1
|
Anatilimnocola floriformis sp. nov., a novel member of the family Pirellulaceae from a boreal lake, and emended description of the genus Anatilimnocola. Antonie Van Leeuwenhoek 2022; 115:1253-1264. [DOI: 10.1007/s10482-022-01769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
|
2
|
Vitorino IR, Lage OM. The Planctomycetia: an overview of the currently largest class within the phylum Planctomycetes. Antonie van Leeuwenhoek 2022; 115:169-201. [PMID: 35037113 DOI: 10.1007/s10482-021-01699-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 01/21/2023]
Abstract
The phylum Planctomycetes comprises bacteria with uncommon features among prokaryotes, such as cell division by budding, absence of the bacterial tubulin-homolog cell division protein FtsZ and complex cell plans with invaginations of the cytoplasmic membrane. Although planctomycetes are ubiquitous, the number of described species and isolated strains available as axenic cultures is still low compared to the diversity observed in metagenomes or environmental studies. An increasing interest in planctomycetes is reflected by the recent description of a large number of new species and their increasing accessibility in terms of pure cultures. In this review, data from all taxonomically described species belonging to Planctomycetia, the class with the currently highest number of characterized members within the phylum Planctomycetes, is summarized. Phylogeny, morphology, physiology, ecology and genomic traits of its members are discussed. This comprehensive overview will help to acknowledge several aspects of the biology of these fascinating bacteria.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| |
Collapse
|
3
|
Kumar G, Lhingjakim KL, Uppada J, Ahamad S, Kumar D, Kashif GM, Sasikala C, Ramana CV. Aquisphaera insulae sp. nov., a new member in the family Isosphaeraceae, isolated from the floating island of Loktak lake and emended description of the genus Aquisphaera. Antonie van Leeuwenhoek 2021; 114:1465-1477. [PMID: 34259976 DOI: 10.1007/s10482-021-01615-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/03/2021] [Indexed: 02/07/2023]
Abstract
Strain JC669T was isolated from a floating island of Loktak lake, Manipur, India and shares the highest 16S rRNA gene sequence identity with Aquisphaera giovannonii OJF2T. The novel strain is aerobic, Gram negative, light pink-coloured, non-motile, NaCl intolerant and spherical to oval-shaped. It grows in the form of single cells or aggregates and possibly forms structures which appear like fruiting bodies. Strain JC669T grows well up to pH 9.0.The isolate produces MK-6 as respiratory quinone, C18:1ω9c, C16:0 and C18:0 as major fatty acids and phosphatidylcholine, an unidentified amino lipid, an unidentified choline lipid (UCL) and six additional unidentified lipids (UL1, 2, 3, 4, 5, 6) as polar lipids. Strain JC669T has a large genome size of 10.04 Mb and the genomic G + C content was 68.5 mol%. The genome contained all genes essential for lycopene related carotenoid biosynthesis. The polyphasic analysis of its phylogenetic position, morphological, physiological and genomic features supports the classification of strain JC669T as a novel species of the genus Aquisphaera, for which we propose the name Aquisphaera insulae sp. nov. Strain JC669T (= KCTC 72672T = NBRC 114306T) is the type strain of the novel species.
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India
| | - Khongsai L Lhingjakim
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India
| | - Jagadeeshwari Uppada
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, J. N. T. University Hyderabad, Kukatpally, Hyderabad, 500085, India
| | - Shabbir Ahamad
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India
| | - Dhanesh Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India
| | - Gulam Mohammad Kashif
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India
| | - Chintalapati Sasikala
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, J. N. T. University Hyderabad, Kukatpally, Hyderabad, 500085, India
| | - Chintalapati Venkata Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India.
| |
Collapse
|
4
|
"Candidatus Laterigemmans baculatus" gen. nov. sp. nov., the first representative of rod shaped planctomycetes with lateral budding in the family Pirellulaceae. Syst Appl Microbiol 2021; 44:126188. [PMID: 33647766 DOI: 10.1016/j.syapm.2021.126188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 01/27/2023]
Abstract
Two axenic cultures of Planctomycetes were isolated from distinct geographical regions of the east coast of India. The two closely related strains (JC640 and CH01) showed <93.3% 16S rRNA gene sequence identity with members of the genus Roseimaritima followed by Rhodopirellula (<91%). Both strains displayed non-canonical cell morphology of Planctomycetes, such as rod shaped cells with division by lateral budding. Both strains showed crateriform structures on their surfaces and cells lack fimbriae. The genomes have a size of about 5.76 Mb and DNA G+C content of 63.6mol%. Phylogenetic analysis based on 16S rRNA gene sequence and 92 core genes based RAxML phylogenetic tree place both the strains in the family Pirellulaceae and indicated Roseimaritima sediminicola as their closest relative. The AAI and POCP values differentiate both strains from rest of the members of the family Pirellulaceae. The axenic cultures of both strains were able to grow up to 8-10 passages and subsequently the cells became non-viable with pleomorphic shapes. Supported by genomic, phylogenetic and morphological differences, we conclude that both strains belong to a novel genus. However, since the new isolates lost their viability on passaging, we propose the novel genus as "Candidatus Laterigemmans" gen. nov. and the novel species as "Candidatus Laterigemmans baculatus" sp. nov.
Collapse
|
5
|
Kallscheuer N, Rast P, Jogler M, Wiegand S, Kohn T, Boedeker C, Jeske O, Heuer A, Quast C, Glöckner FO, Rohde M, Jogler C. Analysis of bacterial communities in a municipal duck pond during a phytoplankton bloom and isolation of Anatilimnocola aggregata gen. nov., sp. nov., Lacipirellula limnantheis sp. nov. and Urbifossiella limnaea gen. nov., sp. nov. belonging to the phylum Planctomycetes. Environ Microbiol 2021; 23:1379-1396. [PMID: 33331109 DOI: 10.1111/1462-2920.15341] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/24/2020] [Indexed: 11/26/2022]
Abstract
Waterbodies such as lakes and ponds are fragile environments affected by human influences. Suitable conditions can result in massive growth of phototrophs, commonly referred to as phytoplankton blooms. Such events benefit heterotrophic bacteria able to use compounds secreted by phototrophs or their biomass as major nutrient source. One example of such bacteria are Planctomycetes, which are abundant on the surfaces of marine macroscopic phototrophs; however, less data are available on their ecological roles in limnic environments. In this study, we followed a cultivation-independent deep sequencing approach to study the bacterial community composition during a cyanobacterial bloom event in a municipal duck pond. In addition to cyanobacteria, which caused the bloom event, members of the phylum Planctomycetes were significantly enriched in the cyanobacteria-attached fraction compared to the free-living fraction. Separate datasets based on isolated DNA and RNA point towards considerable differences in the abundance and activity of planctomycetal families, indicating different activity peaks of these families during the cyanobacterial bloom. Motivated by the finding that the sampling location harbours untapped bacterial diversity, we included a complementary cultivation-dependent approach and isolated and characterized three novel limnic strains belonging to the phylum Planctomycetes.
Collapse
Affiliation(s)
| | | | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Sandra Wiegand
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands.,Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Germany
| | - Timo Kohn
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | | | - Olga Jeske
- Leibniz Institute DSMZ, Braunschweig, Germany
| | - Anja Heuer
- Leibniz Institute DSMZ, Braunschweig, Germany
| | - Christian Quast
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Frank Oliver Glöckner
- Alfred Wegener Institute, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
6
|
Kaboré OD, Godreuil S, Drancourt M. Planctomycetes as Host-Associated Bacteria: A Perspective That Holds Promise for Their Future Isolations, by Mimicking Their Native Environmental Niches in Clinical Microbiology Laboratories. Front Cell Infect Microbiol 2020; 10:519301. [PMID: 33330115 PMCID: PMC7734314 DOI: 10.3389/fcimb.2020.519301] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/27/2020] [Indexed: 01/22/2023] Open
Abstract
Traditionally recognized as environmental bacteria, Planctomycetes have just been linked recently to human pathology as opportunistic pathogens, arousing a great interest for clinical microbiologists. However, the lack of appropriate culture media limits our future investigations as no Planctomycetes have ever been isolated from patients' specimens despite several attempts. Several Planctomycetes have no cultivable members and are only recognized by 16S rRNA gene sequence detection and analysis. The cultured representatives are slow-growing fastidious bacteria and mostly difficult to culture on synthetic media. Accordingly, the provision of environmental and nutritional conditions like those existing in the natural habitat where yet uncultured/refractory bacteria can be detected might be an option for their potential isolation. Hence, we systematically reviewed the various natural habitats of Planctomycetes, to review their nutritional requirements, the physicochemical characteristics of their natural ecological niches, current methods of cultivation of the Planctomycetes and gaps, from a perspective of collecting data in order to optimize conditions and the protocols of cultivation of these fastidious bacteria. Planctomycetes are widespread in freshwater, seawater, and terrestrial environments, essentially associated to particles or organisms like macroalgae, marine sponges, and lichens, depending on the species and metabolizable polysaccharides by their sulfatases. Most Planctomycetes grow in nutrient-poor oligotrophic environments with pH ranging from 3.4 to 11, but a few strains can also grow in quite nutrient rich media like M600/M14. Also, a seasonality variation of abundance is observed, and bloom occurs in summer-early autumn, correlating with the strong growth of algae in the marine environments. Most Planctomycetes are mesophilic, but with a few Planctomycetes being thermophilic (50°C to 60°C). Commonly added nutrients are N-acetyl-glucosamine, yeast-extracts, peptone, and some oligo and macro-elements. A biphasic host-associated extract (macroalgae, sponge extract) conjugated with a diluted basal medium should provide favorable results for the success of isolation in pure culture.
Collapse
Affiliation(s)
- Odilon D. Kaboré
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Sylvain Godreuil
- Université de Montpellier UMR 1058 UMR MIVEGEC, UMR IRD 224-CNRS Inserm, Montpellier, France
| | - Michel Drancourt
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
7
|
Descriptions of Roseiconus nitratireducens gen. nov. sp. nov. and Roseiconus lacunae sp. nov. Arch Microbiol 2020; 203:741-754. [PMID: 33047175 DOI: 10.1007/s00203-020-02078-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/25/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
Two pink-coloured, oxidase-catalase-positive, salt and alkali-tolerant planctomycetal strains (JC635T and JC645T) with pear to spherical-shaped, Gram-stain-negative, motile cells were isolated from Chilika lagoon, India. Both strains share highest 16S rRNA gene sequence identity with members of the genus Rhodopirellula (< 94%) and Roseimaritima (< 94%) of the family Pirellulaceae. The 16S rRNA sequence identity between the strains JC635T and JC645T is 96.1%. Respiratory quinone for both strains is MK6. Major fatty acids are C18:1ω9c and C16:0. Major polar lipids are phosphatidylethanolamine, phosphatidylcholine, unidentified amino lipids and an unidentified lipid. The genomic size of strain JC635T and JC645T are 7.95 Mb and 8.2 Mb with DNA G + C content of 55.1 and 60.0 mol%, respectively. Based on phylogenetic, genomic (ANI, AAI, POCP, dDDH), chemotaxonomic, physiological and biochemical characteristics, we conclude that both strains belong to a novel genus Roseiconus gen. nov. and constitute two novel species for which we propose the names Roseiconus nitratireducens sp. nov. and Roseiconus lacunae sp. nov. The two novel species are represented by the type strains JC645T (= KCTC 72174T = NBRC 113879T) and JC635T (= KCTC 72164T = NBRC 113875T), respectively.
Collapse
|
8
|
Stieleria varia sp. nov., isolated from wood particles in the Baltic Sea, constitutes a novel species in the family Pirellulaceae within the phylum Planctomycetes. Antonie van Leeuwenhoek 2020; 113:1953-1963. [PMID: 32797359 PMCID: PMC7717043 DOI: 10.1007/s10482-020-01456-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
Abstract
Species belonging to the bacterial phylum Planctomycetes are ubiquitous members of the microbial communities in aquatic environments and are frequently isolated from various biotic and abiotic surfaces in marine and limnic water bodies. Planctomycetes have large genomes of up to 12.4 Mb, follow complex lifestyles and display an uncommon cell biology; features which motivate the investigation of members of this phylum in greater detail. As a contribution to the current collection of axenic cultures of Planctomycetes, we here describe strain Pla52T isolated from wood particles in the Baltic Sea. Phylogenetic analysis places the strain in the family Pirellulaceae and suggests two species of the recently described genus Stieleria as current closest neighbours. Strain Pla52nT shows typical features of members of the class Planctomycetia, including division by polar budding and the presence of crateriform structures. Colonies of strain Pla52nT have a light orange colour, which is an unusual pigmentation compared to the majority of members in the phylum, which show either a pink to red pigmentation or entirely lack pigmentation. Optimal growth of strain Pla52nT at 33 °C and pH 7.5 indicates a mesophilic (i.e. with optimal growth between 20 and 45 °C) and neutrophilic growth profile. The strain is an aerobic heterotroph with motile daughter cells. Its genome has a size of 9.6 Mb and a G + C content of 56.0%. Polyphasic analyses justify delineation of the strain from described species within the genus Stieleria. Therefore, we conclude that strain Pla52nT = LMG 29463T = VKM B-3447T should be classified as the type strain of a novel species, for which we propose the name Stieleria varia sp. nov.
Collapse
|
9
|
Oren A, Garrity GM. List of new names and new combinations that have appeared in effective publications outside of the IJSEM and are submitted for valid publication. Int J Syst Evol Microbiol 2019; 71. [PMID: 33787483 DOI: 10.1099/ijsem.0.004688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|