1
|
Dorfan Y, Nahami A, Morris Y, Shohat B, Kolodkin-Gal I. The Utilization of Bacillus subtilis to Design Environmentally Friendly Living Paints with Anti-Mold Properties. Microorganisms 2024; 12:1226. [PMID: 38930607 PMCID: PMC11205451 DOI: 10.3390/microorganisms12061226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The anti-fungal properties of the probiotic bacterium Bacillus subtilis have been studied extensively in agriculture and ecology, but their applications in the built environment remain to be determined. Our work aims to utilize this biological component to introduce new diverse anti-mold properties into paint. "Mold" refers to the ubiquitous fungal species that generate visible multicellular filaments commonly found in household dust. The development of mold leads to severe health problems for occupants, including allergic response, hypersensitivity pneumonitis, and asthma, which have significant economic and clinical outcomes. We here demonstrate the robust effect of a commercial paint enhanced with Bacillus subtilis cells against the common mold agent, Aspergillus niger, and identify three biosynthetic clusters essential for this effect. Our results lay the foundation for bio-convergence and synthetic biology approaches to introduce renewable and environmentally friendly bio-anti-fungal agents into the built environment.
Collapse
Affiliation(s)
- Yuval Dorfan
- Faculty of Electrical Engineering, Holon Institute of Technology, Holon 5810201, Israel; (A.N.); (B.S.)
| | - Avichay Nahami
- Faculty of Electrical Engineering, Holon Institute of Technology, Holon 5810201, Israel; (A.N.); (B.S.)
- The Scojen Institute for Synthetic Biology, Reichman University, Herzliya 4610101, Israel
| | - Yael Morris
- Faculty of Electrical Engineering, Holon Institute of Technology, Holon 5810201, Israel; (A.N.); (B.S.)
| | - Benny Shohat
- Faculty of Electrical Engineering, Holon Institute of Technology, Holon 5810201, Israel; (A.N.); (B.S.)
| | - Ilana Kolodkin-Gal
- The Scojen Institute for Synthetic Biology, Reichman University, Herzliya 4610101, Israel
| |
Collapse
|
2
|
Tanaka Y, Nagano H, Okano M, Kishimoto T, Tatsukawa A, Kunitake H, Fukumoto A, Anzai Y, Arakawa K. Isolation of Hydrazide-alkenes with Different Amino Acid Origins from an Azoxy-alkene-Producing Mutant of Streptomyces rochei 7434AN4. JOURNAL OF NATURAL PRODUCTS 2023; 86:2185-2192. [PMID: 37624992 DOI: 10.1021/acs.jnatprod.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
A triple mutant (strain KA57) of Streptomyces rochei 7434AN4 produces an azoxy-alkene compound, KA57A, which was not detected in a parent strain or other single and double mutants. This strain accumulated several additional minor components, whose structures were elucidated. HPLC analysis of strain KA57 indicated the presence of two UV active components (KA57D1 and KA57D2) as minor components. They exhibited a maximum UV absorbance at 218 nm, whereas a UV absorbance of azoxy-alkene KA57A was detected at 236 nm, suggesting that both KA57D1 and KA57D2 contain a different chromophore from KA57A. KA57D1 has a molecular formula of C12H22N2O2, and NMR analysis revealed KA57D1 is a novel hydrazide-alkene compound, (Z)-N-acetyl-N'-(hex-1-en-1-yl)isobutylhydrazide. Labeling studies indicated that nitrogen Nβ of KA57D1 is derived from l-glutamic acid, and the isobutylamide unit (C-1 to C-3, 2-Me, and Nα) originates from valine. KA57D2 has a molecular formula of C13H24N2O2, and its structure was determined to be (Z)-N-acetyl-N'-(hex-1-en-1-yl)-2-methylbutanehydrazide, in which a 2-methylbutanamide unit was shown to originate from isoleucine. Different biogenesis of the Nα atom (l-serine for KA57A, l-valine for KA57D1, and l-isoleucine for KA57D2) indicates the relaxed substrate recognition for nitrogen-nitrogen bond formation in the biosyntheses of KA57A, KA57D1, and KA57D2.
Collapse
Affiliation(s)
- Yu Tanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Haruka Nagano
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Mei Okano
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Takuya Kishimoto
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Ayaka Tatsukawa
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Hirofumi Kunitake
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Atsushi Fukumoto
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan
| | - Yojiro Anzai
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan
| | - Kenji Arakawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| |
Collapse
|
3
|
Xue J, Sun L, Xu H, Gu Y, Lei P. Bacillus atrophaeus NX-12 Utilizes Exosmotic Glycerol from Fusarium oxysporum f. sp. cucumerinum for Fengycin Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37410693 DOI: 10.1021/acs.jafc.3c01276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Bacillus strains are widely used as biological control agents to protect plants from fungal pathogens. However, whether Bacillus can exploit fungal pathogens to increase its biocontrol efficacy remains largely unexplored. Here, Bacillus atrophaeus NX-12 showed a high inhibition efficacy against Fusarium oxysporum f. sp. cucumerinum (FOC). The primary extracellular antifungal component of B. atrophaeus NX-12 was identified as fengycin by matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) analysis. NX-12-secreted fengycin not only inhibited the germination of FOC spores but also induced the production of reactive oxygen species (ROS) in FOC cells, leading to oxidative stress and the accumulation of glycerol. Additionally, NX-12-secreted fengycin increased FOC cell wall hydrolase activity, leading to cell splitting and the exosmose of accumulated glycerol. The increased exosmose of glycerol further promoted the production of fengycin. Our results showed that in addition to the direct inhibition of FOC, NX-12 can indirectly strengthen its antagonistic efficacy against the pathogen by exploiting the exosmotic glycerol from FOC.
Collapse
Affiliation(s)
- Jian Xue
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Liang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yian Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
4
|
Ye JJ, Zou RJ, Zhou DD, Deng XL, Wu NL, Chen DD, Xu J. Insights into the phylogenetic diversity, biological activities, and biosynthetic potential of mangrove rhizosphere Actinobacteria from Hainan Island. Front Microbiol 2023; 14:1157601. [PMID: 37323895 PMCID: PMC10264631 DOI: 10.3389/fmicb.2023.1157601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Mangrove rhizosphere soils host diverse Actinobacteria tolerant to numerous stresses and are inevitably capable of exhibiting excellent biological activity by producing impressive numbers of bioactive natural products, including those with potential medicinal applications. In this study, we applied an integrated strategy of combining phylogenetic diversity, biological activities, and biosynthetic gene clusters (BGCs) screening approach to investigate the biotechnological importance of Actinobacteria isolated from mangrove rhizosphere soils from Hainan Island. The actinobacterial isolates were identifified using a combination of colony morphological characteristics and 16S rRNA gene sequence analysis. Based on the results of PCR-detected BGCs screening, type I and II polyketide synthase (PKS) and non-ribosomal synthetase (NRPS) genes were detected. Crude extracts of 87 representative isolates were subjected to antimicrobial evaluation by determining the minimum inhibitory concentration of each strain against six indicator microorganisms, anticancer activities were determined on human cancer cell lines HepG2, HeLa, and HCT-116 using an MTT colorimetric assay, and immunosuppressive activities against the proliferation of Con A-induced T murine splenic lymphocytes in vitro. A total of 287 actinobacterial isolates affiliated to 10 genera in eight families of six orders were isolated from five different mangrove rhizosphere soil samples, specififically, Streptomyces (68.29%) and Micromonospora (16.03%), of which 87 representative strains were selected for phylogenetic analysis. The crude extracts of 39 isolates (44.83%) showed antimicrobial activity against at least one of the six tested indicator pathogens, especially ethyl acetate extracts of A-30 (Streptomyces parvulus), which could inhibit the growth of six microbes with MIC values reaching 7.8 μg/mL against Staphylococcus aureus and its resistant strain, compared to the clinical antibiotic ciproflfloxacin. Furthermore, 79 crude extracts (90.80%) and 48 (55.17%) of the isolates displayed anticancer and immunosuppressive activities, respectively. Besides, four rare strains exhibited potent immunosuppressive activity against the proliferation of Con A-induced T murine splenic lymphocyte in vitro with an inhibition rate over 60% at 10 μg/mL. Type I and II polyketide synthase (PKS) and non-ribosomal synthetase (NRPS) genes were detected in 49.43, 66.67, and 88.51% of the 87 Actinobacteria, respectively. Signifificantly, these strains (26 isolates, 29.89%) harbored PKS I, PKS II, and NRPS genes in their genomes. Nevertheless, their bioactivity is independent of BGCs in this study. Our findings highlighted the antimicrobial, immunosuppressive, and anticancer potential of mangrove rhizosphere Actinobacteria from Hainan Island and the biosynthetic prospects of exploiting the corresponding bioactive natural product.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jing Xu
- Collaborative Innovation Center of Ecological Civilization, School of Chemical Engineering and Technology, Hainan University, Haikou, China
| |
Collapse
|
5
|
Baranova AA, Alferova VA, Korshun VA, Tyurin AP. Modern Trends in Natural Antibiotic Discovery. Life (Basel) 2023; 13:1073. [PMID: 37240718 PMCID: PMC10221674 DOI: 10.3390/life13051073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Natural scaffolds remain an important basis for drug development. Therefore, approaches to natural bioactive compound discovery attract significant attention. In this account, we summarize modern and emerging trends in the screening and identification of natural antibiotics. The methods are divided into three large groups: approaches based on microbiology, chemistry, and molecular biology. The scientific potential of the methods is illustrated with the most prominent and recent results.
Collapse
Affiliation(s)
- Anna A. Baranova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.B.); (V.A.A.)
- Gause Institute of New Antibiotics, Bolshaya Pirogovskaya 11, 119021 Moscow, Russia
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.B.); (V.A.A.)
- Gause Institute of New Antibiotics, Bolshaya Pirogovskaya 11, 119021 Moscow, Russia
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.B.); (V.A.A.)
| | - Anton P. Tyurin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.B.); (V.A.A.)
| |
Collapse
|
6
|
Zhang M, Shuang B, Arakawa K. Accumulation of lankamycin derivative with a branched-chain sugar from a blocked mutant of chalcose biosynthesis in Streptomyces rochei 7434AN4. Bioorg Med Chem Lett 2023; 80:129125. [PMID: 36621553 DOI: 10.1016/j.bmcl.2023.129125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Lankamycin, a macrolide antibiotic produced by Streptomyces rochei 7434AN4, exhibits a moderate antimicrobial activity and acts as a synergistic pair with carbocyclic antibiotic lankacidin C by binding to the ribosome exit tunnel. Its biosynthetic gene (lkm) cluster (orf24-orf53) is located on the largest plasmid pSLA2-L (210,614 bp). Our group possesses a variety of lankamycin derivatives and macrolide-modification enzymes including P450 enzymes and glycosyltransferases, which may lead to expand the chemical library of bioactive macrolides. Here we constructed a mutant of a 3-ketoreductase gene lkmCVI (orf42) involved in d-chalcose biosynthesis, and its metabolite was isolated and structure-elucidated. Accumulation of novel lankamycin derivative harboring a branched-chain deoxysugar, 5-O-(4',6'-dideoxy-3'-C-acetyl-d-ribo-hexopyranosyl)-3-O-(4″-O-acetyl-l-arcanosyl)-lankanolide, indicated that LkmCVI acts as a gate keeper enzyme for d-chalcose synthesis in lankamycin biosynthesis.
Collapse
Affiliation(s)
- Mingge Zhang
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Bao Shuang
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; School of Life Sciences, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang 150030, China
| | - Kenji Arakawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan.
| |
Collapse
|
7
|
Misaki Y, Takahashi Y, Hara K, Tatsuno S, Arakawa K. Three 4-monosubstituted butyrolactones from a regulatory gene mutant of Streptomyces rochei 7434AN4. J Biosci Bioeng 2022; 133:329-334. [DOI: 10.1016/j.jbiosc.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 10/19/2022]
|
8
|
Misaki Y, Nindita Y, Fujita K, Fauzi AA, Arakawa K. Overexpression of SRO_3163, a homolog of Streptomyces antibiotic regulatory protein, induces the production of novel cyclohexene-containing enamide in Streptomyces rochei. Biosci Biotechnol Biochem 2022; 86:177-184. [PMID: 34849547 DOI: 10.1093/bbb/zbab206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022]
Abstract
Streptomyces antibiotic regulatory proteins (SARPs) are well characterized as transcriptional activators for secondary metabolites in Streptomyces species. Streptomyces rochei 7434AN4 harbors 15 SARP genes, among which 3 were located on a giant linear plasmid pSLA2-L and others were on the chromosome. Some SARP genes were cloned into an integrative thiostrepton-inducible vector pIJ8600, and their recombinants were cultivated. The recombinant of SARP gene, SRO_3163, accumulated a UV-active compound YM3163-A, which was not detected in the parent strain and other SARP recombinants. Its molecular formula was established to be C8H11NO. Extensive NMR analysis revealed that YM3163-A is a novel enamide, 2-(cyclohex-2-en-1-ylidene)acetamide, and its structure was confirmed by chemical synthesis including Horner-Wadsworth-Emmons reaction and ammonolysis.
Collapse
Affiliation(s)
- Yuya Misaki
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Yosi Nindita
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kota Fujita
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Amirudin Akhmad Fauzi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kenji Arakawa
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
9
|
Maan H, Itkin M, Malitsky S, Friedman J, Kolodkin-Gal I. Resolving the conflict between antibiotic production and rapid growth by recognition of peptidoglycan of susceptible competitors. Nat Commun 2022; 13:431. [PMID: 35058430 PMCID: PMC8776889 DOI: 10.1038/s41467-021-27904-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 12/16/2021] [Indexed: 11/09/2022] Open
Abstract
Microbial communities employ a variety of complex strategies to compete successfully against competitors sharing their niche, with antibiotic production being a common strategy of aggression. Here, by systematic evaluation of four non-ribosomal peptides/polyketide (NRPs/PKS) antibiotics produced by Bacillus subtilis clade, we revealed that they acted synergistically to effectively eliminate phylogenetically distinct competitors. The production of these antibiotics came with a fitness cost manifested in growth inhibition, rendering their synthesis uneconomical when growing in proximity to a phylogenetically close species, carrying resistance against the same antibiotics. To resolve this conflict and ease the fitness cost, antibiotic production was only induced by the presence of a peptidoglycan cue from a sensitive competitor, a response mediated by the global regulator of cellular competence, ComA. These results experimentally demonstrate a general ecological concept - closely related communities are favoured during competition, due to compatibility in attack and defence mechanisms.
Collapse
Affiliation(s)
- Harsh Maan
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Maxim Itkin
- Life Science Core Facilities Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Sergey Malitsky
- Life Science Core Facilities Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Jonathan Friedman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ilana Kolodkin-Gal
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
10
|
Maan H, Povolotsky TL, Porat Z, Itkin M, Malitsky S, Kolodkin-Gal I. Imaging flow cytometry reveals a dual role for exopolysaccharides in biofilms: To promote self-adhesion while repelling non-self-community members. Comput Struct Biotechnol J 2021; 20:15-25. [PMID: 34976308 PMCID: PMC8666610 DOI: 10.1016/j.csbj.2021.11.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
In nature, bacteria frequently reside in differentiated communities or biofilms. These multicellular communities are held together by self-produced polymers that allow the community members to adhere to the surface as well as to neighbor bacteria. Here, we report that exopolysaccharides prevent Bacillus subtilis from co-aggregating with a distantly related bacterium Bacillus mycoides, while maintaining their role in promoting self-adhesion and co-adhesion with phylogenetically related bacterium, Bacillus atrophaeus. The defensive role of the exopolysaccharides is due to the specific regulation of bacillaene. Single cell analysis of biofilm and free-living bacterial cells using imaging flow cytometry confirmed a specific role for the exopolysaccharides in microbial competition repelling B. mycoides. Unlike exopolysaccharides, the matrix protein TasA induced bacillaene but inhibited the expression of the biosynthetic clusters for surfactin, and therefore its overall effect on microbial competition during floating biofilm formation was neutral. Thus, the exopolysaccharides provide a dual fitness advantage for biofilm-forming cells, as it acts to promote co-aggregation of related species, as well as, a secreted cue for chemical interference with non-compatible partners. These results experimentally demonstrate a general assembly principle of complex communities and provides an appealing explanation for how closely related species are favored during community assembly. Furthermore, the differential regulation of surfactin and bacillaene by the extracellular matrix may explain the spatio-temporal gradients of antibiotic production within biofilms.
Collapse
Affiliation(s)
- Harsh Maan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | - Ziv Porat
- Flow Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Maxim Itkin
- Life Science Core Facilities Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Sergey Malitsky
- Life Science Core Facilities Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
11
|
Jose PA, Maharshi A, Jha B. Actinobacteria in natural products research: Progress and prospects. Microbiol Res 2021; 246:126708. [PMID: 33529791 DOI: 10.1016/j.micres.2021.126708] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 12/15/2022]
Abstract
Actinobacteria are well-recognised biosynthetic factories that produce an extensive spectrum of secondary metabolites. Recent genomic insights seem to impact the exploitation of these metabolically versatile bacteria in several aspects. Notably, from the isolation of novel taxa to the discovery of new compounds, different approaches evolve at a steady pace. Here, we systematically discuss the enduring importance of Actinobacteria in the field of drug discovery, the current focus of isolation efforts targeting bioactive Actinobacteria from diverse sources, recent discoveries of novel compounds with different bioactivities, and the relative employment of different strategies in the search for novel compounds. Ultimately, we highlight notable progress that will have profound impacts on future quests for secondary metabolites of Actinobacteria.
Collapse
Affiliation(s)
- Polpass Arul Jose
- Marine Biotechnology and Ecology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India.
| | - Anjisha Maharshi
- Marine Biotechnology and Ecology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India
| | - Bhavanath Jha
- Marine Biotechnology and Ecology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India; Academy of Scientific and Innovative Research (AcSIR), CSIR, India.
| |
Collapse
|
12
|
Kudo Y, Awakawa T, Du YL, Jordan PA, Creamer KE, Jensen PR, Linington RG, Ryan KS, Moore BS. Expansion of Gamma-Butyrolactone Signaling Molecule Biosynthesis to Phosphotriester Natural Products. ACS Chem Biol 2020; 15:3253-3261. [PMID: 33232109 DOI: 10.1021/acschembio.0c00824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacterial hormones, such as the iconic gamma-butyrolactone A-factor, are essential signaling molecules that regulate diverse physiological processes, including specialized metabolism. These low molecular weight compounds are common in Streptomyces species and display species-specific structural differences. Recently, unusual gamma-butyrolactone natural products called salinipostins were isolated from the marine actinomycete genus Salinispora based on their antimalarial properties. As the salinipostins possess a rare phosphotriester motif of unknown biosynthetic origin, we set out to explore its construction by the widely conserved 9-gene spt operon in Salinispora species. We show through a series of in vivo and in vitro studies that the spt gene cluster dually encodes the salinipostins and newly identified natural A-factor-like gamma-butyrolactones (Sal-GBLs). Remarkably, homologous biosynthetic gene clusters are widely distributed among many actinomycete genera, including Streptomyces, suggesting the significance of this operon in bacteria.
Collapse
Affiliation(s)
- Yuta Kudo
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Takayoshi Awakawa
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yi-Ling Du
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Peter A. Jordan
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Kaitlin E. Creamer
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Paul R. Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Roger G. Linington
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Katherine S. Ryan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
13
|
Teshima A, Hadae N, Tsuda N, Arakawa K. Functional Analysis of P450 Monooxygenase SrrO in the Biosynthesis of Butenolide-Type Signaling Molecules in Streptomyces rochei. Biomolecules 2020; 10:biom10091237. [PMID: 32854353 PMCID: PMC7564063 DOI: 10.3390/biom10091237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Streptomyces rochei 7434AN4 produces two structurally unrelated polyketide antibiotics lankacidin and lankamycin, and their biosynthesis is tightly controlled by butenolide-type signaling molecules SRB1 and SRB2. SRBs are synthesized by SRB synthase SrrX, and induce lankacidin and lankamycin production at 40 nM concentration. We here investigated the role of a P450 monooxygenase gene srrO (orf84), which is located adjacent to srrX (orf85), in SRB biosynthesis. An srrO mutant KA54 accumulated lankacidin and lankamycin at a normal level when compared with the parent strain. To elucidate the chemical structures of the signaling molecules accumulated in KA54 (termed as KA54-SRBs), this mutant was cultured (30 L) and the active components were purified. Two active components (KA54-SRB1 and KA54-SRB2) were detected in ESI-MS and chiral HPLC analysis. The molecular formulae for KA54-SRB1 and KA54-SRB2 are C15H26O4 and C16H28O4, whose values are one oxygen smaller and two hydrogen larger when compared with those for SRB1 and SRB2, respectively. Based on extensive NMR analysis, the signaling molecules in KA54 were determined to be 6'-deoxo-SRB1 and 6'-deoxo-SRB2. Gel shift analysis indicated that a ligand affinity of 6'-deoxo-SRB1 to the specific receptor SrrA was 100-fold less than that of SRB1. We performed bioconversion of the synthetic 6'-deoxo-SRB1 in the Streptomyces lividans recombinant carrying SrrO-expression plasmid. Substrate 6'-deoxo-SRB1 was converted through 6'-deoxo-6'-hydroxy-SRB1 to SRB1 in a time-dependent manner. Thus, these results clearly indicated that SrrO catalyzes the C-6' oxidation at a final step in SRB biosynthesis.
Collapse
Affiliation(s)
- Aiko Teshima
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; (A.T.); (N.H.); (N.T.)
| | - Nozomi Hadae
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; (A.T.); (N.H.); (N.T.)
| | - Naoto Tsuda
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; (A.T.); (N.H.); (N.T.)
| | - Kenji Arakawa
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; (A.T.); (N.H.); (N.T.)
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Correspondence: ; Tel./Fax: +81-82-424-7767
| |
Collapse
|
14
|
Misaki Y, Yamamoto S, Suzuki T, Iwakuni M, Sasaki H, Takahashi Y, Inada K, Kinashi H, Arakawa K. SrrB, a Pseudo-Receptor Protein, Acts as a Negative Regulator for Lankacidin and Lankamycin Production in Streptomyces rochei. Front Microbiol 2020; 11:1089. [PMID: 32582072 PMCID: PMC7296167 DOI: 10.3389/fmicb.2020.01089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/30/2020] [Indexed: 11/15/2022] Open
Abstract
Streptomyces rochei 7434AN4, a producer of lankacidin (LC) and lankamycin (LM), carries many regulatory genes including a biosynthesis gene for signaling molecules SRBs (srrX), an SRB receptor gene (srrA), and a SARP (Streptomyces antibiotic regulatory protein) family activator gene (srrY). Our previous study revealed that the main regulatory cascade goes from srrX through srrA to srrY, leading to LC production, whereas srrY further regulates a second SARP gene srrZ to synthesize LM. In this study we extensively investigated the function of srrB, a pseudo-receptor gene, by analyzing antibiotic production and transcription. Metabolite analysis showed that the srrB mutation increased both LC and LM production over four-folds. Transcription, gel shift, and DNase I footprinting experiments revealed that srrB and srrY are expressed under the SRB/SrrA regulatory system, and at the later stage, SrrB represses srrY expression by binding to the promoter region of srrY. These findings confirmed that SrrB acts as a negative regulator of the activator gene srrY to control LC and LM production at the later stage of fermentation in S. rochei.
Collapse
Affiliation(s)
- Yuya Misaki
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Shouji Yamamoto
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Toshihiro Suzuki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Miyuki Iwakuni
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hiroaki Sasaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yuzuru Takahashi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kuninobu Inada
- Natural Science Center for Basic Research and Development, Hiroshima University, Higashi-Hiroshima, Japan
| | - Haruyasu Kinashi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kenji Arakawa
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
15
|
Kapoor I, Olivares P, Nair SK. Biochemical basis for the regulation of biosynthesis of antiparasitics by bacterial hormones. eLife 2020; 9:e57824. [PMID: 32510324 PMCID: PMC7347384 DOI: 10.7554/elife.57824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/06/2020] [Indexed: 11/23/2022] Open
Abstract
Diffusible small molecule microbial hormones drastically alter the expression profiles of antibiotics and other drugs in actinobacteria. For example, avenolide (a butenolide) regulates the production of avermectin, derivatives of which are used in the treatment of river blindness and other parasitic diseases. Butenolides and γ-butyrolactones control the production of pharmaceutically important secondary metabolites by binding to TetR family transcriptional repressors. Here, we describe a concise, 22-step synthetic strategy for the production of avenolide. We present crystal structures of the butenolide receptor AvaR1 in isolation and in complex with avenolide, as well as those of AvaR1 bound to an oligonucleotide derived from its operator. Biochemical studies guided by the co-crystal structures enable the identification of 90 new actinobacteria that may be regulated by butenolides, two of which are experimentally verified. These studies provide a foundation for understanding the regulation of microbial secondary metabolite production, which may be exploited for the discovery and production of novel medicines.
Collapse
Affiliation(s)
- Iti Kapoor
- Department of Biochemistry, University of Illinois at Urbana ChampaignUrbanaUnited States
| | - Philip Olivares
- Department of Biochemistry, University of Illinois at Urbana ChampaignUrbanaUnited States
- Institute for Genomic Biology, University of Illinois at Urbana ChampaignUrbanaUnited States
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana ChampaignUrbanaUnited States
- Institute for Genomic Biology, University of Illinois at Urbana ChampaignUrbanaUnited States
- Center for Biophysics and Computational Biology, University of Illinois at Urbana ChampaignUrbanaUnited States
| |
Collapse
|
16
|
García-Gutiérrez C, Aparicio T, Torres-Sánchez L, Martínez-García E, de Lorenzo V, Villar CJ, Lombó F. Multifunctional SEVA shuttle vectors for actinomycetes and Gram-negative bacteria. Microbiologyopen 2020; 9:1135-1149. [PMID: 32170856 PMCID: PMC7294301 DOI: 10.1002/mbo3.1024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 11/10/2022] Open
Abstract
Actinomycetales, such as the genus Streptomyces, are well‐known cell factories employed to produce a wide variety of secondary metabolites for industrial use. However, not only is the genetic engineering of Streptomyces more complicated and tedious than other model laboratory species, such as Escherichia coli, there is also a considerable lack of genetic tools, hindering its adoption as a common chassis for synthetic biology. In this work, 23 novel shuttle vectors are presented that follow the canonical SEVA (Standard European Vector Architecture) common architecture with the goal of increasing the genetic toolbox repertoire for Streptomyces and other actinomycetes. The ORI module of these plasmids is composed of the combination of two origins of replication, one for Gram‐negative bacteria and the other for Streptomyces, a Gram‐positive bacteria. Origins of replication have been included in the collection for integrative, low‐copy number, and medium‐to‐high‐copy number vectors for Streptomyces. Also, a new selection marker has been developed that confers resistance to apramycin. The functionality of these plasmids was tested via the heterologous expression of GFP and the heterologous production of the plant flavonoid apigenin in Streptomyces albus J1074, with successful results in both cases, therefore expanding the current repertoire of genetic manipulation tools in Streptomyces species.
Collapse
Affiliation(s)
- Coral García-Gutiérrez
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain.,IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Spain.,ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| | - Tomás Aparicio
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Lucía Torres-Sánchez
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain.,IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Spain.,ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| | | | - Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Claudio J Villar
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain.,IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Spain.,ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| | - Felipe Lombó
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain.,IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Spain.,ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| |
Collapse
|
17
|
Genilloud O. Natural products discovery and potential for new antibiotics. Curr Opin Microbiol 2019; 51:81-87. [PMID: 31739283 DOI: 10.1016/j.mib.2019.10.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/31/2019] [Indexed: 02/05/2023]
Abstract
Microbial natural products have been one of the most important sources for the discovery of potential new antibiotics. However, the decline in the number of new chemical scaffolds discovered and the rediscovery problem of old known molecules has become a limitation for discovery programs developed by an industry confronted by a lack of incentives and a broken economic model. In contrast, the emergence of multidrug resistance in key pathogens has continued to progress and this issue is compounded by a lack of new antibiotics in development to address most of the difficult to treat infections. Advances in genome mining have confirmed the richness of biosynthetic gene clusters (BGCs) in the majority of microbial sources, and this suggests that an untapped chemical diversity is waiting to be discovered. The development of new genome engineering and synthetic biology tools, and the implementation of comparative omic approaches is fostering the development of new integrated culture-based strategies and genomic-driven approaches aimed at delivering new chemical classes of antibiotics.
Collapse
Affiliation(s)
- Olga Genilloud
- Fundación MEDINA, Avda Conocimiento 34, 18016 Granada, Spain.
| |
Collapse
|
18
|
Nindita Y, Cao Z, Fauzi AA, Teshima A, Misaki Y, Muslimin R, Yang Y, Shiwa Y, Yoshikawa H, Tagami M, Lezhava A, Ishikawa J, Kuroda M, Sekizuka T, Inada K, Kinashi H, Arakawa K. The genome sequence of Streptomyces rochei 7434AN4, which carries a linear chromosome and three characteristic linear plasmids. Sci Rep 2019; 9:10973. [PMID: 31358803 PMCID: PMC6662830 DOI: 10.1038/s41598-019-47406-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
Streptomyces rochei 7434AN4 produces two structurally unrelated polyketide antibiotics, lankacidin and lankamycin, and carries three linear plasmids, pSLA2-L (211 kb), -M (113 kb), and -S (18 kb), whose nucleotide sequences were previously reported. The complete nucleotide sequence of the S. rochei chromosome has now been determined using the long-read PacBio RS-II sequencing together with short-read Illumina Genome Analyzer IIx sequencing and Roche 454 pyrosequencing techniques. The assembled sequence revealed an 8,364,802-bp linear chromosome with a high G + C content of 71.7% and 7,568 protein-coding ORFs. Thus, the gross genome size of S. rochei 7434AN4 was confirmed to be 8,706,406 bp including the three linear plasmids. Consistent with our previous study, a tap-tpg gene pair, which is essential for the maintenance of a linear topology of Streptomyces genomes, was not found on the chromosome. Remarkably, the S. rochei chromosome contains seven ribosomal RNA (rrn) operons (16S-23S-5S), although Streptomyces species generally contain six rrn operons. Based on 2ndFind and antiSMASH platforms, the S. rochei chromosome harbors at least 35 secondary metabolite biosynthetic gene clusters, including those for the 28-membered polyene macrolide pentamycin and the azoxyalkene compound KA57-A.
Collapse
Affiliation(s)
- Yosi Nindita
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan.,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Zhisheng Cao
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Amirudin Akhmad Fauzi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Aiko Teshima
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Yuya Misaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan.,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Rukman Muslimin
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Yingjie Yang
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Yuh Shiwa
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Hirofumi Yoshikawa
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.,Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Michihira Tagami
- Omics Science Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Alexander Lezhava
- Omics Science Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Jun Ishikawa
- Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Kuninobu Inada
- Natural Science Center for Basic Research and Development, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Haruyasu Kinashi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Kenji Arakawa
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan. .,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan.
| |
Collapse
|
19
|
Screening and characterization of marine actinomycetes from the northern Oman Sea sediments for cytotoxic and antimicrobial activity. Int Microbiol 2019; 22:521-530. [DOI: 10.1007/s10123-019-00083-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/08/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
|
20
|
Barreiro C, Martínez-Castro M. Regulation of the phosphate metabolism in Streptomyces genus: impact on the secondary metabolites. Appl Microbiol Biotechnol 2019; 103:1643-1658. [DOI: 10.1007/s00253-018-09600-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/30/2022]
|
21
|
Streptomyces: implications and interactions in plant growth promotion. Appl Microbiol Biotechnol 2018; 103:1179-1188. [PMID: 30594952 PMCID: PMC6394478 DOI: 10.1007/s00253-018-09577-y] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/25/2022]
Abstract
With the impending increase of the world population by 2050, more activities have been directed toward the improvement of crop yield and a safe environment. The need for chemical-free agricultural practices is becoming eminent due to the effects of these chemicals on the environment and human health. Actinomycetes constitute a significant percentage of the soil microbial community. The Streptomyces genus, which is the most abundant and arguably the most important actinomycetes, is a good source of bioactive compounds, antibiotics, and extracellular enzymes. These genera have shown over time great potential in improving the future of agriculture. This review highlights and buttresses the agricultural importance of Streptomyces through its biocontrol and plant growth-promoting activities. These activities are highlighted and discussed in this review. Some biocontrol products from this genus are already being marketed while work is still ongoing on this productive genus. Compared to more focus on its biocontrol ability, less work has been done on it as a biofertilizer until recently. This genus is as efficient as a biofertilizer as it is as a biocontrol.
Collapse
|
22
|
Bai L, Ohnishi Y, Kim ES. A3 foresight network on natural products. J Ind Microbiol Biotechnol 2018; 46:313-317. [PMID: 30474768 DOI: 10.1007/s10295-018-2111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/17/2018] [Indexed: 11/25/2022]
Abstract
Discovery and development of natural products (NPs) have played important roles in the fields of human medicine and other biotechnology fields for the past several decades. Recent genome-mining approaches for the isolation of novel and cryptic NP biosynthetic gene clusters (BGCs) have led to the growing interest in NP research communities including Asian NP researchers from China, Japan, and Korea. Recently, a three-nation government-sponsored program named 'A3 Foresight Network on Chemical and Synthetic Biology of NPs' has been launched with a goal of establishing an Asian hub for NP research-&-personnel exchange program. This brief commentary describes introduction, main researchers, and future perspective of A3 NP network program.
Collapse
Affiliation(s)
- Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University, Incheon, South Korea.
| |
Collapse
|
23
|
Genilloud O. Mining Actinomycetes for Novel Antibiotics in the Omics Era: Are We Ready to Exploit This New Paradigm? Antibiotics (Basel) 2018; 7:E85. [PMID: 30257490 PMCID: PMC6316141 DOI: 10.3390/antibiotics7040085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/28/2022] Open
Abstract
The current spread of multi-drug resistance in a number of key pathogens and the lack of therapeutic solutions in development to address most of the emerging infections in the clinic that are difficult to treat have become major concerns. Microbial natural products represent one of the most important sources for the discovery of potential new antibiotics and actinomycetes have been one of the most relevant groups that are prolific producers of these bioactive compounds. Advances in genome sequencing and bioinformatic tools have collected a wealth of knowledge on the biosynthesis of these molecules. This has revealed the broad untapped biosynthetic diversity of actinomycetes, with large genomes and the capacity to produce more molecules than previously estimated, opening new opportunities to identify the novel classes of compounds that are awaiting to be discovered. Comparative genomics, metabolomics and proteomics and the development of new analysis and genetic engineering tools provide access to the integration of new knowledge and better understanding of the physiology of actinomycetes and their tight regulation of the production of natural products antibiotics. This new paradigm is fostering the development of new genomic-driven and culture-based strategies, which aims to deliver new chemical classes of antibiotics to be developed to the clinic and replenish the exhausted pipeline of drugs for fighting the progression of infection diseases in the near future.
Collapse
Affiliation(s)
- Olga Genilloud
- Fundación MEDINA, Avda Conocimiento 34, 18016 Granada, Spain.
| |
Collapse
|