities.
Collapse
Affiliation(s)
- Ambra Mezzasoma
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Ciro Sannino
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Italian Antarctic National Museum (MNA), Mycological Section, Genoa, Italy
| |
Collapse
|
3
|
Ivshina IB, Kuyukina MS, Krivoruchko AV, Tyumina EA. Responses to Ecopollutants and Pathogenization Risks of Saprotrophic Rhodococcus Species. Pathogens 2021; 10:974. [PMID: 34451438 PMCID: PMC8398200 DOI: 10.3390/pathogens10080974] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
Under conditions of increasing environmental pollution, true saprophytes are capable of changing their survival strategies and demonstrating certain pathogenicity factors. Actinobacteria of the genus Rhodococcus, typical soil and aquatic biotope inhabitants, are characterized by high ecological plasticity and a wide range of oxidized organic substrates, including hydrocarbons and their derivatives. Their cell adaptations, such as the ability of adhering and colonizing surfaces, a complex life cycle, formation of resting cells and capsule-like structures, diauxotrophy, and a rigid cell wall, developed against the negative effects of anthropogenic pollutants are discussed and the risks of possible pathogenization of free-living saprotrophic Rhodococcus species are proposed. Due to universal adaptation features, Rhodococcus species are among the candidates, if further anthropogenic pressure increases, to move into the group of potentially pathogenic organisms with "unprofessional" parasitism, and to join an expanding list of infectious agents as facultative or occasional parasites.
Collapse
Affiliation(s)
- Irina B. Ivshina
- Perm Federal Research Center UB RAS, Institute of Ecology and Genetics of Microorganisms UB RAS, 13 Golev Str., 614081 Perm, Russia; (M.S.K.); (A.V.K.); (E.A.T.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| | - Maria S. Kuyukina
- Perm Federal Research Center UB RAS, Institute of Ecology and Genetics of Microorganisms UB RAS, 13 Golev Str., 614081 Perm, Russia; (M.S.K.); (A.V.K.); (E.A.T.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| | - Anastasiia V. Krivoruchko
- Perm Federal Research Center UB RAS, Institute of Ecology and Genetics of Microorganisms UB RAS, 13 Golev Str., 614081 Perm, Russia; (M.S.K.); (A.V.K.); (E.A.T.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| | - Elena A. Tyumina
- Perm Federal Research Center UB RAS, Institute of Ecology and Genetics of Microorganisms UB RAS, 13 Golev Str., 614081 Perm, Russia; (M.S.K.); (A.V.K.); (E.A.T.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| |
Collapse
|
4
|
Analysis of Soil Fungal and Bacterial Communities in Tianchi Volcano Crater, Northeast China. Life (Basel) 2021; 11:life11040280. [PMID: 33810555 PMCID: PMC8066613 DOI: 10.3390/life11040280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/26/2022] Open
Abstract
High-altitude volcanoes, typical examples of extreme environments, are considered of particular interest in biology as a possible source of novel and exclusive microorganisms. We analyzed the crater soil microbial diversity of Tianchi Volcano, northeast China, by combining molecular and morphological analyses of culturable microbes, and metabarcoding based on Illumina sequencing, in order to increase our understanding of high-altitude volcanic microbial community structure. One-hundred and seventeen fungal strains belonging to 51 species and 31 genera of Ascomycota, Basidiomycota and Mucoromycota were isolated. Penicillium, Trichoderma, Cladosporium, Didymella, Alternaria and Fusarium dominated the culturable fungal community. A considerable number of isolated microbes, including filamentous fungi, such as Aureobasidium pullulans and Epicoccum nigrum, yeasts (Leucosporidium creatinivorum), and bacteria (Chryseobacterium lactis and Rhodococcus spp.), typical of high-altitude, cold, and geothermal extreme environments, provided new insights in the ecological characterization of the investigated environment, and may represent a precious source for the isolation of new bioactive compounds. A total of 1254 fungal and 2988 bacterial operational taxonomic units were generated from metabarcoding. Data analyses suggested that the fungal community could be more sensitive to environmental and geographical change compared to the bacterial community, whose network was characterized by more complicated and closer associations.
Collapse
|
5
|
Dhaouadi S, Mougou AH, Wu CJ, Gleason ML, Rhouma A. Sequence analysis of 16S rDNA, gyrB and alkB genes of plant-associated Rhodococcus species from Tunisia. Int J Syst Evol Microbiol 2021; 70:6491-6507. [PMID: 33095130 DOI: 10.1099/ijsem.0.004521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Rhodococcus contains several species with agricultural, biotechnological and ecological importance. Within this genus, many phyllosphere, rhizosphere and endosphere strains are plant growth promoting bacteria, whereas strains designated as R. fascians are plant pathogens. In this study, we isolated 47 Rhodococcus strains from a range of herbaceous and woody plant species. Phylogenetic analysis based on 16S rDNA, gyrB and alkB genes was used to compare our strains with type strains of Rhodococcus. For most of our strains, sequence similarity of the 16S rDNA, gyrB and alkB regions to type strains ranged from 98-100 %. Results of the concatenated gene sequence comparisons identified 18 strains of R. fascians and three strains of R. kroppenstedtii. The remaining strains were unclassified, and may represent novel species of Rhodococcus. Phylogenetic analysis based on gyrB sequences provided a more precise classification of our strains to species level than 16S rDNA sequences, whereas analysis of alkB sequences was unable to identify strains with orange-coloured colonies to species level.
Collapse
Affiliation(s)
- Sabrine Dhaouadi
- Laboratory of Bio Aggressors and Integrated Pest Management, Department of Plant Health and Environment, National Institute of Agronomy, Tunis, University of Carthage, Tunis, Tunisia
| | - Amira H Mougou
- Laboratory of Bio Aggressors and Integrated Pest Management, Department of Plant Health and Environment, National Institute of Agronomy, Tunis, University of Carthage, Tunis, Tunisia
| | - Chao J Wu
- Chiayi Agricultural Experiment Station, Taiwan Agricultural Research Institute, Taiwan, ROC
| | - Mark L Gleason
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Ali Rhouma
- Partnership for Research and Innovation in the Mediterranean Area (PRIMA), Barcelona, Spain
| |
Collapse
|
6
|
Silva LJ, Crevelin EJ, Souza DT, Lacerda-Júnior GV, de Oliveira VM, Ruiz ALTG, Rosa LH, Moraes LAB, Melo IS. Actinobacteria from Antarctica as a source for anticancer discovery. Sci Rep 2020; 10:13870. [PMID: 32807803 PMCID: PMC7431910 DOI: 10.1038/s41598-020-69786-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 07/03/2020] [Indexed: 01/09/2023] Open
Abstract
Although many advances have been achieved to treat aggressive tumours, cancer remains a leading cause of death and a public health problem worldwide. Among the main approaches for the discovery of new bioactive agents, the prospect of microbial secondary metabolites represents an effective source for the development of drug leads. In this study, we investigated the actinobacterial diversity associated with an endemic Antarctic species, Deschampsia antarctica, by integrated culture-dependent and culture-independent methods and acknowledged this niche as a reservoir of bioactive strains for the production of antitumour compounds. The 16S rRNA-based analysis showed the predominance of the Actinomycetales order, a well-known group of bioactive metabolite producers belonging to the Actinobacteria phylum. Cultivation techniques were applied, and 72 psychrotolerant Actinobacteria strains belonging to the genera Actinoplanes, Arthrobacter, Kribbella, Mycobacterium, Nocardia, Pilimelia, Pseudarthrobacter, Rhodococcus, Streptacidiphilus, Streptomyces and Tsukamurella were identified. The secondary metabolites were screened, and 17 isolates were identified as promising antitumour compound producers. However, the bio-guided assay showed a pronounced antiproliferative activity for the crude extracts of Streptomyces sp. CMAA 1527 and Streptomyces sp. CMAA 1653. The TGI and LC50 values revealed the potential of these natural products to control the proliferation of breast (MCF-7), glioblastoma (U251), lung/non-small (NCI-H460) and kidney (786-0) human cancer cell lines. Cinerubin B and actinomycin V were the predominant compounds identified in Streptomyces sp. CMAA 1527 and Streptomyces sp. CMAA 1653, respectively. Our results suggest that the rhizosphere of D. antarctica represents a prominent reservoir of bioactive actinobacteria strains and reveals it as an important environment for potential antitumour agents.
Collapse
Affiliation(s)
- Leonardo Jose Silva
- College of Agriculture "Luiz de Queiroz", University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Eduardo José Crevelin
- Laboratory of Mass Spectrometry Applied To Natural Products Chemistry, Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Danilo Tosta Souza
- Laboratory of Mass Spectrometry Applied To Natural Products Chemistry, Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Gileno Vieira Lacerda-Júnior
- Laboratory of Environmental Microbiology, Brazilian Agricultural Research Corporation (EMBRAPA) - Embrapa Environment, Jaguariúna, SP, Brazil
| | - Valeria Maia de Oliveira
- Microbial Resourses Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Luiz Henrique Rosa
- Department of Microbiology, Biological Sciences Institute - Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Luiz Alberto Beraldo Moraes
- Laboratory of Mass Spectrometry Applied To Natural Products Chemistry, Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Itamar Soares Melo
- Laboratory of Environmental Microbiology, Brazilian Agricultural Research Corporation (EMBRAPA) - Embrapa Environment, Jaguariúna, SP, Brazil.
| |
Collapse
|
7
|
Garrido-Sanz D, Redondo-Nieto M, Martín M, Rivilla R. Comparative Genomics of the Rhodococcus Genus Shows Wide Distribution of Biodegradation Traits. Microorganisms 2020; 8:microorganisms8050774. [PMID: 32455698 PMCID: PMC7285261 DOI: 10.3390/microorganisms8050774] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 11/24/2022] Open
Abstract
The genus Rhodococcus exhibits great potential for bioremediation applications due to its huge metabolic diversity, including biotransformation of aromatic and aliphatic compounds. Comparative genomic studies of this genus are limited to a small number of genomes, while the high number of sequenced strains to date could provide more information about the Rhodococcus diversity. Phylogenomic analysis of 327 Rhodococcus genomes and clustering of intergenomic distances identified 42 phylogenomic groups and 83 species-level clusters. Rarefaction models show that these numbers are likely to increase as new Rhodococcus strains are sequenced. The Rhodococcus genus possesses a small “hard” core genome consisting of 381 orthologous groups (OGs), while a “soft” core genome of 1253 OGs is reached with 99.16% of the genomes. Models of sequentially randomly added genomes show that a small number of genomes are enough to explain most of the shared diversity of the Rhodococcus strains, while the “open” pangenome and strain-specific genome evidence that the diversity of the genus will increase, as new genomes still add more OGs to the whole genomic set. Most rhodococci possess genes involved in the degradation of aliphatic and aromatic compounds, while short-chain alkane degradation is restricted to a certain number of groups, among which a specific particulate methane monooxygenase (pMMO) is only found in Rhodococcus sp. WAY2. The analysis of Rieske 2Fe-2S dioxygenases among rhodococci genomes revealed that most of these enzymes remain uncharacterized.
Collapse
|
8
|
Acquaro Junior VR, Rodrigues JP, Moraes LAB. Solid phase microextraction as a powerful alternative for screening of secondary metabolites in actinomycetes. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:823-833. [PMID: 31476245 DOI: 10.1002/jms.4434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Actinobacteria are one of the most promising producers of medically and industrially relevant secondary metabolites. However, screening of such compounds in actinobacteria growth demands simple, fast, and efficient extraction procedures that enable detection and precise quantification of biologically active compounds. In this regard, solid phase microextraction (SPME) emerges as an ideal extraction technique for screening of secondary metabolites in bacteria culture due to its non-exhaustive, minimally invasive, and non-destructive nature: its integrated sample preparation workflow; balanced coverage feature; metabolism quenching capabilities; and superior cleanup, as well as its versatility in configuration, which enables automation and high throughput applications. The current work provides a comparison of micro-scale and direct immersion SPME (DI-SPME) for screening of secondary metabolites, describes the optimization of the developed DI-SPME method, and introduces the developed technique for mapping of target secondary metabolites as well as its direct coupling to mass spectrometry for such applications. The optimized DI-SPME method provided higher amounts of extracted ions and intensity signals, yielding superior extraction and desorption efficiency as compared with micro-scale extraction. Studied compounds presented stability on the coating for 24 h at room temperature. The DI-SPME mapping approach revealed that lysolipin I and the lienomycin analog are distributed along the center and edges of the colony, respectively. Direct coupling of SPME to MS provided a similar ions profile as SPME-LC-MS while enabling a significant decrease in analysis time, demonstrating its suitability for such applications. DI-SPME is herein presented as an alternative to micro-scale extraction for screening of secondary metabolites in actinobacteria solid medium, as well as a feasible alternative to DESI-IMS for mapping of biologic radial distribution of secondary metabolites and cell life cycle studies. Lastly, the direct coupling of DI-SPME to MS is presented as a fast, powerful technique for high throughput analysis of secondary metabolites in this medium.
Collapse
Affiliation(s)
| | - Júlia Pereira Rodrigues
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Alberto Beraldo Moraes
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
|
10
|
Rodrigues JP, Peti APF, Figueiró FS, de Souza Rocha I, Junior VRA, Silva TG, de Melo IS, Behlau F, Moraes LAB. Bioguided isolation, characterization and media optimization for production of Lysolipins by actinomycete as antimicrobial compound against Xanthomonas citri subsp. citri. Mol Biol Rep 2018; 45:2455-2467. [PMID: 30311124 DOI: 10.1007/s11033-018-4411-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/26/2018] [Indexed: 11/28/2022]
Abstract
Citrus Canker disease is one of the most important disease in citrus production worldwide caused by gram-negative bacterial pathogen Xanthomonas citri subsp. citri, leading to great economic losses. Currently, a spray of copper-based bactericides is the primary measure for citrus canker management. However, these measures can lead to the contamination of soil by metal contamination, but also the development of copper-resistant Xanthomonas populations. Considering the need to discovery new alternatives to control the citrus canker disease, actinomycetes isolated from the Brazilian Caatinga biome and their crude extracts were tested against different strains of Xanthomonas citri subsp. citri. Streptomyces sp. Caat 1-54 crude extract showed the highest antibiotic activity against Xcc. The crude extract dereplication was performed by LC-MS/MS. Through bioassay-guided fractionation strategy, the antimicrobial activity was assigned to Lysolipins, showing a MIC around 0.4-0.8 µg/mL. Growth media optimization using statistical experimental design increased the Lysolipins production in three-fold production. The preventive and curative effects of the optimized crude extract obtained by experimental design of Caat-1-54 against citrus canker were evaluated in potted 'Pera' sweet orange nursery trees. Caat 1-54 extract was effective in preventing new infections by Xcc on leaves but was not able to reduce Xcc population in pre-established citrus canker lesions. Streptomyces sp. Caat 1-54 extract is a promising, environmentally-friendly source of antimicrobial compound to protect citrus trees against citrus canker.
Collapse
Affiliation(s)
- Júlia Pereira Rodrigues
- Department of Chemistry, Faculty of Philosophy, Science and Letters, University of São Paulo, Bandeirantes Avenue, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 12040-901, Brazil
| | - Ana Paula Ferranti Peti
- Department of Chemistry, Faculty of Philosophy, Science and Letters, University of São Paulo, Bandeirantes Avenue, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 12040-901, Brazil
| | - Fernanda Salés Figueiró
- Department of Chemistry, Faculty of Philosophy, Science and Letters, University of São Paulo, Bandeirantes Avenue, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 12040-901, Brazil
| | - Izadora de Souza Rocha
- Department of Chemistry, Faculty of Philosophy, Science and Letters, University of São Paulo, Bandeirantes Avenue, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 12040-901, Brazil
| | - Vinicius Ricardo Acquaro Junior
- Department of Chemistry, Faculty of Philosophy, Science and Letters, University of São Paulo, Bandeirantes Avenue, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 12040-901, Brazil
| | | | | | - Franklin Behlau
- FUNDECITRUS, Fundo de Defesa da Citricultura, Araraquara, Brazil
| | - Luiz Alberto Beraldo Moraes
- Department of Chemistry, Faculty of Philosophy, Science and Letters, University of São Paulo, Bandeirantes Avenue, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 12040-901, Brazil.
| |
Collapse
|
11
|
Current taxonomy of Rhodococcus species and their role in infections. Eur J Clin Microbiol Infect Dis 2018; 37:2045-2062. [PMID: 30159693 DOI: 10.1007/s10096-018-3364-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Abstract
Rhodococcus is a genus of obligate aerobic, Gram-positive, partially acid-fast, catalase-positive, non-motile, and none-endospore bacteria. The genus Rhodococcus was first introduced by Zopf. This bacterium can be isolated from various sources of the environment and can grow well in non-selective medium. A large number of phenotypic characterizations are used to compare different species of the genus Rhodococcus, and these tests are not suitable for accurate identification at the genus and species level. Among nucleic acid-based methods, the most powerful target gene for revealing reliable phylogenetic relationships is 16S ribosomal RNA gene (16S rRNA gene) sequence analysis, but this gene is unable to differentiation some of Rhodococcus species. To date, whole genome sequencing analysis has solved taxonomic complexities in this genus. Rhodococcus equi is the major cause of foal pneumonia, and its implication in human health is related to cases in immunocompromised patients. Macrolide family together with rifampicin is one of the most effective antibiotic agents for treatment rhodococcal infections.
Collapse
|