1
|
Nouioui I, Zimmermann A, Gomez Escribano JP, Jando M, Pötter G, Neumann-Schaal M, Mast Y. Taxonomic description of Micromonospora reichwaldensis sp. nov. and its biosynthetic and plant growth-promoting potential. Microbiol Spectr 2025; 13:e0212924. [PMID: 40029309 PMCID: PMC11960110 DOI: 10.1128/spectrum.02129-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/11/2024] [Indexed: 03/05/2025] Open
Abstract
Micromonospora strains proved to be a model organism for drug discovery and plant growth promotion (PGP). Strain DSM 115977 T was subjected to polyphasic taxonomic analysis and genome mining for biosynthetic gene clusters and PGP-associated genes in order to determine its taxonomic rank and assess its biosynthetic potential. The strain was found to form a novel species within the evolutionary radiation of the genus Micromonospora. The strain contained glucose, mannose, xylose, and ribose as whole-cell sugars and the isomer DL-diaminopimelic acid in its peptidoglycan. Strain DSM 115977T had iso-C15:0, iso-C16:0, C17:1cis 9, C17:0, iso-C17:0, and 10-methyl-C17:0 as fatty acid profile (>5%) and MK10-H4 and MK10-H6 as the predominant menaquinones (>10%). The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, glycophosphatidylinositol, glycophospholipids, phosphoaminolipid, unidentified lipids, and phospholipids. The genome of the strain had a size of 7.0 Mbp with a DNA G + C content of 73.4%. It formed a well-supported sub-clade with its close phylogenomic neighbor, Micromonospora echinofusca DSM 43913T (98.7%). Digital DNA-DNA hybridization and average nucleotide identity derived from sequence comparisons between the strain and its close phylogenomic neighbors were below the thresholds of 70 and 95-96% for prokaryotic species demarcation, respectively. Based on these findings, strain DSM 115977T (Asg4T = KCTC 59188T) merits to be considered as the type strain of a new species for which the name Micromonospora reichwaldensis sp. nov. is proposed. Genome mining for biosynthetic gene clusters encoding specialized secondary metabolites highlighted its ability to produce potentially novel therapeutic compounds. The strain is rich in plant growth-promoting genes whose predicted products directly and indirectly affect the development and immune system of the plant. IMPORTANCE In view of the significant pharmaceutical, biotechnological, and ecological potentials of micromonosporae, it is particularly interesting to enhance the genetic diversity of this genus by focusing on the isolation of novel strain from underexplored habitats, with the promise that novel bacteria will lead to new chemical entities. In this report, modern polyphasic taxonomic study confirmed the assignment of strain DSM 115977T to a novel species for which the name Micromonospora reichwaldensis sp. nov. is proposed. The strain harbors in its genomic sequence several biosynthetic gene clusters for secondary metabolites and genes associated with plant growth-promoting features. The results of this study provide a very useful basis for launching more in-depth research into agriculture and/or drug discovery.
Collapse
Affiliation(s)
- Imen Nouioui
- Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Alina Zimmermann
- Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | - Marlen Jando
- Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Gabriele Pötter
- Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Yvonne Mast
- Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
- Technische Universität Braunschweig, Institut für Mikrobiologie, Braunschweig, Germany
| |
Collapse
|
2
|
Carro L, Golińska P, Saati-Santamaría Z, Igual JM, Klenk HP, Goodfellow M. Atacama desert is a source of new Micromonospora strains: description of Micromonospora sicca sp. nov. Syst Appl Microbiol 2024; 47:126542. [PMID: 39116476 DOI: 10.1016/j.syapm.2024.126542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Several strains were isolated from subsurface soil of the Atacama Desert and were previously assigned to the Micromonospora genus. A polyphasic study was designed to determine the taxonomic affiliation of isolates 4G51T, 4G53, and 4G57. All the strains showed chemotaxonomic properties in line with their classification in the genus Micromonospora, including meso-diaminopimelic acid in the cell wall peptidoglycan, MK-9(H4) as major respiratory quinone, iso-C15:0 and iso-C16:0 as major fatty acids and diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol as major polar lipids. The 16S rRNA gene sequences of strains 4G51T, 4G53, and 4G57 showed the highest similarity (97.9 %) with the type strain of Micromonospora costi CS1-12T, forming an independent branch in the phylogenetic gene tree. Their independent position was confirmed with genome phylogenies, being most closely related to the type strain of Micromonospora kangleipakensis. Digital DNA-DNA hybridization and average nucleotide identity analyses between the isolates and their closest phylogenomic neighbours confirmed that they should be assigned to a new species within the genus Micromonospora for which the name Micromonospora sicca sp. nov. (4G51T=PCM 3031T=LMG 30756T) is proposed.
Collapse
Affiliation(s)
- Lorena Carro
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain; Institute for Agribiotechnology Research (CIALE), Villamayor, Salamanca, Spain.
| | - Patrycja Golińska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87 100 Torun, Poland.
| | - Zaki Saati-Santamaría
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain; Institute for Agribiotechnology Research (CIALE), Villamayor, Salamanca, Spain
| | - José M Igual
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), c/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building, Newcastle upon Tyne, NE1 7RU, UK
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
3
|
Razmilic V, Nouioui I, Karlyshev A, Jawad R, Trujillo ME, Igual JM, Andrews BA, Asenjo JA, Carro L, Goodfellow M. Micromonospora parastrephiae sp. nov. and Micromonospora tarensis sp. nov., isolated from the rhizosphere of a Parastrephia quadrangularis plant growing in the Salar de Tara region of the Central Andes in Chile. Int J Syst Evol Microbiol 2023; 73. [PMID: 38059605 DOI: 10.1099/ijsem.0.006189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Two novel Micromonospora strains, STR1-7T and STR1S-6T, were isolated from the rhizosphere of a Parastrephia quadrangularis plant growing in the Salar de Tara region of the Atacama Desert, Chile. Chemotaxonomic, cultural and phenotypic features confirmed that the isolates belonged to the genus Micromonospora. They grew from 20 to 37 °C, from pH7 to 8 and in the presence of up to 3 %, w/v NaCl. The isolates formed distinct branches in Micromonospora gene trees based on 16S rRNA gene sequences and on a multi-locus sequence analysis of conserved house-keeping genes. A phylogenomic tree generated from the draft genomes of the isolates and their closest phylogenetic neighbours showed that isolate STR1-7T is most closely related to Micromonospora orduensis S2509T, and isolate STR1S-6 T forms a distinct branch that is most closely related to 12 validly named Micromonospora species, including Micromonospora saelicesensis the earliest proposed member of the group. The isolates were separated from one another and from their closest phylogenomic neighbours using a combination of chemotaxonomic, genomic and phenotypic features, and by low average nucleotide index and digital DNA-DNA hybridization values. Consequently, it is proposed that isolates STR1-7T and STR1S-6T be recognized as representing new species in the genus Micromonospora, namely as Micromonospora parastrephiae sp. nov. and Micromonospora tarensis sp. nov.; the type strains are STR1-7T (=CECT 9665T=LMG 30768T) and STR1S-6T (=CECT 9666T=LMG 30770T), respectively. Genome mining showed that the isolates have the capacity to produce novel specialized metabolites, notably antibiotics and compounds that promote plant growth, as well as a broad-range of stress-related genes that provide an insight into how they cope with harsh abiotic conditions that prevail in high-altitude Atacama Desert soils.
Collapse
Affiliation(s)
- Valeria Razmilic
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon Tyne, UK
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, Santiago, Chile
| | - Imen Nouioui
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon Tyne, UK
- Department of Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124, Braunschweig, Germany
| | - Andrey Karlyshev
- Department of Biomolecular Sciences, School of Life Sciences, Pharmacy and Chemistry, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames, KT1 2EE, UK
| | - Rana Jawad
- Department of Biomolecular Sciences, School of Life Sciences, Pharmacy and Chemistry, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames, KT1 2EE, UK
| | - Martha E Trujillo
- Microbiology and Genetics Department, University of Salamanca, Salamanca, Spain
| | - Jose M Igual
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), c/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Barbara A Andrews
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, Santiago, Chile
| | - Juan A Asenjo
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, Santiago, Chile
| | - Lorena Carro
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon Tyne, UK
- Microbiology and Genetics Department, University of Salamanca, Salamanca, Spain
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon Tyne, UK
| |
Collapse
|
4
|
Świecimska M, Golińska P, Goodfellow M. Generation of a high quality library of bioactive filamentous actinomycetes from extreme biomes using a culture-based bioprospecting strategy. Front Microbiol 2023; 13:1054384. [PMID: 36741889 PMCID: PMC9893292 DOI: 10.3389/fmicb.2022.1054384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction Filamentous actinomycetes, notably members of the genus Streptomyces, remain a rich source of new specialized metabolites, especially antibiotics. In addition, they are also a valuable source of anticancer and biocontrol agents, biofertilizers, enzymes, immunosuppressive drugs and other biologically active compounds. The new natural products needed for such purposes are now being sought from extreme habitats where harsh environmental conditions select for novel strains with distinctive features, notably an ability to produce specialized metabolites of biotechnological value. Methods A culture-based bioprospecting strategy was used to isolate and screen filamentous actinomycetes from three poorly studied extreme biomes. Actinomycetes representing different colony types growing on selective media inoculated with environmental suspensions prepared from high-altitude, hyper-arid Atacama Desert soils, a saline soil from India and from a Polish pine forest soil were assigned to taxonomically predictive groups based on characteristic pigments formed on oatmeal agar. One hundred and fifteen representatives of the colour-groups were identified based on 16S rRNA gene sequences to determine whether they belonged to validly named or to putatively novel species. The antimicrobial activity of these isolates was determined using a standard plate assay. They were also tested for their capacity to produce hydrolytic enzymes and compounds known to promote plant growth while representative strains from the pine forest sites were examined to determine their ability to inhibit the growth of fungal and oomycete plant pathogens. Results Comparative 16S rRNA gene sequencing analyses on isolates representing the colour-groups and their immediate phylogenetic neighbours showed that most belonged to either rare or novel species that belong to twelve genera. Representative isolates from the three extreme biomes showed different patterns of taxonomic diversity and characteristic bioactivity profiles. Many of the isolates produced bioactive compounds that inhibited the growth of one or more strains from a panel of nine wild strains in standard antimicrobial assays and are known to promote plant growth. Actinomycetes from the litter and mineral horizons of the pine forest, including acidotolerant and acidophilic strains belonging to the genera Actinacidiphila, Streptacidiphilus and Streptomyces, showed a remarkable ability to inhibit the growth of diverse fungal and oomycete plant pathogens. Discussion It can be concluded that selective isolation and characterization of dereplicated filamentous actinomyctes from several extreme biomes is a practical way of generating high quality actinomycete strain libraries for agricultural, industrial and medical biotechnology.
Collapse
Affiliation(s)
- Magdalena Świecimska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Patrycja Golińska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
5
|
Biotechnological and Ecological Potential of Micromonospora provocatoris sp. nov., a Gifted Strain Isolated from the Challenger Deep of the Mariana Trench. Mar Drugs 2021; 19:md19050243. [PMID: 33923039 PMCID: PMC8146288 DOI: 10.3390/md19050243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
A Micromonospora strain, isolate MT25T, was recovered from a sediment collected from the Challenger Deep of the Mariana Trench using a selective isolation procedure. The isolate produced two major metabolites, n-acetylglutaminyl glutamine amide and desferrioxamine B, the chemical structures of which were determined using 1D and 2D-NMR, including 1H-15N HSQC and 1H-15N HMBC 2D-NMR, as well as high resolution MS. A whole genome sequence of the strain showed the presence of ten natural product-biosynthetic gene clusters, including one responsible for the biosynthesis of desferrioxamine B. Whilst 16S rRNA gene sequence analyses showed that the isolate was most closely related to the type strain of Micromonospora chalcea, a whole genome sequence analysis revealed it to be most closely related to Micromonospora tulbaghiae 45142T. The two strains were distinguished using a combination of genomic and phenotypic features. Based on these data, it is proposed that strain MT25T (NCIMB 15245T, TISTR 2834T) be classified as Micromonospora provocatoris sp. nov. Analysis of the genome sequence of strain MT25T (genome size 6.1 Mbp) revealed genes predicted to responsible for its adaptation to extreme environmental conditions that prevail in deep-sea sediments.
Collapse
|
6
|
Bull AT, Goodfellow M. Dark, rare and inspirational microbial matter in the extremobiosphere: 16 000 m of bioprospecting campaigns. MICROBIOLOGY-SGM 2020; 165:1252-1264. [PMID: 31184575 DOI: 10.1099/mic.0.000822] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The rationale of our bioprospecting campaigns is that the extremobiosphere, particularly the deep sea and hyper-arid deserts, harbours undiscovered biodiversity that is likely to express novel chemistry and biocatalysts thereby providing opportunities for therapeutic drug and industrial process development. We have focused on actinobacteria because of their frequent role as keystone species in soil ecosystems and their unrivalled track record as a source of bioactive compounds. Population numbers and diversity of actinobacteria in the extremobiosphere are traditionally considered to be low, although they often comprise the dominant bacterial biota. Recent metagenomic evaluation of 'the uncultured microbial majority' has now revealed enormous taxonomic diversity among 'dark' and 'rare' actinobacteria in samples as diverse as sediments from the depths of the Mariana Trench and soils from the heights of the Central Andes. The application of innovative culture and screening options that emphasize rigorous dereplication at each stage of the analysis, and strain prioritization to identify 'gifted' organisms, have been deployed to detect and characterize bioactive hit compounds and sought-after catalysts from this hitherto untapped resource. The rewards include first-in-a-class chemical entities with novel modes of action, as well as a growing microbial seed bank that represents a potentially enormous source of biotechnological and therapeutic innovation.
Collapse
Affiliation(s)
- Alan T Bull
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
7
|
Carro L, Golinska P, Nouioui I, Bull AT, Igual JM, Andrews BA, Klenk HP, Goodfellow M. Micromonospora acroterricola sp. nov., a novel actinobacterium isolated from a high altitude Atacama Desert soil. Int J Syst Evol Microbiol 2019; 69:3426-3436. [PMID: 31395106 DOI: 10.1099/ijsem.0.003634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Micromonospora strain, designated 5R2A7T, isolated from a high altitude Atacama Desert soil was examined by using a polyphasic approach. Strain 5R2A7T was found to have morphological, chemotaxonomic and cultural characteristics typical of members of the genus Micromonospora. The cell wall contains meso- and hydroxy-diaminopimelic acid, the major whole-cell sugars are glucose, ribose and xylose, the predominant menaquinones MK-10(H4), MK-10(H6), MK-10(H8) and MK-9(H6), the major polar lipids diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and an unknown glycolipid, and the predominant cellular fatty acids iso-C16 : 0, iso-C15 : 0 and 10-methyl C17 : 0. The digital genomic DNA G+C content is 72.3 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain 5R2A7T was closely related to Micromonospora coriariae DSM 44875T (99.8 %) and Micromonospora cremea CR30T (99.7 %), and was separated readily from the latter, its closest phylogenetic neighbour, based on gyrB and multilocus sequence data, by low average nucleotide identity (92.59 %) and in silico DNA-DNA relatedness (51.7 %) values calculated from draft genome assemblies and by a range of chemotaxonomic and phenotypic properties. Consequently, strain 5R2A7T is considered to represent a novel species of Micromonospora for which the name Micromonospora acroterricola sp. nov. is proposed. The type strain is 5R2A7T (=LMG 30755T=CECT 9656T).
Collapse
Affiliation(s)
- Lorena Carro
- School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.,Departamento de Microbiología y Genética, Edificio Departamental, Lab. 214, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Patrycja Golinska
- Department of Microbiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, 87 100 Torun, Poland
| | - Imen Nouioui
- School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Alan T Bull
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Jose Mariano Igual
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), c/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Barbara A Andrews
- Department of Chemical Engineering and Biotechnology, Centre for Biotechnology and Bioengineering (CeBiB) University of Chile, Santiago, Chile
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
8
|
Saygin H, Ay H, Guven K, Cetin D, Sahin N. Micromonospora deserti sp. nov., isolated from the Karakum Desert. Int J Syst Evol Microbiol 2019; 70:282-291. [PMID: 31596193 DOI: 10.1099/ijsem.0.003752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An isolate, 13K206T, with typical morphological characteristics of the genus Micromonospora was obtained during a study searching for novel actinobacteria with biosynthetic potential from the Karakum Desert. A polyphasic approach was adopted to determine taxonomic affiliation of the strain. The strain showed chemotaxonomical properties consistent with its classification in the genus Micromonospora such as meso- and 3-OH-A2pm in the cell-wall peptidoglycan, xylose in whole-cell hydrolysate and diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol as major polar lipids. The results of phylogenetic analysis based on 16S rRNA gene sequences revealed that the strain was closely related to 'Micromonospora spongicola' S3-1T, Micromonospora nigra DSM 43818T and Micromonospora yasonensis DS3186T with sequence similarities of 98.6, 98.5 and 98.4 %, respectively. Digital DNA-DNA hybridization and average nucleotide identity analyses in addition to gyrB gene analysis confirmed the assignment of the strain to a novel species within the genus Micromonospora for which the name Micromonospora deserti sp. nov. is proposed. The type strain is 13K206T (=JCM 32583T=DSM 107532T). The DNA G+C content of the type strain is 72.4 mol%.
Collapse
Affiliation(s)
- Hayrettin Saygin
- Department of Biology, Faculty of Science and Arts, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Hilal Ay
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Kiymet Guven
- Department of Biology, Faculty of Science, Eskisehir Technical University, 26555 Eskisehir, Turkey
| | - Demet Cetin
- Division of Science Education, Department of Mathematics and Science Education, Gazi Faculty of Education, Gazi University, 06500 Ankara, Turkey
| | - Nevzat Sahin
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Ondokuz Mayis University, 55139 Samsun, Turkey
| |
Collapse
|
9
|
Sayed AM, Hassan MHA, Alhadrami HA, Hassan HM, Goodfellow M, Rateb ME. Extreme environments: microbiology leading to specialized metabolites. J Appl Microbiol 2019; 128:630-657. [PMID: 31310419 DOI: 10.1111/jam.14386] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/18/2019] [Accepted: 07/10/2019] [Indexed: 12/19/2022]
Abstract
The prevalence of multidrug-resistant microbial pathogens due to the continued misuse and overuse of antibiotics in agriculture and medicine is raising the prospect of a return to the preantibiotic days of medicine at the time of diminishing numbers of drug leads. The good news is that an increased understanding of the nature and extent of microbial diversity in natural habitats coupled with the application of new technologies in microbiology and chemistry is opening up new strategies in the search for new specialized products with therapeutic properties. This review explores the premise that harsh environmental conditions in extreme biomes, notably in deserts, permafrost soils and deep-sea sediments select for micro-organisms, especially actinobacteria, cyanobacteria and fungi, with the potential to synthesize new druggable molecules. There is evidence over the past decade that micro-organisms adapted to life in extreme habitats are a rich source of new specialized metabolites. Extreme habitats by their very nature tend to be fragile hence there is a need to conserve those known to be hot-spots of novel gifted micro-organisms needed to drive drug discovery campaigns and innovative biotechnology. This review also provides an overview of microbial-derived molecules and their biological activities focusing on the period from 2010 until 2018, over this time 186 novel structures were isolated from 129 representatives of microbial taxa recovered from extreme habitats.
Collapse
Affiliation(s)
- A M Sayed
- Pharmacognosy Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - M H A Hassan
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - H A Alhadrami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.,Special Infectious Agent Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - H M Hassan
- Pharmacognosy Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.,Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - M Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - M E Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, UK
| |
Collapse
|
10
|
Carro L, Castro JF, Razmilic V, Nouioui I, Pan C, Igual JM, Jaspars M, Goodfellow M, Bull AT, Asenjo JA, Klenk HP. Uncovering the potential of novel micromonosporae isolated from an extreme hyper-arid Atacama Desert soil. Sci Rep 2019; 9:4678. [PMID: 30886188 PMCID: PMC6423291 DOI: 10.1038/s41598-019-38789-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/12/2018] [Indexed: 11/29/2022] Open
Abstract
The taxonomic status, biotechnological and ecological potential of several Micromonospora strains isolated from an extreme hyper arid Atacama Desert soil were determined. Initially, a polyphasic study was undertaken to clarify the taxonomic status of five micromonosporae, strains LB4, LB19, LB32T, LB39T and LB41, isolated from an extreme hyper-arid soil collected from one of the driest regions of the Atacama Desert. All of the isolates were found to have chemotaxonomic, cultural and morphological properties consistent with their classification in the genus Micromonospora. Isolates LB32T and LB39T were distinguished from their nearest phylogenetic neighbours and proposed as new species, namely as Micromonospora arida sp. nov. and Micromonospora inaquosa sp. nov., respectively. Eluted methanol extracts of all of the isolates showed activity against a panel of bacterial and fungal indicator strains, notably against multi-drug resistant Klebsiella pneumoniae ATCC 700603 while isolates LB4 and LB41 showed pronounced anti-tumour activity against HepG2 cells. Draft genomes generated for the isolates revealed a rich source of novel biosynthetic gene clusters, some of which were unique to individual strains thereby opening up the prospect of selecting especially gifted micromonosporae for natural product discovery. Key stress-related genes detected in the genomes of all of the isolates provided an insight into how micromonosporae adapt to the harsh environmental conditions that prevail in extreme hyper-arid Atacama Desert soils.
Collapse
Affiliation(s)
- Lorena Carro
- Microbiology and Genetics Department, University of Salamanca, Salamanca, Spain.
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon Tyne, UK.
| | - Jean Franco Castro
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon Tyne, UK
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, Universidad de Chile, Beauchef 851, Santiago, Chile
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Scotland, UK
| | - Valeria Razmilic
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon Tyne, UK
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, Universidad de Chile, Beauchef 851, Santiago, Chile
| | - Imen Nouioui
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon Tyne, UK
| | - Che Pan
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon Tyne, UK
| | - José M Igual
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
- Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca, Unidad Asociada al CSIC, Spain
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Scotland, UK
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon Tyne, UK
| | - Alan T Bull
- School of Biosciences, University of Kent Canterbury, Canterbury, UK
| | - Juan A Asenjo
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, Universidad de Chile, Beauchef 851, Santiago, Chile
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon Tyne, UK
| |
Collapse
|
11
|
Chitinolytic actinobacteria isolated from an Algerian semi-arid soil: development of an antifungal chitinase-dependent assay and GH18 chitinase gene identification. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-018-1426-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|